
© August 2018| IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 167327 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 374

Scalable IOT Data Management in Cloud Environments:

Techniques and Challenges

M S Lakshmi Devi

Assistant Professor of Computer Science, Government First Grade College, Varthur, Bangalore

Abstract- This paper explores various techniques

designed to address these challenges, focusing on edge

computing, fog computing, data partitioning, sharding,

stream processing, and data compression. Edge

computing and fog computing are examined for their

roles in reducing latency and bandwidth consumption by

decentralizing data processing. Data partitioning and

sharding are analyzed for their contributions to

scalability and fault tolerance in distributed storage

systems. Stream processing is evaluated for its ability to

handle real-time data analysis, while data compression

techniques are assessed for their impact on bandwidth

and storage efficiency. Each technique's strengths and

limitations are discussed, highlighting their implications

for scalability, latency, security, data management, and

energy efficiency. The paper concludes that a hybrid

approach integrating these techniques is essential for

effective IoT data management, and future research

should focus on optimizing these methods to meet the

demands of complex and data-intensive applications.

Keywords – Edge Computing, Latency, Bandwidth,

Stream processing, Scalability

I. INTRODUCTION

An unparalleled increase in data generation has

resulted from the quick spread of Internet of Things

(IoT) devices, calling for more effective and scalable

data management strategies [1]. The limitations of

latency-sensitive applications and real-time data

processing are exacerbated by traditional cloud

computing, which centralises data processing and

storage in distant servers. thereby, novel distributed

computing frameworks such as edge computing and

fog computing have surfaced, providing methods to

relocate computation near the data source, thereby

diminishing latency and bandwidth usage [2], [3].

This research investigates the many approaches and

difficulties related to cloud-based scalable IoT data

management. In order to compare how well edge

computing, fog computing, data partitioning, sharding,

stream processing, and data compression meet

important issues like latency, scalability, security, data

management, and energy efficiency, a thorough

examination of these technologies is provided. This

study tries to provide insights into how these

approaches might be optimised and merged to produce

more reliable and effective IoT data management

systems by analysing the advantages and

disadvantages of each strategy.

II. LITERATURE REVIEW

Adoption of edge computing as a distributed

computing paradigm has received a lot of attention

lately, particularly when it comes to the Internet of

Things (IoT). The authors of [2], [3], [4] discuss how

edge computing has fundamentally altered

computational architecture and highlight how, by

processing data closer to the source, it may reduce

latency and bandwidth utilisation. Traditional cloud

computing approaches, on the other hand, centralise

all data on remote servers, which results in

inefficiencies for applications that rely on latency.

Additional investigation in [3] delves into the

architectural facets of edge computing, elucidating the

tripartite architecture consisting of the device, edge,

and cloud layers. IoT device-generated data is

processed locally by the edge layer, complicated

processing and long-term storage are handled by the

cloud layer. In order to maximise data flow and

processing efficiency, the writers of [2] analyse this

tiered method by modelling the interactions between

these layers analytically.

Fog computing, another emerging paradigm, extends

the edge computing model by introducing an

intermediate layer of fog nodes. This architecture is

discussed in [7], where fog computing is shown to

enhance scalability and reduce latency further by

© August 2018| IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 167327 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 375

distributing computational tasks across multiple fog

nodes.

In terms of technical optimization, the importance of

network topology in fog computing is emphasized in

[5]. The study models network topology using graph

theory, illustrating how the strategic placement of fog

nodes can minimize latency and optimize data flow.

Resource allocation in fog computing, another critical

area, is explored in [6], where dynamic resource

allocation algorithms are proposed to enhance

processing efficiency across distributed fog nodes.

III. TECHNIQUE 1: ‘EDGE COMPUTING’

Edge computing lowers latency and bandwidth usage

in the field of distributed computing by moving

processing and data storage closer to the point of

demand.

All of the data produced by Internet of Things devices

is sent to centralised cloud servers in traditional cloud

computing models so that it may be processed and

stored. Particularly in applications that demand real-

time data processing, including autonomous vehicles,

industrial automation, and healthcare monitoring, this

centralised approach can result in major delays and

inefficiencies.

In order to overcome these obstacles, edge computing

decentralises the computational workload and moves

it to the "edge" of the network, which is in closer

proximity to data sources like sensors, cameras, and

other IoT devices.

3.1: Architecture of ‘Edge Computing’

Generally speaking, edge computing architecture

consists of three layers:

1. ‘Device Layer (Perception Layer)’: IoT devices

produce data at the Device Layer (Perception Layer).

Among the gadgets that collect raw environmental

data are sensors, cameras, and actuators [5].

2. ‘Edge Layer (Processing Layer)’: Devices that

handle Internet of Things data locally include

gateways, edge servers, and even strong IoT devices.

This layer could also include fog nodes in a fog

computing paradigm, which serve as links between the

device and cloud layers.

3. ‘Cloud Layer (Application Layer)’: Although some

data may still be sent to centralised cloud servers for

more complex processing and longer-term storage, the

cloud layer is far less important in edge computing.

The interaction between these layers can be

mathematically modelled to understand the flow and

processing of data in an edge computing environment

[3].

Fig 1: Edge computing Architecture [2]

© August 2018| IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 167327 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 376

3.2: Mathematical Modeling in ‘Edge Computing’

The efficiency of edge computing can be quantified

using several mathematical models, including models

for latency, bandwidth consumption, and processing

power distribution.

1. Latency Modeling [7]:

The total latency LLL in an edge computing scenario

can be expressed as the sum of the processing latency

at the edge Ledge and the communication latency Lcomm

𝐿 = 𝐿𝑒𝑑𝑔𝑒 + 𝐿𝑐𝑜𝑚𝑚

Where:

o Ledge is the time taken to process data at the edge,

often a function of the computational power of the

edge device and the complexity of the task.

o Lcomm is the time taken to transmit data from the

IoT device to the edge device and possibly from

the edge to the cloud.

2. Bandwidth Consumption [8]:

The reduction in bandwidth usage Breduced due to edge

computing can be modelled as:

𝐵𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = 𝐵𝑡𝑜𝑡𝑎𝑙 − 𝐵𝑒𝑑𝑔𝑒

Where:

o Breduced is the total bandwidth required if all data

were to be transmitted to the cloud.

o Bedge is the bandwidth required for transmitting

only the processed or filtered data from the edge

to the cloud.

Parameter Traditional Cloud Computing Edge Computing

Latency High, due to distance from data source Low, as processing is closer to data source

Bandwidth Consumption High, as all data is transmitted to the cloud Reduced, as data is processed at the edge

Scalability Dependent on cloud infrastructure Scalable through distributed edge nodes

Real-time Processing Limited by network delays Enhanced, with immediate local processing

Energy Efficiency High energy consumption for continuous data

transmission

Energy-efficient, as less data is transmitted

Security and Privacy Centralized, higher risk of breaches [9] Improved, as sensitive data can be processed

locally

Table 3.1: Traditional vs Edge computing

3.3: Summary

By moving processing power closer to the point of data

production, edge computing is a game-changing

strategy that drastically lowers latency, bandwidth use,

and reliance on centralised cloud infrastructure. Edge

computing is an essential part of contemporary IoT

ecosystems because it can be optimised to reach

optimum efficiency by utilising mathematical models

and optimisation methods.

IV. TECHNIQUE 2: ‘FOG COMPUTING’

An extra layer of protection is created between cloud

servers and Internet of Things (IoT) devices by fog

computing, sometimes referred to as fogging. A

decentralised computer infrastructure that offers

networking, processing, and storage capabilities closer

to the network's edge makes up this intermediate layer,

sometimes referred to as the fog layer. In contrast to

traditional cloud computing, which centralises data

processing in far-off data centres, fog computing

distributes these duties among several fog nodes that

are located closer to end users and Internet of Things

devices. In fields such as smart cities, industrial IoT,

and healthcare, this method is perfect for time-

sensitive applications since it lowers latency, increases

scalability, and improves data processing efficacy.

4.1: Architecture of ‘Fog Computing’

Three major layers comprise the architecture of fog

computing:

1. Device Layer (Perception Layer): This layer

consists of Internet of Things (IoT) devices, such as

sensors and actuators, that collect raw data from the

environment. These devices are responsible for

collecting data in real time that needs to be analysed

and processed.

2. Fog Layer (Intermediate Layer): The fog layer is

made up of fog nodes, which can be switches, routers,

gateways, or even fog-specific servers. These nodes

remove the need to transfer all data to the cloud by

processing, filtering, and storing data local to the data

source. Furthermore, communication between the

© August 2018| IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 167327 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 377

cloud and device levels is managed via the fog layer

[10].

3. Cloud Layer (Application Layer): The cloud layer

remains responsible for long-term data storage,

complex data analytics, and global decision-making.

However, its role is significantly reduced, as much of

the data processing is handled by the fog layer.

Fig 4.1: Fog Architecture [8]

4.2: Mathematical-Modeling in ‘Fog Computing’

Fog computing can be mathematically modeled to

analyze its performance in terms of latency, energy

consumption, and task offloading efficiency.

1. Latency Modeling [1]:

The total latency Ltotal in a fog computing environment

can be expressed as:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑓𝑜𝑔 + 𝐿𝑐𝑜𝑚𝑚 + 𝐿𝑐𝑙𝑜𝑢𝑑

Where:

o Lfog is the latency introduced by processing data

at the fog nodes.

o Lcomm is the communication latency between the

IoT devices and fog nodes, and potentially

between fog nodes and the cloud.

o Lcloud is the latency for processing tasks that are

still offloaded to the cloud.

The objective is to minimize Ltotal by maximizing

local processing at the fog layer.

4.3: Technical Analysis and Optimization

In a fog computing environment, several technical

factors must be considered to optimize performance:

• Network Topology Optimization: The

arrangement of fog nodes and their connectivity

to IoT devices and cloud servers plays a crucial

role in minimizing latency and optimizing data

flow. Network topology optimization can be

modeled using graph theory, where nodes

represent fog nodes and edges represent

communication links.

• Resource Allocation: Efficient allocation of

computational resources across fog nodes is

essential for maximizing processing efficiency.

This can be achieved through dynamic resource

allocation algorithms that consider current

network conditions, task priorities, and resource

availability.

• Security and Privacy: Ensuring data security and

privacy in a distributed fog environment is

challenging, as data is processed and stored across

multiple nodes. Advanced encryption techniques,

© August 2018| IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 167327 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 378

secure multi-party computation, and trust

management models are necessary to protect

sensitive data from unauthorized access and

breaches.

4.4: Summary

Fog computing offers a robust solution for managing

the complexities of IoT data by distributing

computational tasks across an intermediate fog layer

[3]. By employing mathematical models and

optimization algorithms, fog computing can

effectively minimize latency, reduce bandwidth

consumption, and improve energy efficiency. This

makes it particularly well-suited for applications that

require a balance between local processing and

centralized cloud services. However, the distributed

nature of fog computing introduces challenges in

resource allocation, network topology optimization,

and security management, all of which require careful

consideration in the design and implementation of fog-

based systems [5].

V. OTHER TECHNIQUES

5.1. Data Partitioning

Partitioning data entails breaking up large amounts of

Internet of Things data into smaller, more manageable

pieces and distributing them among several storage

nodes or cloud regions. This method can be applied

based on several parameters, including time intervals,

data kinds, and geographic location. Partitioning

facilitates parallel searching and processing, which

improves the scalability and speed of data retrieval [8].

Fig 5.1: Example of Data Partitioning

Analysis: Partitioning improves scalability by enabling

horizontal scaling, where more storage nodes can be

added to accommodate growing data volumes. It also

enhances fault tolerance, as data is distributed across

multiple nodes, reducing the risk of data loss.

5.2: Sharding

Data partitioning and sharding are comparable

techniques that are primarily utilised in distributed

databases. It entails dividing a huge database into more

manageable, smaller sections known as shards, each of

which is kept on a different server. Shards may be

based on a variety of factors, including hash-based

techniques or ranges of values in a key [11].

© August 2018| IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 167327 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 379

Fig 5.2: Sharding Meaning

Analysis: Sharding enhances scalability by distributing

the database workload across multiple servers,

allowing for parallel processing and reducing the load

on individual servers. It also enables scaling out,

where new shards can be added as data volume grows.

However, sharding introduces complexity in database

management, as it requires careful planning to ensure

data consistency and efficient query processing [12].

5.3 Stream Processing

Instead than storing data initially and analysing it later

(batch processing), stream processing analyses and

processes data as it is generated. This method works

especially well with Internet of Things data, which is

frequently continuous and time-sensitive. For this,

stream processing frameworks like Apache Storm,

Flink, and Kafka are frequently utilised [13].

Fig 5.3: Data Streaming vs Batch Processing

© August 2018| IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 167327 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 380

Analysis: For applications like smart cities, healthcare,

and industrial automation, stream processing improves

scalability by facilitating real-time data analysis and

decision-making. Its on-the-fly data processing

eliminates the need for massive amounts of storage.

Nevertheless, in order to manage high throughput and

guarantee low latency, stream processing

implementation calls for a strong infrastructure [14].

5.4. Data Compression

IoT data is compressed using data compression

techniques before being sent to the cloud or kept there.

Lossless compression, in which no data is lost, or lossy

compression, in which some data is destroyed to

minimise size, can be used to accomplish this [15].

Fig 5.4: Data Compression Pipeline [16]

Analysis: By lowering the quantity of data that must be transferred and stored, data compression improves scalability

by conserving bandwidth and storage space. It is especially helpful in settings with little resources, such bandwidth-

constrained IoT networks [17].

5.5: Comparing Challenges of all techniques

Technique Latency Challenges Scalability

Challenges

Security

Challenges

Data

Management

Challenges

Energy

Efficiency

Challenges

Edge

Computing

Managing real-time delays

[12]

Limited by edge

device capacity

Local data

security

Ensuring

consistency in

local data

Dependent on

device

efficiency

Fog Computing Multi-layer processing

delays

Complex node

management

Distributed

security

mechanisms

[11]

Efficient task

offloading

Balancing

distributed

energy use [10]

Data

Partitioning

Efficient partition retrieval Balancing

partition

distribution

Secure

management of

partitions

Handling data

skew

Optimal

resource

allocation

Sharding Shard access delays Managing

distributed

shards

Ensuring

consistency

across shards

Efficient inter-

shard

communication

Balancing

resource load

Stream

Processing

Low-latency real-time

processing

Infrastructure

for high

throughput

Securing

continuous data

streams

Managing

stateful

processing

Handling high

processing load

Data

Compression

Compression/decompression

delay

Effective

compression

strategies

Protecting data

integrity [18]

Balancing

compression and

data quality

Efficient

compression

processes

Table 5.1 Comparing Challenges of all techniques

© August 2018| IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 167327 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 381

VI. DISCUSSION

Each of the methods covered in this paper—stream

processing, edge computing, fog computing, data

partitioning, sharding, and compression—offers a

special benefit for controlling the efficiency and

scalability of Internet of Things data in cloud

environments. They do, however, also provide unique

difficulties that should be carefully considered.

By bringing computation closer to the data source,

edge computing dramatically lowers latency and

bandwidth usage. However, the processing power of

edge devices, which might act as a barrier in

applications requiring a lot of data, limits its efficacy.

By creating a layer of intermediary software between

Internet of Things devices and the cloud, fog

computing progressively decentralises data

processing. Although this method lowers latency and

improves scalability, it makes administering a

distributed network of fog nodes more difficult.

The goal of both data partitioning and sharding is to

increase scalability by dividing data among several

servers or storage nodes. These methods improve fault

tolerance and data retrieval speed, but they need to be

carefully planned to prevent problems like data skew,

which can cause performance bottlenecks.

Data Compression offers a way to reduce the size of

IoT data, saving bandwidth and storage space.

However, the trade-off between compression

efficiency and data quality must be carefully managed.

Lossy compression techniques can lead to a loss of

critical information, impacting the accuracy of data

analysis.

VI. CONCLUSION

Edge and fog computing are instrumental in reducing

latency and bandwidth consumption by decentralizing

data processing, but they require robust frameworks to

handle the complexities of distributed environments.

Data partitioning and sharding enhance scalability but

necessitate careful design to maintain data consistency

and performance. Stream processing is essential for

real-time applications, though it demands substantial

infrastructure support, and data compression helps

manage resource constraints but must be carefully

balanced to preserve data integrity.

The effective management of IoT data will likely

involve a combination of these techniques, tailored to

the specific requirements of the application. Future

research should focus on optimizing these methods,

improving their integration, and developing new

approaches to address the evolving needs of IoT

ecosystems.

REFERENCES

[1] T. Li, Y. Liu, Y. Tian, S. Shen, and W. Mao,

“A storage solution for massive IoT data based on

NoSQL,” in 2012 IEEE International conference on

green computing and communications, IEEE, 2012,

pp. 50–57.

[2] C. Ji, Y. Li, W. Qiu, U. Awada, and K. Li,

“Big data processing in cloud computing

environments,” in 2012 12th international symposium

on pervasive systems, algorithms and networks, IEEE,

2012, pp. 17–23.

[3] N. Bessis and C. Dobre, Big data and internet

of things: a roadmap for smart environments, vol. 546.

Springer, 2014.

[4] F. F. Moghaddam, M. Ahmadi, S. Sarvari, M.

Eslami, and A. Golkar, “Cloud computing challenges

and opportunities: A survey,” in 2015 1st international

conference on telematics and future generation

networks (TAFGEN), IEEE, 2015, pp. 34–38.

[5] C. Assi, S. Ayoubi, S. Sebbah, and K. Shaban,

“Towards scalable traffic management in cloud data

centers,” IEEE transactions on communications, vol.

62, no. 3, pp. 1033–1045, 2014.

[6] M. Abu-Elkheir, M. Hayajneh, and N. A. Ali,

“Data management for the internet of things: Design

primitives and solution,” Sensors, vol. 13, no. 11, pp.

15582–15612, 2013.

[7] K. Grolinger, W. A. Higashino, A. Tiwari, and

M. A. M. Capretz, “Data management in cloud

environments: NoSQL and NewSQL data stores,”

Journal of Cloud Computing: advances, systems and

applications, vol. 2, pp. 1–24, 2013.

[8] C. Sarkar, S. N. A. U. Nambi, R. V. Prasad,

and A. Rahim, “A scalable distributed architecture

towards unifying IoT applications,” in 2014 IEEE

World Forum on Internet of Things (WF-IoT), IEEE,

2014, pp. 508–513.

[9] S. Tyagi, A. Darwish, and M. Y. Khan,

“Managing computing infrastructure for IoT data,”

2014.

[10] Y. Xu and A. Helal, “Scalable cloud–sensor

architecture for the Internet of Things,” IEEE Internet

Things J, vol. 3, no. 3, pp. 285–298, 2015.

© August 2018| IJIRT | Volume 5 Issue 3 | ISSN: 2349-6002

IJIRT 167327 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 382

[11] A. R. Biswas and R. Giaffreda, “IoT and

cloud convergence: Opportunities and challenges,” in

2014 IEEE World Forum on Internet of Things (WF-

IoT), IEEE, 2014, pp. 375–376.

[12] G. Chen et al., “Federation in cloud data

management: Challenges and opportunities,” IEEE

Trans Knowl Data Eng, vol. 26, no. 7, pp. 1670–1678,

2014.

[13] F. Li, M. Vögler, M. Claeßens, and S.

Dustdar, “Efficient and scalable IoT service delivery

on cloud,” in 2013 IEEE sixth international conference

on cloud computing, IEEE, 2013, pp. 740–747.

[14] T. H. Noor, Q. Z. Sheng, S. Zeadally, and J.

Yu, “Trust management of services in cloud

environments: Obstacles and solutions,” ACM

Computing Surveys (CSUR), vol. 46, no. 1, pp. 1–30,

2013.

[15] L. Zeng, B. Veeravalli, and A. Y. Zomaya,

“An integrated task computation and data management

scheduling strategy for workflow applications in cloud

environments,” Journal of Network and Computer

Applications, vol. 50, pp. 39–48, 2015.

[16] P. P. Jayaraman, J. B. Gomes, H.-L. Nguyen,

Z. S. Abdallah, S. Krishnaswamy, and A. Zaslavsky,

“Scalable energy-efficient distributed data analytics

for crowdsensing applications in mobile

environments,” IEEE Trans Comput Soc Syst, vol. 2,

no. 3, pp. 109–123, 2015.

[17] L. Zhao, S. Sakr, A. Liu, and A. Bouguettaya,

Cloud data management. Springer, 2014.

[18] M. Peng, Y. Sun, X. Li, Z. Mao, and C. Wang,

“Recent advances in cloud radio access networks:

System architectures, key techniques, and open

issues,” IEEE Communications Surveys & Tutorials,

vol. 18, no. 3, pp. 2282–2308, 2016.

