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Abstract: Cloud computing provides on-demand access 

to a broad range of network and computer resources, 

encompassing storage, data management services, 

computing power, applications, and more. Users can 

easily access and utilize these resources as needed. The 

project focuses on enhancing cloud security by 

implementing an intrusion detection model leveraging 

machine learning techniques. The primary aim is to 

monitor and analyze resources, services, and networks 

within the cloud environment to effectively detect and 

prevent cyber-attacks. The proposed intrusion detection 

model utilizes machine learning techniques, specifically 

emphasizing the use of the Random Forest (RF) 

algorithm. Random Forest is a powerful ensemble 

learning method that combines multiple decision trees to 

make more accurate predictions. Feature engineering is 

a critical aspect of the model development process. It 

involves selecting and optimizing relevant features from 

the dataset to feed into the machine learning model. 

Effective feature engineering contributes to the model's 

ability to discern patterns and identify potential attacks 

accurately. The model's implementation is aimed at 

improving cloud security by continuously monitoring 

cloud resources, services, and networks. By applying 

machine learning algorithms, the model identifies 

unusual activities or patterns associated with cyber-

attacks, thereby enhancing the overall security posture 

of the cloud infrastructure. The model's performance is 

evaluated and validated using two datasets: Bot-IoT and 

NSL-KDD. These datasets are common benchmarks in 

the field of intrusion detection. The model demonstrates 

high accuracy in detecting intrusions compared to recent 

related works, indicating its effectiveness and reliability 

in identifying potential security threats. The project's 

includes a Voting Classifier combination of RF + 

ADaBoost and Stacking Classifier with RF + MLP with 

LightGBM got 99% and 100% of accuracy for Kdd-Cup 

data respectively for enhanced cloud detection 

performance. 

Index terms - cloud security; anomaly detection; features 

engineering; random forest. 

 

1. INTRODUCTION 

 

Cloud technologies allow practical access on demand 

to a shared network, storage, and resources and offer 

more choices regarding their service models [1]. These 

models are platform as a service (PaaS), software as a 

service (SaaS), and infrastructure as a service 

(IaaS)[2], used in one of the deployment models 

private, public, and hybrid cloud[3]. The cloud 

provides services with high performance due to its 

characteristics [2] according to the National Institute 

of Standards and Technology [4]: network access, 

resource pooling, quickelasticity, and measured 

service.  

Recently, the cloud suffers from many security 

problems like availability, data confidentiality, 

integrity, and control authorization. In addition, the 

Internet is used to facilitate access to the services 

offered by the cloud representing a major source of 

threats that can infect the cloud systems and 

resources[2]. Then enhancing cloud security becomes 

a primary challenge for cloud providers[5]. Therefore, 

several approaches such as firewall tools, data 

encryption algorithms, authentication protocols, and 

others have been developed to better secure cloud 

environments from various attacks[6]. However, 

traditional systems are not sufficient to secure cloud 

services from different limits[7]. Therefore, a set of 

intrusion detection approaches are proposed and 

applied to detect and prevent undesirable activities in 

realtime[8, 9].  

In general, the detection methods are divided into 

misuse detection method which uses known attacks to 

detect intrusion and anomaly detection method which 
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detect intrusion using unknown attack. The hybrid 

method is obtained by combining the advantages of 

these two methods [10]. Despite of more solutions 

given to secure cloud environments, the recent 

intrusion detection systems (IDSs) are affected by 

various significant limitations [8], for example, huge 

amounts of analyzed data, real-time detection, data 

quality, and others that aim to decrease the 

performance of detection models.  

Nowadays, academic researchers show that intelligent 

learning methods [6, 11] such as machine learning 

(ML), deep learning (DL), and ensemble learning are 

useful in various areas [12, 13] and are able to perform 

network security [14–18]. Our main goal in this 

research work is to propose an anomaly detection 

approach based on random forest (RF) binary 

classifier and feature engineering is carried out based 

on a data visualization process aiming to reduce the 

number of used features and perform the proposed 

anomaly detection model. The evaluation 

performances of the model are implemented on NSL-

KDD and BoT-IoT datasets. Then, the obtained 

outcomes demonstrate model performances. 

 

2. LITERATURE SURVEY 

 

The cloud computing exhibits, remarkable potential to 

provide cost effective, easy to manage, elastic, and 

powerful resources on the fly, over the Internet. The 

cloud computing, upsurges the capabilities of the 

hardware resources by optimal and shared utilization. 

The above mentioned features encourage the 

organizations and individual users to shift their 

applications and services to the cloud [1]. Even the 

critical infrastructure, for example, power generation 

and distribution plants are being migrated to the cloud 

computing paradigm. However, the services provided 

by third-party cloud service providers entail additional 

security threats. The migration of user’s assets (data, 

applications etc.) outside the administrative control in 

a shared environment where numerous users are 

collocated escalates the security concerns. This survey 

details the security issues that arise due to the very 

nature of cloud computing. Moreover, the survey 

presents the recent solutions presented in the literature 

to counter the security issues. Furthermore, a brief 

view of security vulnerabilities in the mobile cloud 

computing are also highlighted [18,30]. In the end, the 

discussion on the open issues and future research 

directions is also presented. 

The cloud computing provides on demand services 

over the Internet with the help of a large amount of 

virtual storage. The main features of cloud computing 

is that the user does not have any setup of expensive 

computing infrastructure and the cost of its services is 

less. In the recent years, cloud computing integrates 

with the industry and many other areas, which has 

been encouraging the researcher to research on new 

related technologies [2]. Due to the availability of its 

services & scalability for computing processes 

individual users and organizations transfer their 

application, data and services to the cloud storage 

server. Regardless of its advantages, the 

transformation of local computing to remote 

computing has brought many security issues and 

challenges for both consumer and provider. Many 

cloud services are provided by the trusted third party 

which arises new security threats. The cloud provider 

provides its services through the Internet and uses 

many web technologies that arise new security issues 

[1,23,5,7,19]. This paper discussed about the basic 

features of the cloud computing, security issues, 

threats and their solutions. Additionally, the paper 

describes several key topics related to the cloud, 

namely cloud architecture framework, service and 

deployment model, cloud technologies, cloud security 

concepts, threats, and attacks. The paper also discusses 

a lot of open research issues related to the cloud 

security. 

3. METHODOLOGY 

 

i) Proposed Work: 

The Random Forest machine learning algorithm, 

known for its accuracy and robustness, is harnessed 

alongside strategic feature engineering. This 

combination is utilized to create a sophisticated 

intrusion detection system for cloud environments, 

aiming to substantially enhance security. The 

approach focuses on accurately identifying potential 

threats and abnormal patterns, contributing to an 

efficient and reliable solution that strengthens overall 

cloud security measures. And also included the 

combination of a Voting Classifier, incorporating 

Random Forest (RF) and ADaBoost, achieves an 

impressive 99% accuracy for the Kdd-Cup dataset. 

Additionally, the Stacking Classifier, integrating 

Random Forest (RF), Multi-Layer Perceptron (MLP), 
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and LightGBM, attains an outstanding 100% accuracy 

for the Bot-IoT dataset [28,29,39]. These ensemble 

models showcase the project's commitment to robust 

and high-performing intrusion detection in cloud 

environments. The user-friendly Flask framework 

with SQLite integration ensures practical usability, 

offering a seamless experience for user testing while 

maintaining data security in cybersecurity 

applications. 

 

ii) System Architecture: 

It begins with dataset exploration and data 

preprocessing, followed by the crucial steps of train-

test split and model training. The core architecture 

involves the implementation of ensemble techniques, 

specifically the Stacking Classifier and the Voting 

Classifier extensions, designed to enhance the overall 

intrusion detection performance [24]. These classifiers 

demonstrate their efficacy through robust model 

evaluations, achieving notable accuracies of 99% and 

100% respectively. The architecture prioritizes the 

versatility of the models, ensuring effective detection 

across diverse datasets, and emphasizes practical 

usability through a user-friendly interface facilitated 

by the Flask framework and SQLite integration. This 

unified system architecture positions the project as a 

sophisticated and adaptable solution for cloud-based 

intrusion detection using machine learning techniques. 

 
Fig 1 Proposed architecture 

 

iii) Dataset collection: 

KDD CUP DATASET  

The KDD-CUP (Knowledge Discovery and Data 

Mining Cup) dataset [35,26] is a widely used dataset 

for intrusion detection system research. In the context 

of a cloud-based intrusion detection approach, the 

KDD-CUP dataset serves as a foundational dataset for 

training and evaluating machine learning models to 

detect intrusions and cyber-attacks. It allows the 

development of models that can analyze network 

traffic and detect abnormal or malicious patterns, 

crucial for securing cloud-based environments.  

 
Fig 2 KDD-CUP dataset 

 

iv) Data Processing: 

Data processing involves transforming raw data into 

valuable information for businesses. Generally, data 

scientists process data, which includes collecting, 

organizing, cleaning, verifying, analyzing, and 

converting it into readable formats such as graphs or 

documents. Data processing can be done using three 

methods i.e., manual, mechanical, and electronic. The 

aim is to increase the value of information and 

facilitate decision-making. This enables businesses to 

improve their operations and make timely strategic 

decisions. Automated data processing solutions, such 

as computer software programming, play a significant 

role in this. It can help turn large amounts of data, 

including big data, into meaningful insights for quality 

management and decision-making. 

 

v) Feature selection: 

Feature selection is the process of isolating the most 

consistent, non-redundant, and relevant features to use 

in model construction. Methodically reducing the size 

of datasets is important as the size and variety of 

datasets continue to grow. The main goal of feature 

selection is to improve the performance of a predictive 

model and reduce the computational cost of modeling. 

Feature selection, one of the main components of 

feature engineering, is the process of selecting the 

most important features to input in machine learning 

algorithms. Feature selection techniques are employed 

to reduce the number of input variables by eliminating 

redundant or irrelevant features and narrowing down 

the set of features to those most relevant to the 

machine learning model. The main benefits of 

performing feature selection in advance, rather than 
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letting the machine learning model figure out which 

features are most important. 

 

vi) Algorithms: 

Random Forest (RF), Random Forest is an ensemble 

learning method that constructs multiple decision trees 

during training and outputs the class that is the mode 

of the classes (classification) of the individual trees. 

It's effective for intrusion detection due to its ability to 

handle a large number of features, deal with 

overfitting, and provide high accuracy. 

Pseudocode: RandomForest 

Input: Training data D = {(x1, y1), (x2, y2), ..., (xm, 

ym)} 

       Number of trees N 

       Number of features F to sample at each split 

       Maximum tree depth d (optional) 

Output: A set of trained decision trees (Forest) 

1. Initialize an empty list Forest. 

2. For i = 1 to N do: 

   a. Draw a bootstrap sample Di of size m from the 

training data D. 

   b. Initialize a decision tree Ti. 

   c. While the maximum depth d is not reached and 

stopping criteria are not met: 

      i. Select F random features from the total p 

features. 

      ii. For each feature in the selected F, calculate the 

best split based on a chosen criterion (e.g., Gini 

impurity, entropy, mean squared error). 

      iii. Choose the best split point and split the node 

into child nodes. 

      iv. Assign child nodes as leaves or continue 

splitting. 

  d. Add the trained decision tree Ti to Forest. 

3. End For 

4. Return Forest. 

Procedure: Predict 

Input: A trained Forest, new instance x 

1. Initialize an empty list predictions. 

2. For each tree Ti in Forest: 

   a. Use Ti to predict the output hi(x). 

   b. Append hi(x) to predictions. 

3. End For 

4. If classification: 

   a. Return the mode of the predictions as the final 

output y_hat. 

   Else (if regression): 

   a. Return the average of the predictions as the final 

output y_hat. 

End Procedure 

 

Decision Tree (DT)Decision Trees are a type of 

supervised learning model that makes decisions based 

on asking a series of questions related to the features 

in the dataset. It splits the data into subsets based on 

the feature values to create a tree-like structure, aiding 

in intrusion detection by understanding decision rules 

[28]. 

Pseudocode: DecisionTree 

Input: Training data D = {(x1, y1), (x2, y2), ..., (xm, 

ym)} 

       Maximum tree depth d (optional) 

       Minimum samples per node n_min (optional) 

Output: A trained decision tree 

1. Define a function to calculate the best split: 

   Function BestSplit(data, features): 

      a. Initialize best_gini (or another criterion) to 

infinity and best_split to None. 

      b. For each feature in features: 

         i. For each unique value in the feature: 

      

- Split the data into two groups based on the value.  

- Calculate the impurity (e.g., Gini, entropy) for the 

split. 

 - If this split has a lower impurity than best_gini: 

 - Update best_gini and best_split with this split. 

      c. Return best_split. 

2. Define a function to build the tree: 

   Function BuildTree(data, depth): 

      a. If all data belong to the same class or depth == 

d or len(data) < n_min: 

   - Return a leaf node with the majority class label (for 

classification) or mean value (for regression). 

      b. Else: 

    - Determine the best split using BestSplit(data, all 

features). 

     - If no split can be found, return a leaf node as 

above 

     - Split the data into two subsets: left_data and 

right_data. 

         - Create a decision node with the split condition. 

         - Recursively build the left and right subtrees: 

            - Set the left child to BuildTree(left_data, depth 

+ 1). 

            - Set the right child to BuildTree(right_data, 

depth + 1). 
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3. Initialize the root of the tree: 

   Root = BuildTree(D, 0) 

4. Return Root. 

Procedure: Predict 

Input: A trained tree Root, new instance x 

1. Start at the Root node. 

2. While the current node is not a leaf: 

   a. If x meets the split condition, move to the left child 

node. 

   b. Else, move to the right child node. 

3. Return the prediction stored at the leaf node (class 

label for classification or mean value for regression). 

End Procedure 

 

Support Vector Machine (SVM): SVM is a powerful 

supervised learning algorithm used for classification 

tasks. It creates a hyperplane or a set of hyperplanes in 

a high-dimensional space to separate different classes. 

SVM is effective in intrusion detection for its ability 

to handle complex data relationships and non-

linearity. 

Pseudocode:  

1. Initialize parameters: 

 - Choose a kernel function (linear, polynomial, radial 

basis function (RBF), etc.) 

   - Set regularization parameter ̀ C` (trade-off between 

maximizing the margin and minimizing the 

classification error) 

2. Preprocess data: 

   - Normalize or standardize the data (optional but 

recommended) 

3. Define the decision function: 

   - For linear kernel: `f(x) = w · x + b` 

   - For other kernels: `f(x) = sum(alpha_i * y_i * 

K(x_i, x)) + b` 

   where `K(x_i, x)` is the kernel function 

4. Define the objective function: 

   - Minimize `(1/2) * ||w||^2 + C * sum(max(0, 1 - y_i 

* (w · x_i + b)))` 

     For non-linear kernels, the objective function 

involves dual variables `alpha`: 

     - Maximize `sum(alpha_i) - (1/2) * 

sum(sum(alpha_i * alpha_j * y_i * y_j * K(x_i, x_j)))` 

     - Subject to `0 <= alpha_i <= C` and `sum(alpha_i 

* y_i) = 0` 

5. Train the SVM model: 

- Use an optimization algorithm (e.g., Sequential 

Minimal Optimization (SMO), gradient descent, etc.) 

to find the optimal weights `w` and bias `b` (or `alpha` 

for dual form) 

6. Decision boundary: 

   - The decision boundary is defined by the support 

vectors (data points for which `y_i * (w · x_i + b) = 1` 

or `alpha_i > 0`) 

7. Prediction: 

   - For a new data point `x`, predict the class label 

using the sign of `f(x)` 

8. Post-process results: 

   - Evaluate the model's performance using 

appropriate metrics (accuracy, precision, recall, etc.) 

9. Output:   - The model outputs the predicted labels 

for new data points 

 

Naive Bayes: Naive Bayes is a probabilistic 

classification algorithm based on Bayes' theorem. It 

assumes that features are independent of each other, 

even though this assumption may not always hold. 

Naive Bayes is commonly used in intrusion detection 

due to its simplicity and speed, particularly with text-

based data [28]. 

Pseudocode:  

1. Initialize: - Let `X` be the set of training examples, 

where each example ̀ x` consists of features (x1, x2, ..., 

xn) and a class label `y`. - Let `Y` be the set of all 

possible class labels. - Initialize class prior 

probabilities and conditional probabilities. 2. 

Calculate Class Prior Probabilities: - For each class `c` 

in `Y`: P(c) = (number of instances in class c) / (total 

number of instances) 3. Calculate Conditional 

Probabilities (Likelihood): - For each feature `xi` (for 

i = 1 to n) and each class `c` in `Y`: P(xi | c) = (number 

of instances in class c with feature xi) / (number of 

instances in class c) - For continuous features, 

calculate the probability density function (e.g., 

Gaussian distribution) instead. 4. Train the Model: - 

Store the calculated class prior probabilities and 

conditional probabilities. 5. Classification 

(Prediction): - For a new example `x` with features 

(x1, x2, ..., xn), calculate the posterior probability for 

each class `c` in `Y`: P(c | x) ∝ P(c) * P(x1 | c) * P(x2 

| c) * ... * P(xn | c) - The class label `y` is assigned as: 

y = argmax_c P(c | x) 6. Output: - The model outputs 

the predicted class label for the new example. 

Deep Learning (DL): Deep Learning involves neural 

networks with multiple layers (deep neural networks). 

DL models, like multi-layer perceptrons (MLPs), 

convolutional neural networks (CNNs), and recurrent 
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neural networks (RNNs), can learn complex patterns 

in the data, making them effective for intrusion 

detection where features might be intricate. 

Pseudocode:  

1. Initialize the Network: - Define the architecture of 

the neural network, including: - Number of layers - 

Number of neurons in each layer - Activation functions 

for each layer - Initialize weights and biases for each 

layer (commonly with small random values) 2. 

Forward Propagation: - For each layer in the network: 

- Compute the weighted sum of inputs plus bias: `z = 

W * x + b` - Apply the activation function: `a = 

activation_function(z)` - The output of the final layer 

produces the network's prediction. 3. Compute Loss: - 

Calculate the loss using a loss function (e.g., Mean 

Squared Error for regression, Cross-Entropy Loss for 

classification). - The loss function measures the 

difference between the network's prediction and the 

actual target values. 4. Backward Propagation 

(Backpropagation): - Compute the gradient of the loss 

with respect to each weight and bias using the chain 

rule of calculus. - For each layer in reverse order: - 

Calculate the error term for the current layer. - 

Compute the gradients for the weights and biases. 5. 

Update Weights and Biases: - Use an optimization 

algorithm (e.g., Gradient Descent, Adam, RMSprop) 

to update the weights and biases: - `W = W - 

learning_rate * gradient_W` - `b = b - learning_rate * 

gradient_b` 6. Iteration: - Repeat steps 2-5 for a 

predefined number of epochs or until convergence 

(i.e., until the loss stops decreasing significantly). 7. 

Model Evaluation: - After training, evaluate the 

model's performance on a separate validation/test 

dataset. - Use appropriate metrics (e.g., accuracy, 

precision, recall, F1 score) depending on the problem. 

8. Prediction: - Use the trained model to make 

predictions on new data. 

 

Long Short-Term Memory (LSTM): LSTM is a 

specialized type of recurrent neural network (RNN) 

designed to model sequences and time-dependent data. 

LSTM is valuable for intrusion detection, especially in 

handling sequences of events or network activities, 

allowing the model to capture long-term dependencies 

effectively [33]. 

 

Pseudocode:  

1. Initialize the LSTM Network: - Define the 

architecture, including: - Number of LSTM units 

(neurons) in each layer - Number of LSTM layers 

(stacked LSTMs) - Define the activation functions and 

other hyperparameters - Initialize the weights and 

biases for each LSTM unit and layer 2. LSTM Cell 

Structure: - For each LSTM unit, define the following 

components: - Forget Gate: Controls the extent to 

which a value from the previous cell state is passed to 

the next cell state. - Input Gate: Controls the extent to 

which new information is added to the cell state. - Cell 

State: Maintains long-term memory. - Output Gate: 

Controls the extent to which the value in the cell state 

is used to compute the output. 3. Forward Pass (LSTM 

Cell): - For each time step `t` and each LSTM unit in 

the layer: - Forget Gate: `f_t = sigmoid(W_f * [h_{t-

1}, x_t] + b_f)` - Input Gate: `i_t = sigmoid(W_i * 

[h_{t-1}, x_t] + b_i)` - Candidate Memory: `C~_t = 

tanh(W_C * [h_{t-1}, x_t] + b_C)` - Update Cell 

State: ̀ C_t = f_t * C_{t-1} + i_t * C~_t` - Output Gate: 

`o_t = sigmoid(W_o * [h_{t-1}, x_t] + b_o)` - Hidden 

State: `h_t = o_t * tanh(C_t)` - Where: - `W` are the 

weight matrices - `b` are the bias vectors - `x_t` is the 

input at time step `t` - `h_{t-1}` is the previous hidden 

state - `C_{t-1}` is the previous cell state 4. Sequence 

Processing: - Repeat the forward pass for all time steps 

in the input sequence. 5. Compute Loss: - Use an 

appropriate loss function (e.g., Mean Squared Error for 

regression, Cross-Entropy Loss for classification) to 

measure the difference between the predicted output 

and the actual target. 6. Backward Pass 

(Backpropagation Through Time - BPTT): - Compute 

the gradients of the loss with respect to the weights, 

biases, and cell states. - Backpropagate the errors 

through the network across time steps. 7. Update 

Weights and Biases: - Use an optimization algorithm 

(e.g., Gradient Descent, Adam) to update the weights 

and biases: - `W = W - learning_rate * gradient_W` - 

`b = b - learning_rate * gradient_b` 8. Iteration: - 

Repeat steps 3-7 for all training data across epochs 

until convergence. 9. Prediction: - Use the trained 

LSTM network to make predictions on new sequences 

by feeding the initial states and inputs and iteratively 

producing outputs. 

 

Stacking Classifier (RF + MLP with Light GBM) 

The Stacking Classifier extension combines the 

predictive power of Random Forest (RF) and Multi-

Layer Perceptron (MLP) with Light Gradient Boosting 

Machine (LightGBM). RF, an ensemble of decision 

trees, excels at capturing complex patterns, while MLP 
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with LightGBM introduces diverse learning 

techniques. The Stacking Classifier intelligently 

merges their outputs, leveraging the strengths of each 

base classifier to enhance overall intrusion detection 

performance, especially in cloud environments with 

diverse cyber threats. 

 

Pseudocode:  

1. Split Data: 

   - Split the training data into `K` folds for cross-

validation. 

2. Train Base Models: 

   - For each fold `k` (k = 1 to K): 

     a. Split the data into training set and validation set. 

     b. For each base model `m` in the list of base 

models: 

        i. Train model `m` on the training set. 

        ii. Make predictions on the validation set. 

        iii. Store the predictions as `P_mk`. 

   - After all folds: 

     a. Concatenate predictions from all folds to form a 

new dataset of predictions for each base model. 

     b. The new dataset will have features as the 

predictions from each base model and targets as the 

original targets. 

3. Train Meta-Model: 

   - Use the new dataset (base model predictions) as 

input features and original targets as output labels. 

   - Train the meta-model (also called a blender) on this 

new dataset. 

4. Make Predictions on Test Data: 

   - For each base model `m`: 

     a. Train model `m` on the entire training dataset. 

     b. Make predictions on the test data. 

     c. Store these predictions. 

   - Combine the predictions from all base models to 

form the input features for the meta-model. 

   - Use the meta-model to make final predictions 

based on these combined predictions. 

5. Output: 

   - The final predictions from the meta-model are the 

output of the stacking classifier. 

 

Voting Classifier (RF + AdaBoost) 

The Voting Classifier extension integrates the 

capabilities of Random Forest (RF) and AdaBoost to 

create a robust intrusion detection model. RF excels in 

capturing intricate patterns through decision trees, 

while AdaBoost adapts by adjusting weights to 

prioritize the correct classification of previously 

misclassified instances. This combination ensures a 

strong ensemble model that leverages the strengths of 

both classifiers, achieving high accuracy and 

reliability in identifying potential intrusions in cloud-

based systems. The versatility of this ensemble makes 

it well-suited for handling various types of cyber 

threats, contributing to the effectiveness of the overall 

intrusion detection approach in the project. 

 

Pseudocode:  

1. Initialize Base Models: - Initialize the Random 

Forest model (RF). - Initialize the AdaBoost model 

(AB). 2. Train Base Models: - Train the Random 

Forest model on the training data. - Train the AdaBoost 

model on the training data. 3. Make Predictions on 

New Data: - For a new data point, get predictions from 

both base models: a. `pred_RF = predict 

(RandomForest, new_data)` b. `pred_AB = 

predict(AdaBoost, new_data)` 4. Combine Predictions 

(Voting): - **Hard Voting (Majority Vote)**: a. For 

classification tasks, count the votes from each model's 

predicted class label. b. The final class is the one with 

the majority of votes. ```final_prediction = mode 

([pred_RF, pred_AB])``` - **Soft Voting (Average 

Probabilities)**: a. For each class, average the 

predicted probabilities from each model. b. The final 

class is the one with the highest average probability. 

```prob_RF = predict_proba (RandomForest, 

new_data) prob_AB = predict_proba(AdaBoost, 

new_data) avg_prob = (prob_RF + prob_AB) / 2 

final_prediction = class with highest avg_prob ``` 5. 

Output: - The final prediction from the voting 

classifier is the output. 

 

4. EXPERIMENTAL RESULTS 

 

Precision: Precision evaluates the fraction of correctly 

classified instances or samples among the ones 

classified as positives. Thus, the formula to calculate 

the precision is given by: 

Precision = True positives/ (True positives + False 

positives) = TP/(TP + FP) 
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Fig 6 Precision comparison graph 

 

Recall: Recall is a metric in machine learning that 

measures the ability of a model to identify all relevant 

instances of a particular class. It is the ratio of correctly 

predicted positive observations to the total actual 

positives, providing insights into a model's 

completeness in capturing instances of a given class. 

 

 
Fig 7 Recall comparison graph 

 

Accuracy: Accuracy is the proportion of correct 

predictions in a classification task, measuring the 

overall correctness of a model's predictions. 

 

 
Fig 8 Accuracy graph 

F1 Score: The F1 Score is the harmonic mean of 

precision and recall, offering a balanced measure that 

considers both false positives and false negatives, 

making it suitable for imbalanced datasets. 

 

 
Fig9F1Score 

 

5. User Interface 

 
Fig 10 Performance Evaluation 

 
Fig 11 Home page 
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Fig 12 Signin page 

 
Fig 13 Login page 

 
Fig 14 User input 

 
Fig 15 Predict result for given input 

 

5. CONCLUSION 

 

The intrusion detection model built for the cloud, 

employing voting classifier and feature engineering, 

excels in accuracy, precision, and recall. It 

demonstrates superior performance in detecting 

abnormal activities within the cloud environment 

compared to recent works. This highlights the 

effectiveness and reliability of the proposed approach. 

Random Forest (RF) [26,29] is a pivotal component of 

the model, contributing to its success. RF is effective 

in handling outlier data, providing robustness in 

abnormal activity detection. Its simplicity in parameter 

establishment and automatic creation of variable 

importance and accuracy metrics make it an efficient 

choice, enhancing the overall performance of the 

intrusion detection model. The project extends 

accuracy through ensemble techniques like Voting 

Classifier. Integration of a user-friendly Flask 

interface with secure authentication improves the 

testing experience, emphasizing practical usability in 

cybersecurity applications. 

 

6. FUTURE SCOPE 

 

Future work aims to enhance the recall rate, especially 

using the NSL-KDD dataset, by integrating deep 

learning (DL) and ensemble learning techniques [27]. 

Deep learning models can capture complex patterns, 

potentially improving the system's ability to detect 

intrusions. Ensemble techniques, on the other hand, 

combine multiple models to boost prediction accuracy, 

further enhancing the overall performance of the 

intrusion detection system. Future systems will focus 

on understanding user and system behavior through 

behavioral analysis. This approach is crucial for 

accurate anomaly detection, enabling the identification 
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of abnormal patterns and potential security threats. 

Analyzing behaviors helps in creating a baseline for 

normal activities, making it easier to detect deviations 

that could signify security breaches. The research will 

strive to develop intrusion detection systems capable 

of efficiently scaling with the growing complexity and 

volume of cloud data. Optimizing resources for 

efficient performance and cost-effectiveness will be a 

priority, ensuring the system can handle the increased 

data load and adapt to evolving cloud infrastructures 

while maintaining cost-efficiency. Ensemble learning 

techniques will be leveraged to combine multiple 

models, harnessing their collective strength to make 

more accurate predictions. By integrating ensemble 

learning, the intrusion detection system can enhance 

its overall performance, achieving higher accuracy and 

reliability in identifying potential security threats in 

the cloud. 
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