
© August 2024| IJIRT | Volume 11 Issue 3 | ISSN: 2349-6002

IJIRT 167431 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1003

Cloud Security: A Machine Learning Approach to

Intrusion Detection

1Azmeera Santhosha 2Dr. M. Dhanalakshmi
1Student, Department of Information Technology, University College of Engineering Science and

Technology, JNTUH Hyderabad
2Professor of IT & Deputy Director, Directorate of Innovative Learning and Teaching (DILT), University

College of Engineering Science and Technology, JNTUH Hyderabad

Abstract: Cloud computing provides on-demand access

to a broad range of network and computer resources,

encompassing storage, data management services,

computing power, applications, and more. Users can

easily access and utilize these resources as needed. The

project focuses on enhancing cloud security by

implementing an intrusion detection model leveraging

machine learning techniques. The primary aim is to

monitor and analyze resources, services, and networks

within the cloud environment to effectively detect and

prevent cyber-attacks. The proposed intrusion detection

model utilizes machine learning techniques, specifically

emphasizing the use of the Random Forest (RF)

algorithm. Random Forest is a powerful ensemble

learning method that combines multiple decision trees to

make more accurate predictions. Feature engineering is

a critical aspect of the model development process. It

involves selecting and optimizing relevant features from

the dataset to feed into the machine learning model.

Effective feature engineering contributes to the model's

ability to discern patterns and identify potential attacks

accurately. The model's implementation is aimed at

improving cloud security by continuously monitoring

cloud resources, services, and networks. By applying

machine learning algorithms, the model identifies

unusual activities or patterns associated with cyber-

attacks, thereby enhancing the overall security posture

of the cloud infrastructure. The model's performance is

evaluated and validated using two datasets: Bot-IoT and

NSL-KDD. These datasets are common benchmarks in

the field of intrusion detection. The model demonstrates

high accuracy in detecting intrusions compared to recent

related works, indicating its effectiveness and reliability

in identifying potential security threats. The project's

includes a Voting Classifier combination of RF +

ADaBoost and Stacking Classifier with RF + MLP with

LightGBM got 99% and 100% of accuracy for Kdd-Cup

data respectively for enhanced cloud detection

performance.

Index terms - cloud security; anomaly detection; features

engineering; random forest.

1. INTRODUCTION

Cloud technologies allow practical access on demand

to a shared network, storage, and resources and offer

more choices regarding their service models [1]. These

models are platform as a service (PaaS), software as a

service (SaaS), and infrastructure as a service

(IaaS)[2], used in one of the deployment models

private, public, and hybrid cloud[3]. The cloud

provides services with high performance due to its

characteristics [2] according to the National Institute

of Standards and Technology [4]: network access,

resource pooling, quickelasticity, and measured

service.

Recently, the cloud suffers from many security

problems like availability, data confidentiality,

integrity, and control authorization. In addition, the

Internet is used to facilitate access to the services

offered by the cloud representing a major source of

threats that can infect the cloud systems and

resources[2]. Then enhancing cloud security becomes

a primary challenge for cloud providers[5]. Therefore,

several approaches such as firewall tools, data

encryption algorithms, authentication protocols, and

others have been developed to better secure cloud

environments from various attacks[6]. However,

traditional systems are not sufficient to secure cloud

services from different limits[7]. Therefore, a set of

intrusion detection approaches are proposed and

applied to detect and prevent undesirable activities in

realtime[8, 9].

In general, the detection methods are divided into

misuse detection method which uses known attacks to

detect intrusion and anomaly detection method which

© August 2024| IJIRT | Volume 11 Issue 3 | ISSN: 2349-6002

IJIRT 167431 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1004

detect intrusion using unknown attack. The hybrid

method is obtained by combining the advantages of

these two methods [10]. Despite of more solutions

given to secure cloud environments, the recent

intrusion detection systems (IDSs) are affected by

various significant limitations [8], for example, huge

amounts of analyzed data, real-time detection, data

quality, and others that aim to decrease the

performance of detection models.

Nowadays, academic researchers show that intelligent

learning methods [6, 11] such as machine learning

(ML), deep learning (DL), and ensemble learning are

useful in various areas [12, 13] and are able to perform

network security [14–18]. Our main goal in this

research work is to propose an anomaly detection

approach based on random forest (RF) binary

classifier and feature engineering is carried out based

on a data visualization process aiming to reduce the

number of used features and perform the proposed

anomaly detection model. The evaluation

performances of the model are implemented on NSL-

KDD and BoT-IoT datasets. Then, the obtained

outcomes demonstrate model performances.

2. LITERATURE SURVEY

The cloud computing exhibits, remarkable potential to

provide cost effective, easy to manage, elastic, and

powerful resources on the fly, over the Internet. The

cloud computing, upsurges the capabilities of the

hardware resources by optimal and shared utilization.

The above mentioned features encourage the

organizations and individual users to shift their

applications and services to the cloud [1]. Even the

critical infrastructure, for example, power generation

and distribution plants are being migrated to the cloud

computing paradigm. However, the services provided

by third-party cloud service providers entail additional

security threats. The migration of user’s assets (data,

applications etc.) outside the administrative control in

a shared environment where numerous users are

collocated escalates the security concerns. This survey

details the security issues that arise due to the very

nature of cloud computing. Moreover, the survey

presents the recent solutions presented in the literature

to counter the security issues. Furthermore, a brief

view of security vulnerabilities in the mobile cloud

computing are also highlighted [18,30]. In the end, the

discussion on the open issues and future research

directions is also presented.

The cloud computing provides on demand services

over the Internet with the help of a large amount of

virtual storage. The main features of cloud computing

is that the user does not have any setup of expensive

computing infrastructure and the cost of its services is

less. In the recent years, cloud computing integrates

with the industry and many other areas, which has

been encouraging the researcher to research on new

related technologies [2]. Due to the availability of its

services & scalability for computing processes

individual users and organizations transfer their

application, data and services to the cloud storage

server. Regardless of its advantages, the

transformation of local computing to remote

computing has brought many security issues and

challenges for both consumer and provider. Many

cloud services are provided by the trusted third party

which arises new security threats. The cloud provider

provides its services through the Internet and uses

many web technologies that arise new security issues

[1,23,5,7,19]. This paper discussed about the basic

features of the cloud computing, security issues,

threats and their solutions. Additionally, the paper

describes several key topics related to the cloud,

namely cloud architecture framework, service and

deployment model, cloud technologies, cloud security

concepts, threats, and attacks. The paper also discusses

a lot of open research issues related to the cloud

security.

3. METHODOLOGY

i) Proposed Work:

The Random Forest machine learning algorithm,

known for its accuracy and robustness, is harnessed

alongside strategic feature engineering. This

combination is utilized to create a sophisticated

intrusion detection system for cloud environments,

aiming to substantially enhance security. The

approach focuses on accurately identifying potential

threats and abnormal patterns, contributing to an

efficient and reliable solution that strengthens overall

cloud security measures. And also included the

combination of a Voting Classifier, incorporating

Random Forest (RF) and ADaBoost, achieves an

impressive 99% accuracy for the Kdd-Cup dataset.

Additionally, the Stacking Classifier, integrating

Random Forest (RF), Multi-Layer Perceptron (MLP),

© August 2024| IJIRT | Volume 11 Issue 3 | ISSN: 2349-6002

IJIRT 167431 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1005

and LightGBM, attains an outstanding 100% accuracy

for the Bot-IoT dataset [28,29,39]. These ensemble

models showcase the project's commitment to robust

and high-performing intrusion detection in cloud

environments. The user-friendly Flask framework

with SQLite integration ensures practical usability,

offering a seamless experience for user testing while

maintaining data security in cybersecurity

applications.

ii) System Architecture:

It begins with dataset exploration and data

preprocessing, followed by the crucial steps of train-

test split and model training. The core architecture

involves the implementation of ensemble techniques,

specifically the Stacking Classifier and the Voting

Classifier extensions, designed to enhance the overall

intrusion detection performance [24]. These classifiers

demonstrate their efficacy through robust model

evaluations, achieving notable accuracies of 99% and

100% respectively. The architecture prioritizes the

versatility of the models, ensuring effective detection

across diverse datasets, and emphasizes practical

usability through a user-friendly interface facilitated

by the Flask framework and SQLite integration. This

unified system architecture positions the project as a

sophisticated and adaptable solution for cloud-based

intrusion detection using machine learning techniques.

Fig 1 Proposed architecture

iii) Dataset collection:

KDD CUP DATASET

The KDD-CUP (Knowledge Discovery and Data

Mining Cup) dataset [35,26] is a widely used dataset

for intrusion detection system research. In the context

of a cloud-based intrusion detection approach, the

KDD-CUP dataset serves as a foundational dataset for

training and evaluating machine learning models to

detect intrusions and cyber-attacks. It allows the

development of models that can analyze network

traffic and detect abnormal or malicious patterns,

crucial for securing cloud-based environments.

Fig 2 KDD-CUP dataset

iv) Data Processing:

Data processing involves transforming raw data into

valuable information for businesses. Generally, data

scientists process data, which includes collecting,

organizing, cleaning, verifying, analyzing, and

converting it into readable formats such as graphs or

documents. Data processing can be done using three

methods i.e., manual, mechanical, and electronic. The

aim is to increase the value of information and

facilitate decision-making. This enables businesses to

improve their operations and make timely strategic

decisions. Automated data processing solutions, such

as computer software programming, play a significant

role in this. It can help turn large amounts of data,

including big data, into meaningful insights for quality

management and decision-making.

v) Feature selection:

Feature selection is the process of isolating the most

consistent, non-redundant, and relevant features to use

in model construction. Methodically reducing the size

of datasets is important as the size and variety of

datasets continue to grow. The main goal of feature

selection is to improve the performance of a predictive

model and reduce the computational cost of modeling.

Feature selection, one of the main components of

feature engineering, is the process of selecting the

most important features to input in machine learning

algorithms. Feature selection techniques are employed

to reduce the number of input variables by eliminating

redundant or irrelevant features and narrowing down

the set of features to those most relevant to the

machine learning model. The main benefits of

performing feature selection in advance, rather than

© August 2024| IJIRT | Volume 11 Issue 3 | ISSN: 2349-6002

IJIRT 167431 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1006

letting the machine learning model figure out which

features are most important.

vi) Algorithms:

Random Forest (RF), Random Forest is an ensemble

learning method that constructs multiple decision trees

during training and outputs the class that is the mode

of the classes (classification) of the individual trees.

It's effective for intrusion detection due to its ability to

handle a large number of features, deal with

overfitting, and provide high accuracy.

Pseudocode: RandomForest

Input: Training data D = {(x1, y1), (x2, y2), ..., (xm,

ym)}

 Number of trees N

 Number of features F to sample at each split

 Maximum tree depth d (optional)

Output: A set of trained decision trees (Forest)

1. Initialize an empty list Forest.

2. For i = 1 to N do:

 a. Draw a bootstrap sample Di of size m from the

training data D.

 b. Initialize a decision tree Ti.

 c. While the maximum depth d is not reached and

stopping criteria are not met:

 i. Select F random features from the total p

features.

 ii. For each feature in the selected F, calculate the

best split based on a chosen criterion (e.g., Gini

impurity, entropy, mean squared error).

 iii. Choose the best split point and split the node

into child nodes.

 iv. Assign child nodes as leaves or continue

splitting.

 d. Add the trained decision tree Ti to Forest.

3. End For

4. Return Forest.

Procedure: Predict

Input: A trained Forest, new instance x

1. Initialize an empty list predictions.

2. For each tree Ti in Forest:

 a. Use Ti to predict the output hi(x).

 b. Append hi(x) to predictions.

3. End For

4. If classification:

 a. Return the mode of the predictions as the final

output y_hat.

 Else (if regression):

 a. Return the average of the predictions as the final

output y_hat.

End Procedure

Decision Tree (DT)Decision Trees are a type of

supervised learning model that makes decisions based

on asking a series of questions related to the features

in the dataset. It splits the data into subsets based on

the feature values to create a tree-like structure, aiding

in intrusion detection by understanding decision rules

[28].

Pseudocode: DecisionTree

Input: Training data D = {(x1, y1), (x2, y2), ..., (xm,

ym)}

 Maximum tree depth d (optional)

 Minimum samples per node n_min (optional)

Output: A trained decision tree

1. Define a function to calculate the best split:

 Function BestSplit(data, features):

 a. Initialize best_gini (or another criterion) to

infinity and best_split to None.

 b. For each feature in features:

 i. For each unique value in the feature:

- Split the data into two groups based on the value.

- Calculate the impurity (e.g., Gini, entropy) for the

split.

 - If this split has a lower impurity than best_gini:

 - Update best_gini and best_split with this split.

 c. Return best_split.

2. Define a function to build the tree:

 Function BuildTree(data, depth):

 a. If all data belong to the same class or depth ==

d or len(data) < n_min:

 - Return a leaf node with the majority class label (for

classification) or mean value (for regression).

 b. Else:

 - Determine the best split using BestSplit(data, all

features).

 - If no split can be found, return a leaf node as

above

 - Split the data into two subsets: left_data and

right_data.

 - Create a decision node with the split condition.

 - Recursively build the left and right subtrees:

 - Set the left child to BuildTree(left_data, depth

+ 1).

 - Set the right child to BuildTree(right_data,

depth + 1).

© August 2024| IJIRT | Volume 11 Issue 3 | ISSN: 2349-6002

IJIRT 167431 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1007

3. Initialize the root of the tree:

 Root = BuildTree(D, 0)

4. Return Root.

Procedure: Predict

Input: A trained tree Root, new instance x

1. Start at the Root node.

2. While the current node is not a leaf:

 a. If x meets the split condition, move to the left child

node.

 b. Else, move to the right child node.

3. Return the prediction stored at the leaf node (class

label for classification or mean value for regression).

End Procedure

Support Vector Machine (SVM): SVM is a powerful

supervised learning algorithm used for classification

tasks. It creates a hyperplane or a set of hyperplanes in

a high-dimensional space to separate different classes.

SVM is effective in intrusion detection for its ability

to handle complex data relationships and non-

linearity.

Pseudocode:

1. Initialize parameters:

 - Choose a kernel function (linear, polynomial, radial

basis function (RBF), etc.)

 - Set regularization parameter ̀ C` (trade-off between

maximizing the margin and minimizing the

classification error)

2. Preprocess data:

 - Normalize or standardize the data (optional but

recommended)

3. Define the decision function:

 - For linear kernel: `f(x) = w · x + b`

 - For other kernels: `f(x) = sum(alpha_i * y_i *

K(x_i, x)) + b`

 where `K(x_i, x)` is the kernel function

4. Define the objective function:

 - Minimize `(1/2) * ||w||^2 + C * sum(max(0, 1 - y_i

* (w · x_i + b)))`

 For non-linear kernels, the objective function

involves dual variables `alpha`:

 - Maximize `sum(alpha_i) - (1/2) *

sum(sum(alpha_i * alpha_j * y_i * y_j * K(x_i, x_j)))`

 - Subject to `0 <= alpha_i <= C` and `sum(alpha_i

* y_i) = 0`

5. Train the SVM model:

- Use an optimization algorithm (e.g., Sequential

Minimal Optimization (SMO), gradient descent, etc.)

to find the optimal weights `w` and bias `b` (or `alpha`

for dual form)

6. Decision boundary:

 - The decision boundary is defined by the support

vectors (data points for which `y_i * (w · x_i + b) = 1`

or `alpha_i > 0`)

7. Prediction:

 - For a new data point `x`, predict the class label

using the sign of `f(x)`

8. Post-process results:

 - Evaluate the model's performance using

appropriate metrics (accuracy, precision, recall, etc.)

9. Output: - The model outputs the predicted labels

for new data points

Naive Bayes: Naive Bayes is a probabilistic

classification algorithm based on Bayes' theorem. It

assumes that features are independent of each other,

even though this assumption may not always hold.

Naive Bayes is commonly used in intrusion detection

due to its simplicity and speed, particularly with text-

based data [28].

Pseudocode:

1. Initialize: - Let `X` be the set of training examples,

where each example ̀ x` consists of features (x1, x2, ...,

xn) and a class label `y`. - Let `Y` be the set of all

possible class labels. - Initialize class prior

probabilities and conditional probabilities. 2.

Calculate Class Prior Probabilities: - For each class `c`

in `Y`: P(c) = (number of instances in class c) / (total

number of instances) 3. Calculate Conditional

Probabilities (Likelihood): - For each feature `xi` (for

i = 1 to n) and each class `c` in `Y`: P(xi | c) = (number

of instances in class c with feature xi) / (number of

instances in class c) - For continuous features,

calculate the probability density function (e.g.,

Gaussian distribution) instead. 4. Train the Model: -

Store the calculated class prior probabilities and

conditional probabilities. 5. Classification

(Prediction): - For a new example `x` with features

(x1, x2, ..., xn), calculate the posterior probability for

each class `c` in `Y`: P(c | x) ∝ P(c) * P(x1 | c) * P(x2

| c) * ... * P(xn | c) - The class label `y` is assigned as:

y = argmax_c P(c | x) 6. Output: - The model outputs

the predicted class label for the new example.

Deep Learning (DL): Deep Learning involves neural

networks with multiple layers (deep neural networks).

DL models, like multi-layer perceptrons (MLPs),

convolutional neural networks (CNNs), and recurrent

© August 2024| IJIRT | Volume 11 Issue 3 | ISSN: 2349-6002

IJIRT 167431 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1008

neural networks (RNNs), can learn complex patterns

in the data, making them effective for intrusion

detection where features might be intricate.

Pseudocode:

1. Initialize the Network: - Define the architecture of

the neural network, including: - Number of layers -

Number of neurons in each layer - Activation functions

for each layer - Initialize weights and biases for each

layer (commonly with small random values) 2.

Forward Propagation: - For each layer in the network:

- Compute the weighted sum of inputs plus bias: `z =

W * x + b` - Apply the activation function: `a =

activation_function(z)` - The output of the final layer

produces the network's prediction. 3. Compute Loss: -

Calculate the loss using a loss function (e.g., Mean

Squared Error for regression, Cross-Entropy Loss for

classification). - The loss function measures the

difference between the network's prediction and the

actual target values. 4. Backward Propagation

(Backpropagation): - Compute the gradient of the loss

with respect to each weight and bias using the chain

rule of calculus. - For each layer in reverse order: -

Calculate the error term for the current layer. -

Compute the gradients for the weights and biases. 5.

Update Weights and Biases: - Use an optimization

algorithm (e.g., Gradient Descent, Adam, RMSprop)

to update the weights and biases: - `W = W -

learning_rate * gradient_W` - `b = b - learning_rate *

gradient_b` 6. Iteration: - Repeat steps 2-5 for a

predefined number of epochs or until convergence

(i.e., until the loss stops decreasing significantly). 7.

Model Evaluation: - After training, evaluate the

model's performance on a separate validation/test

dataset. - Use appropriate metrics (e.g., accuracy,

precision, recall, F1 score) depending on the problem.

8. Prediction: - Use the trained model to make

predictions on new data.

Long Short-Term Memory (LSTM): LSTM is a

specialized type of recurrent neural network (RNN)

designed to model sequences and time-dependent data.

LSTM is valuable for intrusion detection, especially in

handling sequences of events or network activities,

allowing the model to capture long-term dependencies

effectively [33].

Pseudocode:

1. Initialize the LSTM Network: - Define the

architecture, including: - Number of LSTM units

(neurons) in each layer - Number of LSTM layers

(stacked LSTMs) - Define the activation functions and

other hyperparameters - Initialize the weights and

biases for each LSTM unit and layer 2. LSTM Cell

Structure: - For each LSTM unit, define the following

components: - Forget Gate: Controls the extent to

which a value from the previous cell state is passed to

the next cell state. - Input Gate: Controls the extent to

which new information is added to the cell state. - Cell

State: Maintains long-term memory. - Output Gate:

Controls the extent to which the value in the cell state

is used to compute the output. 3. Forward Pass (LSTM

Cell): - For each time step `t` and each LSTM unit in

the layer: - Forget Gate: `f_t = sigmoid(W_f * [h_{t-

1}, x_t] + b_f)` - Input Gate: `i_t = sigmoid(W_i *

[h_{t-1}, x_t] + b_i)` - Candidate Memory: `C~_t =

tanh(W_C * [h_{t-1}, x_t] + b_C)` - Update Cell

State: ̀ C_t = f_t * C_{t-1} + i_t * C~_t` - Output Gate:

`o_t = sigmoid(W_o * [h_{t-1}, x_t] + b_o)` - Hidden

State: `h_t = o_t * tanh(C_t)` - Where: - `W` are the

weight matrices - `b` are the bias vectors - `x_t` is the

input at time step `t` - `h_{t-1}` is the previous hidden

state - `C_{t-1}` is the previous cell state 4. Sequence

Processing: - Repeat the forward pass for all time steps

in the input sequence. 5. Compute Loss: - Use an

appropriate loss function (e.g., Mean Squared Error for

regression, Cross-Entropy Loss for classification) to

measure the difference between the predicted output

and the actual target. 6. Backward Pass

(Backpropagation Through Time - BPTT): - Compute

the gradients of the loss with respect to the weights,

biases, and cell states. - Backpropagate the errors

through the network across time steps. 7. Update

Weights and Biases: - Use an optimization algorithm

(e.g., Gradient Descent, Adam) to update the weights

and biases: - `W = W - learning_rate * gradient_W` -

`b = b - learning_rate * gradient_b` 8. Iteration: -

Repeat steps 3-7 for all training data across epochs

until convergence. 9. Prediction: - Use the trained

LSTM network to make predictions on new sequences

by feeding the initial states and inputs and iteratively

producing outputs.

Stacking Classifier (RF + MLP with Light GBM)

The Stacking Classifier extension combines the

predictive power of Random Forest (RF) and Multi-

Layer Perceptron (MLP) with Light Gradient Boosting

Machine (LightGBM). RF, an ensemble of decision

trees, excels at capturing complex patterns, while MLP

© August 2024| IJIRT | Volume 11 Issue 3 | ISSN: 2349-6002

IJIRT 167431 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1009

with LightGBM introduces diverse learning

techniques. The Stacking Classifier intelligently

merges their outputs, leveraging the strengths of each

base classifier to enhance overall intrusion detection

performance, especially in cloud environments with

diverse cyber threats.

Pseudocode:

1. Split Data:

 - Split the training data into `K` folds for cross-

validation.

2. Train Base Models:

 - For each fold `k` (k = 1 to K):

 a. Split the data into training set and validation set.

 b. For each base model `m` in the list of base

models:

 i. Train model `m` on the training set.

 ii. Make predictions on the validation set.

 iii. Store the predictions as `P_mk`.

 - After all folds:

 a. Concatenate predictions from all folds to form a

new dataset of predictions for each base model.

 b. The new dataset will have features as the

predictions from each base model and targets as the

original targets.

3. Train Meta-Model:

 - Use the new dataset (base model predictions) as

input features and original targets as output labels.

 - Train the meta-model (also called a blender) on this

new dataset.

4. Make Predictions on Test Data:

 - For each base model `m`:

 a. Train model `m` on the entire training dataset.

 b. Make predictions on the test data.

 c. Store these predictions.

 - Combine the predictions from all base models to

form the input features for the meta-model.

 - Use the meta-model to make final predictions

based on these combined predictions.

5. Output:

 - The final predictions from the meta-model are the

output of the stacking classifier.

Voting Classifier (RF + AdaBoost)

The Voting Classifier extension integrates the

capabilities of Random Forest (RF) and AdaBoost to

create a robust intrusion detection model. RF excels in

capturing intricate patterns through decision trees,

while AdaBoost adapts by adjusting weights to

prioritize the correct classification of previously

misclassified instances. This combination ensures a

strong ensemble model that leverages the strengths of

both classifiers, achieving high accuracy and

reliability in identifying potential intrusions in cloud-

based systems. The versatility of this ensemble makes

it well-suited for handling various types of cyber

threats, contributing to the effectiveness of the overall

intrusion detection approach in the project.

Pseudocode:

1. Initialize Base Models: - Initialize the Random

Forest model (RF). - Initialize the AdaBoost model

(AB). 2. Train Base Models: - Train the Random

Forest model on the training data. - Train the AdaBoost

model on the training data. 3. Make Predictions on

New Data: - For a new data point, get predictions from

both base models: a. `pred_RF = predict

(RandomForest, new_data)` b. `pred_AB =

predict(AdaBoost, new_data)` 4. Combine Predictions

(Voting): - **Hard Voting (Majority Vote)**: a. For

classification tasks, count the votes from each model's

predicted class label. b. The final class is the one with

the majority of votes. ```final_prediction = mode

([pred_RF, pred_AB])``` - **Soft Voting (Average

Probabilities)**: a. For each class, average the

predicted probabilities from each model. b. The final

class is the one with the highest average probability.

```prob_RF = predict_proba (RandomForest, 

new_data) prob_AB = predict_proba(AdaBoost, 

new_data) avg_prob = (prob_RF + prob_AB) / 2 

final_prediction = class with highest avg_prob ``` 5. 

Output: - The final prediction from the voting 

classifier is the output. 

 

4. EXPERIMENTAL RESULTS 

 

Precision: Precision evaluates the fraction of correctly 

classified instances or samples among the ones 

classified as positives. Thus, the formula to calculate 

the precision is given by: 

Precision = True positives/ (True positives + False 

positives) = TP/(TP + FP) 

 



© August 2024| IJIRT | Volume 11 Issue 3 | ISSN: 2349-6002 
 

IJIRT 167431 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1010 

 
Fig 6 Precision comparison graph 

 

Recall: Recall is a metric in machine learning that 

measures the ability of a model to identify all relevant 

instances of a particular class. It is the ratio of correctly 

predicted positive observations to the total actual 

positives, providing insights into a model's 

completeness in capturing instances of a given class. 

 

 
Fig 7 Recall comparison graph 

 

Accuracy: Accuracy is the proportion of correct 

predictions in a classification task, measuring the 

overall correctness of a model's predictions. 

 

 
Fig 8 Accuracy graph 

F1 Score: The F1 Score is the harmonic mean of 

precision and recall, offering a balanced measure that 

considers both false positives and false negatives, 

making it suitable for imbalanced datasets. 

 

 
Fig9F1Score 

 

5. User Interface 

 
Fig 10 Performance Evaluation 

 
Fig 11 Home page 



© August 2024| IJIRT | Volume 11 Issue 3 | ISSN: 2349-6002 
 

IJIRT 167431 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1011 

 
Fig 12 Signin page 

 
Fig 13 Login page 

 
Fig 14 User input 

 
Fig 15 Predict result for given input 

 

5. CONCLUSION 

 

The intrusion detection model built for the cloud, 

employing voting classifier and feature engineering, 

excels in accuracy, precision, and recall. It 

demonstrates superior performance in detecting 

abnormal activities within the cloud environment 

compared to recent works. This highlights the 

effectiveness and reliability of the proposed approach. 

Random Forest (RF) [26,29] is a pivotal component of 

the model, contributing to its success. RF is effective 

in handling outlier data, providing robustness in 

abnormal activity detection. Its simplicity in parameter 

establishment and automatic creation of variable 

importance and accuracy metrics make it an efficient 

choice, enhancing the overall performance of the 

intrusion detection model. The project extends 

accuracy through ensemble techniques like Voting 

Classifier. Integration of a user-friendly Flask 

interface with secure authentication improves the 

testing experience, emphasizing practical usability in 

cybersecurity applications. 

 

6. FUTURE SCOPE 

 

Future work aims to enhance the recall rate, especially 

using the NSL-KDD dataset, by integrating deep 

learning (DL) and ensemble learning techniques [27]. 

Deep learning models can capture complex patterns, 

potentially improving the system's ability to detect 

intrusions. Ensemble techniques, on the other hand, 

combine multiple models to boost prediction accuracy, 

further enhancing the overall performance of the 

intrusion detection system. Future systems will focus 

on understanding user and system behavior through 

behavioral analysis. This approach is crucial for 

accurate anomaly detection, enabling the identification 



© August 2024| IJIRT | Volume 11 Issue 3 | ISSN: 2349-6002 
 

IJIRT 167431 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1012 

of abnormal patterns and potential security threats. 

Analyzing behaviors helps in creating a baseline for 

normal activities, making it easier to detect deviations 

that could signify security breaches. The research will 

strive to develop intrusion detection systems capable 

of efficiently scaling with the growing complexity and 

volume of cloud data. Optimizing resources for 

efficient performance and cost-effectiveness will be a 

priority, ensuring the system can handle the increased 

data load and adapt to evolving cloud infrastructures 

while maintaining cost-efficiency. Ensemble learning 

techniques will be leveraged to combine multiple 

models, harnessing their collective strength to make 

more accurate predictions. By integrating ensemble 

learning, the intrusion detection system can enhance 

its overall performance, achieving higher accuracy and 

reliability in identifying potential security threats in 

the cloud. 

 

7. REFERENCES 

 

[1] M. Ali, S. U. Khan, and A. V. Vasilakos, Security 

in cloud computing: Opportunities and challenges, 

Information Sciences, vol. 35, pp. 357–383, 2015.  

[2] A. Singh and K. Chatterjee, Cloud security issues 

and challenges: A survey, Journal of Network and 

ComputerApplications, vol. 79, pp. 88–115, 2017.  

[3] P. S. Gowr and N. Kumar, Cloud computing 

security: A survey, International Journal of 

Engineering and Technology, vol. 7, no. 2, pp. 355–

357, 2018.  

[4] A. Verma and S. Kaushal, Cloud computing 

security issues and challenges: A survey, in Proc. First 

International Conference on Advances in Computing 

and Communications, Kochi, India, 2011, pp. 445–

454.  

[5] H. Alloussi, F. Laila, and A. Sekkaki, L’etat de l’art 

de la ́  securit ́  e dans le cloud computing: Probl ́  emes 

et solutions ` de la securit ´ e en cloud computing, 

presented at Workshop ´ on Innovation and New 

Trends in Information Systems, Mohamadia, Maroc, 

2012.  

[6] J. Gu, L. Wang, H. Wang, and S. Wang, A novel 

approach to intrusion detection using SVM ensemble 

with feature augmentation, Computers and Security, 

vol. 86, pp. 53–62, 2019.  

[7] Z. Chiba, N. Abghour, K. Moussaid, A. E. Omri, 

and M. Rida, A cooperative and hybrid network 

intrusion detection framework in cloud computing 

based snort and optimized back propagation neural 

network, Procedia Computer Science, vol. 83, pp. 

1200–1206, 2016.  

[8] A. Khraisat, I. Gondal, P. Vamplew, and J. 

Kamruzzaman, Survey of intrusion detection systems: 

Techniques, datasets and challenges, Cybersecurity, 

vol. 2, p. 20, 2019.  

[9] A. Guezzaz, A. Asimi, Y. Asimi, Z. Tbatou, and Y. 

Sadqi, A global intrusion detection system using 

PcapSockS sniffer and multilayer perceptron 

classifier, International Journal of Network Security, 

vol. 21, no. 3, pp. 438–450, 2019.  

[10] A. Guezzaz, S. Benkirane, M. Azrour, and S. 

Khurram, A reliable network intrusion detection 

approach using decision tree with enhanced data 

quality, Security and Communication Networks, vol. 

2021, p. 1230593, 2021.  

[11] B. A. Tama and K. H. Rhee, HFSTE: Hybrid 

feature selections and tree-based classifiers ensemble 

for intrusion detection system, IEICE Trans. Inf. Syst., 

vol. E100.D, no. 8, pp. 1729–1737, 2017.  

[12] M. Azrour, J. Mabrouki, G. Fattah, A. Guezzaz, 

and F. Aziz, Machine learning algorithms for efficient 

water quality prediction, Modeling Earth Systems and 

Environment, vol. 8, pp. 2793–2801, 2022.  

[13] M. Azrour, Y. Farhaoui, M. Ouanan, and A. 

Guezzaz, SPIT detection in telephony over IP using K-

means algorithm, Procedia Computer Science, vol. 

148, pp. 542–551, 2019.  

[14] M. Azrour, M. Ouanan, Y. Farhaoui, and A. 

Guezzaz, Security analysis of Ye et al. authentication 

protocol for internet of things, in Proc. International 

Conference on Big Data and Smart Digital 

Environment, Casablanca, Morocco, 2018, pp. 67–74.  

 


