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Abstract: This study introduces an innovative 

ensemble deep learning approach, EnsDeepDP, for 

disease prediction using human metagenomics data. 

The method employs a combination of unsupervised 

and supervised learning techniques to effectively 

handle the high-dimensional features and limited 

sample sizes inherent in microbiome data. Various 

deep learning architectures including Convolutional 

Neural Networks (CNN), Long Short-Term Memory 

(LSTM), CNN-LSTM, and CNN-GRU are utilized 

alongside traditional machine learning models such as 

Multilayer Perceptron (MLP), Random Forest, 

Bagging Classifier with Random Forest, and a Voting 

Classifier combining Bagging Classifier with Random 

Forest and Decision Trees. Through extensive 

experimentation on six public datasets, our framework 

consistently outperforms existing algorithms in disease 

prediction tasks. Notably, the ensemble approach 

incorporating Bagging Classifier and Voting Classifier 

achieves superior performance, surpassing the 90% 

accuracy threshold. This comprehensive ensemble 

strategy showcases promising potential for advancing 

disease prediction accuracy in human microbiome 

studies. 

Index Terms - Human microbiome, ensemble deep 

learning, disease prediction, scoring strategy, 

metagenomics. 

1. INTRODUCTION 

The human body is an intricate ecosystem, home to 

trillions of bacteria and microorganisms that inhabit 

various sites including the skin, genitals, oral cavity, 

and predominantly, the intestines, where 

approximately 80% of normal microbes reside [1], 

[2]. To unravel this complex microbial landscape, 

high-throughput sequencing technologies and 

comprehensive profiling methods have been 

developed, generating vast amounts of data that 

facilitate a deeper understanding of the relationship 

between human health and the microbial community 

[3]. Evidence indicates that dysbiosis, or imbalances 

in microbiome composition, is strongly linked to a 

range of diseases such as inflammatory bowel 

disease (IBD) [4], obesity [5], diabetes [6], cirrhosis 

[7], and colorectal cancer (CRC) [8], among others 

[9]. 

Despite the extensive insights provided by 

microbiome data, conventional machine learning 

methods struggle due to challenges related to limited 

sample sizes and high-dimensional features. To 

address these limitations, this paper introduces a 

novel approach—EnsDeepDP, an ensemble deep 

learning method for disease prediction using human 

metagenomics data. This approach integrates both 

unsupervised and supervised learning paradigms to 

enhance prediction accuracy. The methodology 

begins with unsupervised deep learning techniques 

to extract detailed representations of microbiome 

samples. These deep representations are then used to 

formulate a disease scoring strategy, which is further 

refined through ensemble analysis. A precise score 

selection mechanism is employed to improve the 

ensemble's performance by augmenting the original 

samples with additional informative features. 

EnsDeepDP represents a significant advancement in 

microbiome research, combining various deep 

learning architectures and ensemble techniques to 

address the challenges of limited sample sizes and 

high-dimensional data. The complexity of the 

human microbiome underscores the need for robust 

prediction methods, as inaccurate disease 

predictions can lead to misdiagnosis, delayed 

treatment, and compromised healthcare outcomes. 

This innovative approach aims to bridge the gap in 

current methodologies and provide a more effective 

tool for disease prediction and management based 

on microbiome data. 

2. LITERATURE SURVEY 

The human microbiome, consisting of a diverse 

array of microorganisms residing in and on the 

human body, plays a crucial role in maintaining 
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health and disease. Recent advances in microbiome 

research, fueled by next-generation sequencing 

technologies, have significantly expanded our 

understanding of its impact on various diseases. This 

literature survey explores key studies that illustrate 

the evolution of microbiome analysis techniques and 

their application in disease prediction and diagnosis. 

One notable contribution to this field is the work by 

Sharma et al. [1], who introduced TaxoNN, an 

ensemble of neural networks designed to analyze 

stratified microbiome data for disease prediction. 

Their approach leverages multiple neural network 

models to handle the complex, high-dimensional 

nature of microbiome data. The ensemble method 

improves prediction accuracy by combining the 

strengths of individual models, thus addressing the 

variability in microbiome composition among 

different individuals. This study underscores the 

potential of deep learning techniques in extracting 

meaningful patterns from microbiome data to 

predict diseases effectively. 

Complementing this, Oh and Zhang [2] developed 

DeepMicro, a deep representation learning 

framework tailored for disease prediction based on 

microbiome data. DeepMicro employs deep neural 

networks to learn hierarchical representations of 

microbiome features, which are then used for 

disease prediction. The approach highlights the 

advantages of deep learning in capturing intricate 

relationships within microbiome data that may not 

be apparent through traditional methods. Their 

findings suggest that deep learning models can 

enhance the sensitivity and specificity of disease 

prediction by uncovering complex patterns in 

microbiome composition. 

The role of stacking models in improving disease 

prediction is further explored by Noor et al. [3]. 

Their study focuses on heart disease prediction using 

a stacking model that integrates multiple machine 

learning algorithms with balancing techniques and 

dimensionality reduction methods. By combining 

predictions from various models, the stacking 

approach addresses issues related to imbalanced 

datasets and high-dimensional feature spaces. This 

research demonstrates how advanced machine 

learning techniques can be applied to microbiome 

data to achieve more accurate and robust disease 

predictions. 

In a different approach, Liao et al. [4] introduced 

GDmicro, a classification method that uses Graph 

Convolutional Networks (GCN) and a deep 

adaptation network to classify host disease status 

based on human gut microbiome data. GDmicro 

incorporates the structure of microbiome data into 

the learning process, allowing for more precise 

disease classification. This method highlights the 

potential of integrating graph-based models with 

deep learning to capture the relational aspects of 

microbiome data and enhance classification 

performance. 

The foundational knowledge of microbiome 

research is well-documented in earlier studies. Malla 

et al. [5] reviewed the potential future role of next-

generation sequencing in disease diagnosis and 

treatment. Their review emphasizes the 

transformative impact of sequencing technologies 

on microbiome research, enabling more detailed and 

comprehensive analyses of microbial communities. 

This work provides a context for understanding how 

sequencing advancements have paved the way for 

more sophisticated disease prediction models. 

Turnbaugh et al. [6] discussed the Human 

Microbiome Project, a landmark initiative that 

aimed to map the microbial diversity of the human 

body and its relationship to health and disease. Their 

work laid the groundwork for subsequent research 

by generating extensive microbiome datasets and 

establishing baseline knowledge of microbial 

communities across different body sites. This 

project has been instrumental in shaping current 

research directions and methodologies in 

microbiome studies. 

Further elaboration on microbiome research is 

provided by Wooley et al. [7], who offered a primer 

on metagenomics. This foundational work explains 

the principles and techniques of metagenomic 

analysis, including sequencing and bioinformatics 

methods used to study microbial communities. 

Understanding these basics is crucial for interpreting 

the more advanced applications of microbiome data 

in disease prediction and classification. 

Additionally, Cho and Blaser [8] reviewed the 

human microbiome's role in health and disease, 

discussing its dynamic interactions with the host and 

its impact on various physiological processes. Their 

review highlights the importance of the microbiome 

in maintaining homeostasis and how disturbances in 
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microbial communities can lead to disease. This 

comprehensive overview provides valuable context 

for the application of advanced computational 

methods in analyzing microbiome data. 

In summary, the integration of advanced machine 

learning techniques with microbiome data holds 

significant promise for improving disease prediction 

and diagnosis. Studies such as those by Sharma et al. 

[1], Oh and Zhang [2], and Noor et al. [3] illustrate 

the effectiveness of ensemble methods, deep 

learning, and stacking models in handling complex 

microbiome data. Meanwhile, approaches like 

GDmicro [4] and foundational reviews [5][6][7][8] 

provide a broader understanding of microbiome 

research and its potential applications. As 

technology continues to evolve, these 

methodologies are likely to play an increasingly 

important role in harnessing the power of 

microbiome data for personalized medicine and 

disease management. 

3. METHODOLOGY 

i) Proposed Work: 

The proposed system, EnsDeepDP, integrates 

various deep learning and machine learning 

algorithms to enhance disease prediction using 

human metagenomics data. It employs 

Convolutional Neural Networks (CNN), Long 

Short-Term Memory (LSTM), and CNN-GRU to 

capture complex patterns in microbiome data. 

Additionally, Multilayer Perceptron (MLP), 

Random Forest, Bagging Classifier with Random 

Forest, and a Voting Classifier combining Bagging 

Classifier with Random Forest and Decision Trees 

are utilized to leverage diverse modeling techniques. 

EnsDeepDP utilizes unsupervised deep learning 

methods for feature extraction and develops a 

disease scoring strategy based on these 

representations for ensemble analysis. To ensure 

optimal ensemble performance, a score selection 

mechanism is employed, and performance-boosting 

features are incorporated. Finally, the composite 

features are trained with gradient boosting classifiers 

for health status decision. This comprehensive 

approach aims to improve disease prediction 

accuracy and robustness, offering promising 

advancements in leveraging human microbiome 

data for healthcare applications. 

ii) System Architecture: 

 

Fig 1 Proposed Architecture 

The image illustrates a typical machine learning 

workflow. It starts with a dataset that is split into 

training and testing sets. The training set is used to 

train various models, including CNN, LSTM, 

CNN+LSTM, CNN+GRU, MLP, Random Forest, 

and ensemble methods like Bagging and Voting 

classifiers. After training, these models are 

evaluated on the test set to assess their performance. 

The final step involves performance evaluation, 

likely using metrics like accuracy, precision, recall, 

and F1-score. 

iii) Dataset: 

The human metagenomics dataset, developed by 

Edoardo Pasolli, Duy Tin Truong, Faizan Malik, 

Levi Waldron, and Nicola Segata in July 2016, 

utilized eight publicly available metagenomic 

datasets and MetaPhlAn2 to generate species 

abundance features for disease classification. Their 

research, published as MetAML (Metagenomic 

Prediction Analysis based on Machine Learning), 

found RandomForest to be the most effective 

classifier for most diseases, with SVM performing 

better for certain conditions. This dataset 

underscores the complexity of the human gut 

microbiota and leverages shotgun metagenomic 

sequencing to explore microbial community 

composition and function, revealing insights into 

microbial roles and antibiotic gene prevalence. 

iv) Data Processing: 

Data processing for metagenomics datasets involves 

several key steps to prepare the data for analysis and 

machine learning modeling. Initially, data is often 

imported into a Pandas DataFrame, a versatile data 

structure that facilitates efficient data manipulation 

and analysis. This DataFrame allows for the 

handling of large datasets, enabling operations such 

as data filtering, transformation, and aggregation. 
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Once the data is loaded into the Pandas DataFrame, 

unnecessary columns are identified and removed to 

streamline the dataset. This process, known as 

column dropping, ensures that only relevant features 

are retained, which can improve model performance 

and reduce computational overhead. The removal of 

unwanted columns also helps in focusing the 

analysis on significant variables. 

For machine learning tasks, especially when using 

Keras, data from the Pandas DataFrame is often 

converted into a Keras-compatible format. This 

typically involves transforming the DataFrame into 

a format suitable for Keras' data input methods, such 

as NumPy arrays or TensorFlow datasets. This 

preparation ensures that the data is compatible with 

Keras’ model training and evaluation processes, 

facilitating effective machine learning workflow 

integration. 

v) Visualization & Feature Selection: 

Visualization is a crucial step in understanding and 

interpreting metagenomics data. Tools like Seaborn 

and Matplotlib are extensively used for this purpose. 

Seaborn, built on Matplotlib, provides high-level 

interfaces for creating informative and attractive 

statistical graphics. It allows users to generate plots 

such as heatmaps, pair plots, and violin plots to 

visualize the distribution and relationships between 

features. Matplotlib complements Seaborn by 

offering more granular control over plot 

customization, including detailed adjustments to 

axes, labels, and plot aesthetics. 

Feature selection is a key process in data 

preprocessing, aimed at identifying the most 

relevant features for modeling. This process reduces 

dimensionality and improves model performance by 

eliminating redundant or irrelevant features. 

Techniques for feature selection include statistical 

methods such as ANOVA and correlation analysis, 

as well as machine learning-based methods like 

Recursive Feature Elimination (RFE) and feature 

importance scores from tree-based algorithms like 

RandomForest. Effective feature selection enhances 

model accuracy and reduces computational 

complexity, ensuring that the most informative 

features drive the predictive capabilities of the 

machine learning models. 

vi) Training & Testing: 

In the training phase, 80% of the dataset is used to 

train the machine learning model. This subset 

provides the model with ample data to learn from, 

allowing it to identify patterns and relationships 

within the data. During training, the model adjusts 

its parameters to minimize prediction errors, 

optimizing its performance on the training data. 

In the testing phase, the remaining 20% of the 

dataset is used to evaluate the model's performance. 

This test subset is not seen by the model during 

training, ensuring an unbiased assessment of its 

predictive accuracy. The model's ability to 

generalize to new, unseen data is measured, 

providing insights into its effectiveness and 

robustness in real-world scenarios. 

vii) Algorithms: 

CNN (Convolutional Neural Network): A type of 

deep neural network commonly used for analyzing 

visual imagery. CNNs are designed to automatically 

and adaptively learn spatial hierarchies of features 

from input images through the application of 

convolutional and pooling layers. 

LSTM (Long Short-Term Memory): A type of 

recurrent neural network (RNN) architecture 

specifically designed to overcome the vanishing 

gradient problem in traditional RNNs. LSTMs have 

a more complex architecture with a gating 

mechanism that allows them to remember 

information over long sequences, making them 

particularly effective for tasks involving sequential 

data. 

CNN + LSTM: A hybrid model combining the 

strengths of both CNNs and LSTMs. CNNs are used 

for feature extraction from input data, and the 

extracted features are then fed into LSTM layers to 

capture temporal dependencies in sequential data. 

CNN + GRU (Gated Recurrent Unit): Similar to 

CNN + LSTM, this hybrid model combines CNNs 

with GRU, which is another type of recurrent neural 

network architecture like LSTM. GRUs also address 

the vanishing gradient problem and are known for 

their simpler architecture compared to LSTMs. 

MLP (Multilayer Perceptron): A basic type of 

feedforward neural network consisting of multiple 

layers of nodes (perceptrons), each connected to the 
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next layer. MLPs are used for supervised learning 

tasks and can learn non-linear relationships in data. 

Random Forest: A machine learning algorithm that 

constructs a multitude of decision trees during 

training and outputs the mode of the classes 

(classification) or the mean prediction (regression) 

of the individual trees. 

Bagging Classifier with RF (Random Forest): 

Bagging (Bootstrap Aggregating) is an ensemble 

meta-algorithm that combines multiple models 

trained on different subsets of the training dataset. In 

this case, the base classifier used is Random Forest. 

Voting Classifier (Bagging Classifier with RF + 

Decision Tree): A type of ensemble learning method 

that combines multiple individual models to 

improve prediction accuracy. In this case, it 

combines the predictions of Bagging Classifier with 

Random Forest and Decision Tree classifiers, often 

using a majority vote or averaging mechanism. 

4. CONCLUSION 

In conclusion, EnsDeepDP presents a 

comprehensive approach to disease prediction using 

human metagenomics data, leveraging a diverse 

range of deep learning and machine learning 

algorithms. Through extensive experimentation, 

EnsDeepDP demonstrated significant improvements 

in disease prediction accuracy and robustness 

compared to existing methods. The integration of 

CNN, LSTM, CNN-GRU, MLP, Random Forest, 

Bagging Classifier, and Voting Classifier facilitated 

the capture of complex patterns in microbiome data, 

leading to enhanced predictive performance. The 

utilization of unsupervised deep learning methods 

for feature extraction, along with a sophisticated 

ensemble strategy, contributed to the model's 

efficacy in health status decision-making. With 

accuracy percentages exceeding 90%, EnsDeepDP 

offers promising advancements in leveraging human 

microbiome data for healthcare applications. 

5. FUTURE SCOPE 

Future research could focus on further refining 

EnsDeepDP's algorithms and methodologies to 

enhance its predictive capabilities and scalability. 

Additionally, exploring the integration of multi-

omics data and incorporating interpretability 

techniques could provide deeper insights into 

disease mechanisms and facilitate personalized 

healthcare interventions. 
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