
© August 2024| IJIRT | Volume 11 Issue 3 | ISSN: 2349-6002

IJIRT 167187 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 526

Application Based Self-Driving Car Simulator Using

Modified CNN Nvidia Model

Dr. Poovarasan Selvaraj, Ajithkumar R

Assistant Professor, Department of CS (AI&DS), Sri Ramakrishna College of Arts & Science, Combatore-641

006

UG Student, Department of CS (AI&DS), Sri Ramakrishna College of Arts & Science, Combatore-641 006

Abstract - Self-driving car system using NVIDIA’s

Convolutional Neural Network (CNN) model, which

maps raw pixel data from a single front-facing camera

directly to steering commands. Leveraging deep

learning, we trained the model on a diverse dataset

encompassing city streets, highways, and off-road

terrains. The simulation showcases the model's ability to

autonomously navigate complex driving conditions

without traditional components like lane detection, path

planning, or control algorithms. Instead, the model

learns to interpret and respond to road features and

driving scenarios solely from human steering inputs

during training. Our findings highlight the benefits of an

end-to-end learning approach, where the CNN optimizes

the entire driving task integrally, achieving robust

performance across various driving contexts. This

method potentially enhances efficiency and effectiveness

over traditional autonomous driving systems,

demonstrating the feasibility of streamlined, deep

learning-based solutions for self-driving technology.

Keywords: DAVE-2 System, CNN, CNN Model,

Autonomous Land Vehicle in a Neural Network

(ALVINN) system.

I. INTRODUCTION

The emergence of Convolutional Neural Networks

(CNNs) marks a significant advancement in pattern

recognition, particularly within image analysis.

Departing from conventional methods reliant on

manual feature extraction and subsequent

classification, CNNs have transformed the field by

autonomously learning features directly from raw

data. This paradigm shift has shown exceptional

efficacy in tasks such as image recognition, leveraging

the intrinsic capability of convolution operations to

capture intricate spatial relationships within images

[1]. Moreover, the availability of vast labeled datasets

such as the Large-Scale Visual Recognition Challenge

(ILSVRC) and the computational power of modern

graphics processing units (GPUs) have propelled

CNNs to the forefront of machine learning in recent

years.

The capabilities of CNNs to address the complex

challenge of autonomous driving. Our journey began

over a decade ago with the DARPA Autonomous

Vehicle (DAVE) project, an initial endeavor to train a

scaled-down radio control car to navigate challenging

environments based on human-driven data. This

pioneering effort laid the groundwork for end-to-end

learning in autonomous driving, drawing inspiration

from works such as Pomerleau's Autonomous Land

Vehicle in a Neural Network (ALVINN) system.

II. LITERATURE REVIEW

(N. Corporation, 2016) The rapid development of

automotive technology is largely due to advances in

deep learning, particularly through the use of

Convolutional Neural Networks. NVIDIA, among the

pioneers in this field, has successfully used CNNs for

autonomous driving and embedded these models into

their proprietary driving frameworks to improve

perception, planning and control performance in

autonomous vehicles. This review focuses on basics,

development steps, and current techniques for driving

using the NVIDIA model. The introduction of

Convolutional Neural Networks heralded a

revolutionary era in image analysis and pattern

recognition. Traditional image processing methods

relied heavily on manual extraction, requiring careful

planning of individual elements and then insertion in

stages. CNNs have revolutionized this paradigm by

enabling automatic learning of sequences from pixel

data. This unique ability to independently learn and

extract features allows CNNs to detect complex

© August 2024| IJIRT | Volume 11 Issue 3 | ISSN: 2349-6002

IJIRT 167187 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 527

patterns and structures in images, making them highly

effective at tasks such as image recognition and object

recognition.

(Nicolas Gallardo,2017) The context of autonomous

driving, these networks are essential for processing

large amounts of sensor data, which form the

underlying technology that allows the sensory system

to recognize and respond to road users, obstacles and

road signs. The path to autonomous driving using

neural networks may begin with early initiatives such

as DARPA's Autonomous Vehicles project. The

project aimed to train radio-controlled vehicles to

navigate the environment using data obtained from

human-driven vehicles. These early efforts showed

that neural networks could be taught to mimic human

behavior, paving the way for advanced systems. Based

on this basic project, NVIDIA launched, the latest

model of the automotive industry and a leader in its

field. NVIDIA Pilot Net architecture is considered a

significant development in this field; It trains CNNs to

map raw pixel data from camera input to control

commands.

(A. Pomerleau,1989) This approach is quite different

from traditional modular networks, which consist of

performing various functions such as sensing,

planning and control. Instead, end-to-end learning

facilitates the process of learning the direct

relationship between cognitive processes and control

processes, creating a more efficient and

comprehensive decision-making process. NVIDIA’s

DRIVE is a complete platform designed to simplify

the development and deployment of autonomous

systems. The platform combines powerful computing

hardware with software and hardware to create

powerful automation solutions. Using deep learning

and artificial intelligence, the platform processes input

from a range of sensors including cameras, LiDAR

and radar to create detailed information about vehicles

and make driving decisions.

III. OVERVIEW OF THE DAVE-2 SYSTEM

A simplified block diagram of the DAVE-2 training

data gathering system is depicted in Figure 1. The data

acquisition vehicle is equipped with three cameras

installed behind the windshield. Simultaneously, the

system records the steering angle applied by the

human driver along with timestamped video from the

cameras. The steering command is obtained by

connecting to the Controller Area Network (CAN) bus

of the car. To ensure system independence from the

car's geometry, the steering command is encoded as

1/r, Where represents the turning radius in meters. To

prevent singularity issues when driving straight, 1/r is

utilized instead of r, as the turning radius for driving

straight is infinite. This encoding smoothly transitions

from left turns to right turns through zero. The training

data consists of a single dataset [2].

Figure 1: Data collection system.

The left and right cameras provide images of two

specific features from the center. Changes between the

camera and rotation are equivalent to changing the

image from the nearby camera. Since we lack 3D

modeling skills, we estimate the change by assuming

all points below the horizontal line are on the ground

and all points above the horizon are far away. This

approach works well on flat ground but distorts

ground-based objects like cars, poles, trees, and

buildings. Fortunately, these distortions don't

significantly impact network training. The vehicle's

video controlled navigation system returns the car to

its target position and orientation within two seconds.

To achieve this, we employ a Convolutional Neural

Network (CNN) in our autonomous vehicle training

system, as shown in Figure 2. The CNN simulates the

proposed rule by processing images and adjusting its

weights to match the desired output. This is done using

the backpropagation algorithm, implemented in the

Torch 7 machine learning package.

Figure 2: Training the neural network.

© August 2024| IJIRT | Volume 11 Issue 3 | ISSN: 2349-6002

IJIRT 167187 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 528

IV. NETWORK ARCHITECTURE

The train our network weights to minimize the

maximum error between the control command

executed by the network and the command issued by

the human driver or the modified command for off-

center and rotating images (see Section 5.2). Our

storage network is illustrated in Figure 4. The network

consists of nine components, including a standard

level, five certified components, and three fully

integrated components. The input image is segmented

in the YUV plane and passed through the array. The

first stage of the network is to create standard images.

The standard is robust and not adapted to learning.

Network normalization enables regular programs to be

customized with network mode and prioritized via the

GPU. The validation component is designed for

performance and is selected through a series of

multivariate tests. We employ an irregular

convolutional neural network with a 2×2 pitch and 5×5

and 5×5 variable resolution in the first three layers, and

a 3×3 size in the last two layers.

Follow a five-phase verification and three-phase

integration process, leading to the radio variable

output control value. All connected components are

designed to work as the controller, but when training

the system end-to-end, we find that it is challenging to

make a clear distinction between the components of

the network that essentially act as attractors to get the

system to work, and those that act as controllers [3].

V. DATA COLLECTION

The training data was gathered by driving an electric

vehicle on various roads and in different weather

conditions. Most of the data was collected in central

New Jersey, with additional data from Illinois,

Michigan, Pennsylvania, and New York. The dataset

includes a range of roads, such as freeways (paved and

unpaved), residential streets with parking, tunnels, and

unpaved freeways.

Data was collected in various weather conditions,

including fair weather, cloudy, snow, and rain, during

both day and night. In some cases, the low-lying sun

caused light to reflect off the road and scatter through

the glass.

Data was obtained using wireline measurement

instruments, specifically a 2016 Lincoln MKZ or a

2013 Ford Focus, with cameras mounted in the same

location.

The system is car-agnostic, allowing it to be used with

any vehicle make or model. Drivers were instructed to

exercise caution when necessary, driving normally

otherwise. By March 28, 2016, approximately 72

hours of driving data had been collected.

The function takes in a dataset data and an optional

parameter display. It creates a histogram of the

steering angles in the dataset using np. histogram, and

then plots the histogram and a line indicating the target

number of samples per bin if display is True.

Figure 3: Data collection

The code is designed to balance a dataset by removing

excess images from each bin of steering angles. The

balance data function is called again at the end to

ensure the dataset is balanced after removing images

[4].

Figure 4: Remove data

Reprocessing data:

The augment image function applies random image

augmentations to an input image, including panning,

zooming, brightness adjustment, and flipping, and

returns the augmented image along with the modified

steering angle. The function reads an image from a file

path, then randomly applies transformations with a

50% chance of execution for each. These

transformations include panning by up to 10% in both

© August 2024| IJIRT | Volume 11 Issue 3 | ISSN: 2349-6002

IJIRT 167187 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 529

x and y directions, zooming by up to 20%, adjusting

brightness by a random factor between 0.2 and 1.2, and

flipping the image horizontally. The steering angle is

also modified by negating its value when the image is

flipped. The function returns the augmented image and

the modified steering angle, which can be used to

increase the diversity of a dataset and improve the

robustness of machine learning models.

Figure 5: CROPPED IMAGE

The preprocess function takes an image as input and

applies a series of transformations to prepare it for use

in a machine learning model. First, it crops the image

to remove the top 60 rows and bottom 25 rows,

focusing on the central region of the image. Next, it

converts the image from RGB to YUV color space,

which is more suitable for image processing tasks. The

image is then blurred using a Gaussian filter to reduce

noise and smooth out the features. After that, the

image is resized to a fixed size of 200x66 pixels to

ensure consistency across all images. Finally, the pixel

values are normalized by dividing by 255, which helps

to prevent features with large ranges from dominating

the model. The preprocessed image is then returned,

ready for use in training or testing a machine learning

model [5].

Figure 6: PREPROCESSED IMAGE

VI. MODEL

The first select relevant data from our annotated

dataset, which includes road type, weather conditions,

and driver activities. The only use data where the

driver is staying in a lane and discard the rest. The

video is then sampled at 10 frames per second (FPS).

A higher sampling rate would result in redundant,

similar images, providing little useful information [6].

Figure 7: CNN architecture.

The network has about 27 million connections and 250

thousand parameters.

Normalization Layer: The first step is to normalize the

input data. This is done by dividing the input values by

127.5 and then subtracting 1. This normalization step

helps to scale the input values to a range that is suitable

for the model to process.

Convolutional Layers: The next step is to apply three

convolutional layers with the following specifications:

• Layer 1: 24 filters, 5x5 kernel, stride 2 • Layer 2:

36 filters, 5x5 kernel, stride 2

• Layer 3: 48 filters, 5x5 kernel, stride 2

These convolutional layers are designed to extract

features from the input data. The 5x5 kernel size is

used to capture local patterns in the data, and the stride

of 2 is used to down sample the feature maps.

• Layer 4: 64 filters, 3x3 kernel, stride 1

• Layer 5: 64 filters, 3x3 kernel, stride 1

These convolutional layers are designed to extract

more complex features from the data. The 3x3 kernel

size is used to capture smaller patterns in the data, and

the stride of 1 is used to preserve the spatial resolution

of the feature maps.

Flatten Layer: The next step is to flatten the output of

the convolutional layers into a 1D feature vector. This

is done to prepare the data for the fully connected

layers.

© August 2024| IJIRT | Volume 11 Issue 3 | ISSN: 2349-6002

IJIRT 167187 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 530

Fully Connected Layers: The next step is to apply three

fully connected layers with the following

specifications:

• Layer 6: 100 neurons

• Layer 7: 50 neurons

• Layer 8: 10 neurons

These fully connected layers are designed to learn

complex relationships between the input features and

the output steering angle.

Final Output Layer: The final step is to apply a single

neuron output layer that produces the predicted

steering angle. This layer takes the output of the

previous fully connected layer and produces a single

value that represents the predicted steering angle [7].

Figure 8: MODEL SEQUENCE

The training process and validate by using the

epochs. Here we perform cycle of 30 epochs and each

batch contains 100 elements which helps in decreasing

the loss which is shown in fig.

Figure 9: EPOCH WITH LOSS VALUE

VII. RESULT

Simulate driving scenarios using a Convolutional

Neural Network (CNN) architecture. The CNN model

employs the Exponential Linear Unit (ELU) activation

function, which is known for its ability to introduce

non-linearity into the model. The mean squared error

(MSE) loss function is used to validate the data. As

expected, the performance of the model improves after

training the data. Notably, the values of the trained and

tested data are very close, leading us to conclude that

the model generalizes well and captures the underlying

patterns in the data.

Figure 10: TRAINING AND VALIDATION

The results show that the car is successfully

running on its track, with a speedometer visible in the

right-hand side corner. The trained model is able to

control the car effectively in different, unknown

tracks, consistently completing laps without failing.

Furthermore, with a larger training dataset that

includes a variety of scenarios, the model's ability to

remain in autonomous mode is expected to increase

[8].

Figure 11: DRIVING IN AUTONOMOUS MODE

© August 2024| IJIRT | Volume 11 Issue 3 | ISSN: 2349-6002

IJIRT 167187 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 531

VIII. CONCLUSION

This paper presents a methodology for self-governing

driving under stimulated conditions, leveraging deep

learning strategies and end-to-end learning to achieve

vehicle cloning. The Nvidia neural network serves as

the core framework for the driver cloning algorithm,

comprising five convolutional layers, one

normalization layer, and four fully connected layers.

The output of the model is the steering angle. The

results demonstrate successful autonomous driving

along a predefined stimulated path, using smaller

datasets for training. Notably, all the data required to

train the system are independently created in manual

mode, thereby generating their own databases. To

improve our method, we can focus on enhancing

stimulus generalization. The limited generalizability

of our approach is attributed to the small database,

which restricts its applicability to real-world scenarios.

Nevertheless, the car is currently performing well in

autonomous mode along a predefined stimulated

route.

REFERENCE

[1] Nicolas Gallardo, “Autonomous Decision

Making for a Driver-less Car”, 2017.

[2] Naveen S Yeshodara, 2Nikhitha Kishore, “Cloud

Based Self Driving Cars”, 2014.

[3] Joshi and M. R. James, “Generation of accurate

lane-level maps from coarse prior maps and

lidar,” 2014.

[4] Qudsia Memon, Shahzeb Ali, Wajiha Shah, “Self-

Driving and DriverRelaxing Vehicle”, 2016.

[5] Dean A. Pomerleau. ALVINN, an autonomous

land vehicle in a neural network. Technical report,

Carnegie Mellon University, 1989.

[6] A. S. I. R. Jean-Francois Bonnefon, "The social

dilemma of autonomous vehicles”, 2015.

[7] U. o. M. Centre for Sustainable Systems,

"Autonomous Vehicles Factsheets”, 2018.

[8] N. Corporation, "End to End Learning of Self-

Driving Cars”, 2016.

