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Abstract: Aircraft tracking in satellite video data holds 

paramount importance in various domains such as 

military operations, airport management, and aircraft 

rescue missions. This paper introduces an innovative 

approach, combining correlation and Kalman filtering, 

to develop an antidrift multifilter tracker tailored for this 

purpose. We propose a novel temporal consistency-

constrained background-aware correlation filter 

algorithm, integrating temporal regularization to 

combat model drift caused by cloud occlusion, thereby 

enhancing tracking accuracy. Our experimental 

evaluations demonstrate superior antidrift performance 

compared to contemporary methods, particularly in 

scenarios involving cloud occlusion, while maintaining 

stability in complex conditions. Additionally, we present 

an extension by incorporating diverse techniques 

including ADMFT and YOLO variants (v5, v6, v7, v8) 

for dataset analysis. Moreover, to facilitate user testing 

and validation, we propose integrating this solution into 

a frontend utilizing the Flask framework with 

authentication features. We anticipate that our model 

will offer valuable insights for researchers interested in 

satellite video object tracking, especially in mitigating 

challenges posed by cloud occlusion. 

Index Terms - Cloudy conditions, model drift, object 

tracking, satellite videos. 

1. INTRODUCTION 

Many video satellite constellations have been 

successfully launched worldwide in recent years due 

to the ongoing advancements in video satellite 

technology. With the use of remote sensing 

technology, video satellites may monitor targets in 

real-time over an extended period of time by 

continuously observing changes in the Earth's surface 

dynamics. As of right now, there are 31 satellites in 

orbit in the Jilin-1 constellation, 12 of which are 

capable of taking pictures. The Jilin-1 SP-01, SP-02, 

and LQ satellites are examples of first-generation 

colour video satellites; on the other hand, the Jilin-1 

SP-03 satellite is an example of second-generation 

colour video satellite. Third-generation dual-mode 

push-broom and gaze imaging video satellites are the 

Jilin-1 SP-04–SP-08 spacecraft. The Jilin-1 GF-

03C01–GF-03C03 satellites are part of the fourth 

generation of small-batch television satellites. For a 

maximum of 180 seconds, these satellites can transmit 

colour videos at 10 frames per second (fps).with a 

spatial resolution of approximately one meter. These 

remote sensing videos form the basis for developing 

more diverse and convenient applications. 

Contemporary monitoring techniques and 

technologies have been greatly enhanced and 

promoted by the introduction of high-resolution 

remote sensing video satellites. The qualities of the 

data determine whether satellite data is appropriate for 

use in monitoring and change detection applications. 

Oil and gas exploration [1], disaster monitoring [2], 

maritime monitoring [3], ecosystem changes and 

disturbances [4], traffic monitoring [5], change 

detection [6], and identifying and monitoring military 

objects [7], [8] are a few examples of applications for 

satellite video. One essential step in these applications 

of remote sensing data is object tracking. The 

detection and tracking of moving targets has been the 

main focus of research on satellite video tracking tools 

up to this point, such as the video background extractor 

algorithm [9]. These techniques use object 

identification modules that have been pretrained in 

order to recognise and follow targets in every frame, 

But it's still difficult to make such models able to 
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discriminate between objects in the same class and 

accurately track moving targets. 

Existing research has also investigated approaches 

based on deep learning [10], [11]. Nevertheless, the 

data processing times of these approaches are not fast 

enough for real-world applications. Existing research 

has offered certain correlation filtering based 

techniques for tracking remote sensing targets, which 

can be used as a guide. However, these approaches 

frequently fail to remain stable in real-world 

applications since they are customised for specific 

application contexts. Current techniques [7], [12], 

[13], and [14] generally concentrate on 

straightforward video scenarios and struggle to handle 

intricate target tracking circumstances like smoke, 

clouds, and light patches resulting from variations in 

lighting. Furthermore, these algorithms have trouble 

with slow-moving targets.  Research on identifying 

and following moving targets has up to this point 

mostly concentrated on terrestrial vehicles [13], 

paying little attention to other types of vehicles, like 

ships and aeroplanes. This article concentrates on 

creating an algorithm that can monitor aeroplanes 

rapidly and correctly using correlation filters because 

of the importance of aircraft for both military and 

transportation applications. 

The issue is caused by tracking algorithms that drift 

when evaluating satellite video data, especially when 

clouds obscure the view, which results in imprecise 

aircraft monitoring. 

Accuracy is a challenge for traditional tracking 

techniques in difficult environmental situations like 

cloud cover. 

Accurate aeroplane monitoring is essential for military 

operations, airport administration, and aircraft rescue 

missions in order to maintain operational safety and 

efficiency. 

Ineffective airport administration, hampered security, 

and delayed emergency reaction times can all result 

from inaccurate tracking. 

In order to improve tracking accuracy, we suggest 

combining a novel approach to counteract model drift 

brought on by cloud occlusion with correlation and 

Kalman filtering techniques in an antidrift multifilter 

tracker. 

2. LITERATURE SURVEY 

With the introduction of deep reinforcement learning, 

adaptive correlation filters, and other machine learning 

methods, object tracking has advanced significantly. 

Accurate object tracking in complex and dynamic 

situations is essential for many applications, such as 

autonomous navigation, remote sensing, and 

surveillance. 

For UAV tracking, Yuan et al. (2022) suggested 

learning adaptive spatial-temporal context-aware 

correlation filters. This technology uses adaptive 

learning to take into account both temporal and spatial 

contexts, improving the resilience and accuracy of 

UAV tracking. The method greatly enhances tracking 

performance in difficult situations such sudden object 

movements and occlusions [8]. 

Cui et al. (2021) presented a deep reinforcement 

learning framework for object tracking under 

occlusion in the field of remote sensing. Their method 

makes use of reinforcement learning's capacity for 

decision-making to continue tracking even in 

situations where objects are entirely or partially 

obscured. When compared to conventional tracking 

algorithms, this approach performed better, 

particularly in situations when occlusions occur often 

[10]. 

A straightforward online and real-time tracking 

method utilising a deep association metric was 

provided by Wojke et al. (2017). This approach 

efficiently combines a strong association metric for 

object tracking in real-time with deep learning for 

feature extraction. When these elements are combined, 

a tracking system that is incredibly accurate and 

efficient is produced that can be used for a variety of 

purposes, such as autonomous systems and 

surveillance [11]. 

Xuan et al. (2020) used motion estimation methods 

with correlation filters to enhance object tracking in 

satellite footage. This technique tackles the particular 

difficulties presented by satellite photography, 

including intricate background clutter and large-scale 
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changes. By adjusting to the object's motion patterns, 

the enhanced correlation filters improve tracking 

accuracy and offer a reliable solution for satellite-

based tracking applications [12]. 

Zhang et al. (2018) investigated the use of correlation 

filters in conjunction with online learning for visual 

object tracking. Their method allows the system to 

adjust to changes in the object's appearance and its 

surroundings by dynamically updating the correlation 

filters throughout the tracking process. Because of its 

great tracking accuracy and resilience, this approach is 

appropriate for real-time applications [13]. 

Shi et al. (2020) employed better similarity metrics 

and normalised frame difference labelling to detect 

and track moving aircraft from space. The difficulties 

of identifying and following tiny, swiftly moving 

objects in satellite imagery are successfully addressed 

by this method. By precisely differentiating the target 

item from the background, the enhanced similarity 

measures improve tracking accuracy [14] 

Adaptive correlation filters were first used for visual 

object tracking by Bolme et al. (2010). The 

groundwork for numerous later developments in 

correlation filter-based tracking was established by 

this early study. The system can continue to track 

objects well even when the object's appearance and 

surroundings change since the filters are adaptive [15]. 

With their work on using kernels to exploit the 

circulant structure of tracking-by-detection and 

kernelized correlation filters for high-speed tracking, 

Henriques et al. (2012, 2015) made a substantial 

contribution to the field. These techniques make use of 

circulant matrices' mathematical characteristics to 

provide incredibly accurate and successful tracking. 

Particularly, the kernelized correlation filters allow for 

real-time tracking with no computing overhead, which 

makes them appropriate for a variety of applications 

[16][17]. 

Danelljan et al. (2017) developed discriminative scale 

space tracking. Their method improves tracking 

resilience in situations with notable size variations by 

precisely estimating the target object's scale through 

the use of a multi-scale detection algorithm. This 

approach performed exceptionally well on a variety of 

difficult datasets [18]. 

Danelljan et al. (2014) concentrated on precise scale 

estimate for reliable visual tracking in their previous 

work. Through the introduction of algorithms for 

accurate scale estimate, this method set the foundation 

for further developments in scale-aware tracking. The 

method greatly increased the visual tracking systems' 

resilience and accuracy [19]. 

By learning continuous convolution operators, which 

may capture more intricate patterns and 

characteristics, this technique goes beyond 

conventional correlation filters. These operators' 

continuous nature makes tracking more accurate and 

versatile, especially in dynamic contexts [20]. 

The advancements in object tracking, particularly 

through the integration of machine learning 

techniques, have significantly improved the 

performance and robustness of tracking systems. 

Adaptive correlation filters, deep reinforcement 

learning, and advanced motion estimation techniques 

have each contributed to the ability to track objects 

accurately in complex scenarios. The continued 

development of these methods promises further 

enhancements in tracking accuracy, efficiency, and 

applicability across a wide range of domains. 

3. METHODOLOGY 

i) Proposed System: 

This paper proposes an advanced aircraft tracking 

system for satellite video data, crucial for military 

operations, airport management, and rescue missions. 

The system leverages a novel combination of 

correlation and Kalman filtering to develop an antidrift 

multifilter tracker. A key component is the temporal 

consistency-constrained background-aware 

correlation filter algorithm, which incorporates 

temporal regularization to mitigate model drift caused 

by cloud occlusion, thereby enhancing tracking 

accuracy. Additionally, the system integrates multiple 

tracking techniques, including ADMFT and various 

YOLO versions (v5, v6, v7, v8), for comprehensive 

dataset analysis. Notably, YOLOv8 achieves the 

highest mAP50, outperforming its predecessors. To 

facilitate user testing and validation, the solution is 
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implemented in a Flask-based frontend with 

authentication features. This proposed system aims to 

provide valuable insights and robust tracking 

capabilities, particularly in overcoming challenges 

posed by cloud occlusion in satellite video data. 

ii) System Architecture: 

The image depicts a diagram illustrating the process of 

image processing and data augmentation. Data 

augmentation involves creating modified versions of 

data to increase the size and diversity of a training set. 

This can improve the performance of machine learning 

algorithms, especially in computer vision tasks. 

The left side of the diagram shows a dataset, which is 

a collection of images. The dataset is fed into the 

image processing and data augmentation module. This 

module modifies the images in various ways, such as 

rotating them, cropping them, or changing their 

brightness. The augmented images are then used to 

train a machine learning model. 

The right side of the diagram shows a block labeled 

"Model building." This block represents the process of 

training a machine learning model on the augmented 

dataset. The text below this block lists different 

machine learning models, such as YOLOv5, 

YOLOv6, and YOLOv8. These are all object detection 

models that can be used to identify objects in images. 

The bottom of the diagram shows a block labeled 

"Performance Evaluation." This block represents the 

process of evaluating the performance of the machine 

learning model on a test dataset. The test dataset is a 

collection of images that the model has not seen 

before. By evaluating the model's performance on the 

test dataset, we can get an idea of how well it will 

generalize to new data. 

 
Fig 1 Proposed Architecture 

 

iii) Image Processing: 

In image processing, the workflow typically involves 

several key steps to prepare and augment data for 

various applications. Converting images to blob 

objects starts with segmenting them into coherent 

regions based on shared properties like color or 

intensity. Defining classes and declaring bounding 

boxes around objects of interest facilitates subsequent 

annotation and classification tasks, crucial for 

supervised learning models. 

Next, converting image arrays to numpy arrays 

enhances computational efficiency and facilitates 

manipulation using array-based operations. The 

process continues with appending images to 

annotation files, ensuring alignment between visual 

data and metadata. Converting BGR (Blue-Green-

Red) images to RGB format standardizes color 

representation across different platforms and 

applications. 

Creating masks overlays binary images highlighting 

specific areas of interest, essential for tasks like 

semantic segmentation. Resizing images maintains 

consistency in dimensions, ensuring compatibility 

with model input requirements. 

Data augmentation techniques, such as randomizing, 

rotating, and transforming images, introduce 

variability and robustness into training datasets. These 

operations simulate diverse real-world conditions, 

improving model generalization and performance 

across different scenarios. Collectively, these steps 

form a comprehensive pipeline for effective image 

processing and augmentation in machine learning and 

computer vision applications. 

 

iv) Algorithms: 

ADMFT (Antidrift Multifilter Tracker): 

ADMFT is an advanced tracking algorithm designed 

to mitigate model drift in object tracking scenarios, 

especially in satellite video data affected by cloud 

occlusion. It integrates background-aware correlation 

filters with temporal consistency constraints to 

maintain tracking accuracy over time. In your project, 

ADMFT serves as a key component of the multifilter 

tracker, ensuring robust and stable object tracking 

performance in challenging environmental conditions. 

YOLOv5: 

YOLOv5 is a state-of-the-art object detection model 

known for its efficiency and accuracy. It operates on 
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the principle of dividing an image into a grid and 

predicting bounding boxes and class probabilities for 

each grid cell simultaneously. YOLOv5 excels in real-

time object detection tasks, making it suitable for 

applications where speed and accuracy are crucial, 

such as tracking moving airplanes in satellite videos. 

In your project, YOLOv5 can be utilized for initial 

object detection and localization. 

YOLOv6: 

YOLOv6 is an enhancement of the YOLO (You Only 

Look Once) series, incorporating improvements in 

architecture and training methodologies to further 

boost performance metrics such as accuracy and 

speed. It builds upon the strengths of YOLOv5 with 

additional optimizations and fine-tuning techniques, 

making it a compelling choice for object detection 

tasks in satellite video data. In your project, YOLOv6 

can provide enhanced detection capabilities, especially 

in scenarios with complex backgrounds or variable 

lighting conditions. 

YOLOv7: 

YOLOv7 continues the evolution of the YOLO family, 

focusing on improving detection accuracy and 

efficiency through refined model architecture and 

training strategies. It leverages advancements in deep 

learning to achieve higher precision in object 

localization and classification, making it suitable for 

applications demanding superior performance in 

satellite video object tracking. In your project, 

YOLOv7 can contribute to more accurate and reliable 

detection of moving objects, crucial for tasks like 

aircraft tracking under varying atmospheric 

conditions. 

YOLOv8: 

YOLOv8 represents the latest iteration of the YOLO 

series, characterized by significant enhancements in 

model architecture and training methodologies. It 

achieves state-of-the-art performance in object 

detection tasks, particularly in challenging 

environments such as satellite video data with cloud 

occlusion. YOLOv8 incorporates advanced features 

and optimizations to deliver superior accuracy and 

robustness, making it ideal for your project's 

requirements. In satellite video object tracking, 

YOLOv8 can excel in detecting and tracking moving 

airplanes with high precision, even in adverse weather 

conditions or situations with partial occlusion. 

4. EXPERIMENTAL RESULTS 

Precision: Precision evaluates the fraction of correctly 

classified instances or samples among the ones 

classified as positives. Thus, the formula to calculate 

the precision is given by: 

Precision = True positives/ (True positives + False 

positives) = TP/(TP + FP) 

 

 
 

 
Fig 2 Precision Comparison Graph 

 

Recall: Recall is a metric in machine learning that 

measures the ability of a model to identify all relevant 

instances of a particular class. It is the ratio of correctly 

predicted positive observations to the total actual 

positives, providing insights into a model's 

completeness in capturing instances of a given class. 
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Fig 3 Recall Comparison Graph 

mAP: Mean Average Precision (MAP) is a ranking 

quality metric. It considers the number of relevant 

recommendations and their position in the list. MAP at 

K is calculated as an arithmetic mean of the Average 

Precision (AP) at K across all users or queries.  

 

 

Fig 4 mAP50 Comparison Graph 

 
Fig 5 Home Page 

 
Fig 6 About page 

 

Fig 7 Registration Page 

 
Fig 8 Login Page 

 
Fig 9 Main Page 

 
Fig 10 Upload Input Image 
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Fig 11 Final Outcome for Given Input Image 

5. CONCLUSION 

In conclusion, this paper introduces a sophisticated 

aircraft tracking system tailored for satellite video 

data, addressing critical needs in military, airport 

management, and rescue operations. By combining 

correlation and Kalman filtering in an antidrift 

multifilter tracker, the system effectively mitigates 

model drift exacerbated by cloud occlusion. The 

temporal consistency-constrained background-aware 

correlation filter algorithm significantly enhances 

tracking accuracy by maintaining object continuity 

through temporal regularization. 

Integration of advanced tracking techniques such as 

ADMFT and multiple YOLO versions (v5, v6, v7, v8) 

enables comprehensive dataset analysis, with 

YOLOv8 demonstrating superior performance in 

mAP50 metrics compared to earlier iterations. This 

capability ensures robust detection and tracking of 

moving objects, crucial for real-time decision-making 

in dynamic environments. 

The implementation of a Flask-based frontend with 

authentication features facilitates seamless user testing 

and validation, enhancing usability and reliability in 

operational settings. By addressing challenges 

associated with cloud occlusion in satellite video data, 

the proposed system not only offers valuable insights 

but also establishes a foundation for future 

advancements in satellite-based tracking technologies, 

potentially transforming how aerial surveillance and 

monitoring tasks are approached and executed. 

 

6. FUTURE SCOPE 

In future work, we aim to extend our tracking 

capabilities to encompass other remote sensing targets, 

including ships and ground vehicles. By adapting and 

refining our system's algorithms and techniques, we 

seek to enhance its versatility and applicability across 

diverse scenarios in remote sensing. This expansion 

will enable us to address broader operational needs, 

contributing to more comprehensive surveillance and 

monitoring solutions for various maritime and 

terrestrial applications. 
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