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Abstract 
Autonomous vehicle overtaking presents a complex 

challenge in the development of self-driving technology, 

with significant implications for road safety, traffic 

efficiency, and user acceptance. The global autonomous 

vehicle market is projected to grow rapidly, with 

overtaking capabilities being a crucial component of this 

technology. This has generated significant interest in 

developing robust and efficient overtaking systems for 

autonomous vehicles. Autonomous overtaking systems 

offer several advantages over human-controlled 

overtaking, including improved safety, enhanced decision-

making, and optimized trajectory planning. These systems 

have the potential to revolutionize traffic flow and reduce 

accidents caused by human error during overtaking 

manoeuvres. This paper reviews various approaches to 

autonomous vehicle overtaking, including rule-based 

systems, reinforcement learning methods, model 

predictive control strategies, and trajectory optimization 

techniques. It also discusses decision-making processes, 

learning approaches, control strategies, and trajectory 

planning methods for autonomous overtaking. 

Challenges, economic implications, and future prospects 

of autonomous overtaking technology in the context of the 

broader autonomous vehicle industry are also explored. 
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Introduction 

 

Autonomous vehicles (AVs) have emerged as a 

transformative technology in the automotive 

industry, promising to revolutionize transportation 

systems worldwide. As AVs continue to evolve, one 

of the most challenging manoeuvres they must 

master is overtaking. Overtaking in autonomous 

vehicles is a complex interplay of perception, 

decision-making, planning, and control, requiring 

the vehicle to safely and efficiently pass slower-

moving vehicles while following traffic rules and 

considering the dynamic nature of road 

environments. 

The evolution of overtaking systems for AVs has 

been marked by significant advancements in various 

technological domains. Early approaches relied 

heavily on rule-based systems and simplified models 

of vehicle dynamics. However, as sensing 

technologies improved and computational power 

increased, more sophisticated methods emerged. 

These include the integration of machine learning 

algorithms, advanced control techniques, and 

optimization strategies to handle the complexities of 

real-world traffic scenarios. 

Numerous studies have contributed to the 

development of overtaking systems for AVs, each 

presenting innovative approaches to address specific 

challenges. For example, Ngai and Yung (2011) 

proposed a multiple-goal reinforcement learning 

method for complex vehicle overtaking manoeuvres. 

Murgovski and Sjoberg (2015) used convex 

modelling in a Model Predictive Control (MPC) 

framework to create safe overtaking trajectories, 

highlighting the importance of predictive control in 

handling the uncertainties associated with 

overtaking. Yu et al. (2017) explored the use of deep 

Q-learning for autonomous overtaking decisions, 

demonstrating the suitability of deep learning 

techniques. 

Other notable innovations include the development 

of potential-field-based methods for trajectory 

optimization, the application of fuzzy logic systems 

for lane-keeping during overtaking, and the 

integration of reachability analysis for ensuring 

safety guarantees. These diverse approaches reflect 

the multifaceted nature of the overtaking problem 

and the need for interdisciplinary solutions. 

Despite the wealth of research in this area, there is a 

notable lack of comprehensive reviews that collate 

and analyze the various approaches to autonomous 

vehicle overtaking. This gap in the literature hinders 

the ability of researchers and practitioners to gain a 

holistic understanding of the most recent 

advancements in overtaking systems for AVs. 

Therefore, this review paper aims to fill this gap by 

providing a systematic overview of the existing 

research, synthesizing key findings, and identifying 

trends and challenges in the field. 

The primary research questions addressed in this 

review are: 

RQ1: What are the main approaches and 

technologies used in developing overtaking systems 

for autonomous vehicles? 

RQ2: What are the key challenges and open 

problems in autonomous vehicle overtaking that 

require further research? 

This paper is organized as follows: The next section 

discusses the decision-making processes involved in 
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autonomous overtaking, including both rule-based 

and learning-based approaches. The third section 

explores various learning techniques applied to 

overtaking, with a focus on reinforcement learning 

and deep learning methods, followed by control 

strategies for overtaking, including Model 

Predictive Control and other adaptive techniques. 

The fifth section discusses trajectory planning and 

optimization methods for executing safe and 

efficient overtaking manoeuvres. Finally, the last 

section concludes the paper with a summary of 

findings, limitations of current approaches, 

implications for the field, and directions for future 

research. 

 

The Rise of Autonomous Vehicles 

 

AVs have seen a surge of interest in recent years, 

driven by their potential advantages (Fagnant & 

Kockelman, 2015). As we move towards an 

increasingly automated transportation landscape, 

one of the critical challenges lies in replicating and 

improving upon complex driving manoeuvres 

traditionally performed by human drivers. Among 

these, overtaking stands out as a particularly 

complex and safety-critical operation. 

Automation involves "the replacement of human 

activities by machine activities" (Satchell, 1998). In 

the context of autonomous driving, this means 

transferring the cognitive and physical tasks of 

driving from humans to sophisticated computer 

systems. However, the successful implementation of 

autonomous overtaking requires not just a simple 

transfer of control, but a complete understanding of 

its nuances and the development of advanced 

algorithms capable of making split-second decisions 

in dynamic traffic environments. 

 

The Complexity of Overtaking 

 

Overtaking is a fundamental driving task that will 

remain essential even in an increasingly automated 

environment, especially in mixed traffic conditions 

involving vehicles with different speeds and 

behaviours (Sourelli et al., 2023). The overtaking 

manoeuvre can be broken down into three main 

phases (Naranjo et al., 2008). The process begins 

with the pull-out phase, where the vehicle initiates 

the manoeuvre by moving into the overtaking lane. 

This is followed by the passing phase, during which 

the vehicle accelerates past the slower vehicle(s). 

Finally, the cut-in phase involves the vehicle 

returning to its original lane, completing the 

overtaking manoeuvre. 

 

However, this simplified model belies the 

complexity of real-world overtaking scenarios. 

Depending on the driving context, the manoeuvre 

may involve additional steps or variations to ensure 

safety and efficiency (Bellem et al., 2016). For 

instance, the overtaking vehicle might need to adjust 

its speed multiple times, account for other vehicles 

in adjacent lanes, or abort the manoeuvre if 

conditions change unexpectedly. These nuances 

highlight the intricate nature of overtaking and the 

challenges involved in automating this process. 

 

Challenges in Autonomous Overtaking 

 

Implementing effective overtaking strategies in 

autonomous vehicles presents several significant 

challenges. One of the primary concerns is speed 

and trajectory planning. As Jung et al. (2023) point 

out, there is often a time constraint for occupying the 

overtaking lane. The AV must balance energy 

efficiency with the need to complete the manoeuvre 

within a safe time frame, determining the optimal 

velocity profile for overtaking. 

Decision-making is another crucial aspect of 

autonomous overtaking. The AV must decide when 

it is appropriate to initiate an overtaking manoeuvre, 

which involves assessing the speed differential with 

the leading vehicle, available gaps in traffic, and 

potential risks (Wang et al., 2009). This decision-

making process is closely tied to environmental 

perception, as accurate sensing and interpretation of 

the surrounding environment, including other 

vehicles, road markings, and potential obstacles, is 

critical for safe overtaking (Milanés et al., 2012). 

Furthermore, the ability to predict the behaviour of 

other road users adds another layer of complexity to 

autonomous overtaking. Anticipating the actions of 

other vehicles, especially in mixed traffic scenarios 

with human drivers, is a challenging task that 

requires sophisticated algorithms and extensive 

training data (Okamoto et al., 2017). 

Ethical considerations also come into play in 

autonomous overtaking scenarios. In some 

situations, the AV may need to make complex ethical 

decisions, weighing factors such as safety, 

efficiency, and fairness to other road users (Goodall, 

2014). These ethical dilemmas further complicate 

the development of strong autonomous overtaking 

systems. 

Lastly, user acceptance is a critical factor in the 

widespread adoption of autonomous overtaking 

technology. As Abe et al. (2018) highlight, driver 

trust in automated driving systems, particularly for 

complex manoeuvres like overtaking, is crucial. 

Ensuring that human passengers feel comfortable 

and confident during autonomous overtaking 

manoeuvres is an important consideration in the 

development of these systems. 
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Developing Efficient Overtaking in AVs 

 

As research in autonomous overtaking progresses, 

several key areas are emerging as focal points for 

future development. Advanced AI and machine 

learning techniques, such as reinforcement learning, 

are being explored to develop more adaptive and 

efficient overtaking strategies (Li et al., 2015; Yu et 

al., 2017). These approaches point towards 

autonomous systems that can learn from experience 

and improve their performance over time. 

Improved sensor technologies are another critical 

area of development. Enhancing the AV's ability to 

perceive its environment accurately, even in 

challenging weather or lighting conditions, is crucial 

for safe overtaking (Shen & Yan, 2018). This 

includes advancements in cameras, lidar, radar, and 

other sensing technologies that can provide a 

comprehensive and reliable view of the vehicle's 

surroundings. 

Vehicle-to-Vehicle (V2V) and Vehicle-to-

Infrastructure (V2I) communication technologies 

are also being researched as potential enablers of 

safer and more efficient autonomous overtaking. 

These technologies could provide AVs with 

additional information to make more informed 

overtaking decisions, improving overall traffic flow 

and safety (Luo et al., 2016). 

Finally, as Kyriakidis et al. (2019) emphasize, 

focusing on user-centred design for complex 

manoeuvres like overtaking will be crucial for 

public acceptance and trust. This involves not only 

technical development but also careful consideration 

of human factors, user interface design, and clear 

communication of the system's capabilities and 

limitations to users. 

 

Overtaking Decision-making in Autonomous 

Vehicles 

 

Overtaking involves a sophisticated combination of 

mental processing and accurate vehicle 

manipulation (Liu et al., 2023). The intricacy of this 

manoeuvre makes it a significant contributor to 

traffic violations and accidents, particularly when 

drivers disregard safety regulations (Lodhi et al., 

2021; Mocsári, 2009). 

For an overtaking manoeuvre to be initiated, specific 

conditions must be met: an empty lane ahead, no 

oncoming traffic, and a slower-moving vehicle in 

front. Once these conditions are satisfied, the 

overtaking process typically involves three main 

phases: a lane change to the passing lane, 

acceleration past the slower vehicle, and a return to 

the original lane (Mocsári, 2009). This sequence of 

actions presents a significant challenge for AVs, 

especially when multiple actions need to be 

combined seamlessly. 

Approaches to Autonomous Overtaking 

Researchers have proposed various approaches to 

address the challenge of overtaking manoeuvres in 

AVs. These methods can be broadly categorized into 

theoretical and artificial intelligence (AI)-based 

approaches (Lodhi et al., 2021). However, it is 

important to note that most evaluations of these 

methods have been conducted in simulated 

environments, highlighting the need for more real-

world testing. 

 

The complexity of real-world overtaking scenarios 

far exceeds that of simulations due to factors such as 

variable speeds, traffic density, and the need for real-

time decision-making. While longitudinal and 

lateral controllers can handle basic acceleration and 

lane changes, these tasks become more complex for 

AVs in dynamic real-world traffic environments 

(Lodhi et al., 2021; Atagoziyev et al., 2016). 

 

Vehicle Motion Prediction and Behaviour 

Modelling 

Accurate vehicle motion prediction is crucial for 

AVs to safely execute overtaking manoeuvres. 

Researchers have explored various methods to 

predict human driver behaviour, including 

probabilistic approaches like Dynamic Bayesian 

Networks and methods based on past driving 

patterns (Carvalho et al., 2015; Gindele et al., 2010; 

Okamoto et al., 2017). Some studies have also 

considered factors such as driver aggression and 

unorganized traffic patterns when planning 

overtaking manoeuvres (Kala & Warwick, 2013). 

Milanés et al. (2012) took this a step further by 

factoring in the behaviour of surrounding drivers, 

detected using stereo vision, to adjust control 

strategies and generate safe overtaking trajectories.  

 

Rule-Based Decision-Making 

Rule-based methods have shown effectiveness in 

controlled environments, such as the DARPA Urban 

Challenge, where driving scenarios are pre-defined 

(Leonard et al., 2008; Montemerlo et al., 2008; 

Urmson et al., 2008). These methods excel at tasks 

like lane changes, intersections, and recoveries from 

contingencies by using techniques such as decision 

trees or finite state machines. However, their 

reliance on pre-programmed rules makes them 

struggle to adapt to the uncertainties of real-world 

driving situations (Liu et al., 2019). 

An interesting application of rule-based decision-

making is the formalization of traffic rules using 

logical frameworks. For example, researchers have 

used Defeasible Deontic Logic (DDL) to create a 

machine-understandable format of Queensland's 

(Australia) overtaking rules (Bhuiyan et al., 2023). 

This approach allows an AV's reasoning engine to 
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make overtaking decisions based on both the 

formalized rules and real-time sensor data. 

 

Learning-Based Approaches 

Learning-based approaches, such as reinforcement 

learning, offer more flexibility in handling diverse 

scenarios but raise concerns about safety during 

training and deployment due to the vast number of 

possible situations (Yu et al., 2017; Li et al., 2015). 

Some learning-based methods divide overtaking 

into distinct stages with corresponding rewards 

(Ngai & Yung, 2011). Other approaches incorporate 

elements like graph-based motion prediction or 

dynamic potential fields to enhance safety 

considerations (Hegedüs et al., 2019; Huang et al., 

2021). 

 

Event-Driven and Multi-Layer Decision-Making 

Recent research has proposed more sophisticated 

decision-making strategies. For example, Huang et 

al. (2023) introduced an event-driven decision-

making strategy for AV overtaking manoeuvres that 

optimizes resource allocation. This approach 

focuses on making key decisions only when specific 

events occur, minimizing computational burden 

while adapting to varying traffic conditions. 

  

Ji et al. (2023) proposed a two-layer decision-

making system for connected and autonomous 

vehicles (CAVs) during overtaking scenarios. This 

system leverages Vehicle-to-Everything (V2X) 

communication to assess the "aggressiveness" of 

surrounding vehicles, allowing the CAV to plan a 

high-level trajectory and determine if overtaking is 

safe or beneficial before refining the plan at a lower 

level. 

 

Factors Influencing Overtaking Decisions 

Several factors influence overtaking decisions in 

both human drivers and AVs: 

 

Traffic Density 
Studies have shown that traffic density significantly 

impacts overtaking behaviour. Drivers tend to make 

more frequent lane changes and take greater risks 

when traffic is congested (Yang et al., 2018; Bella, 

2011; Younsi et al., 2011). This results in higher 

average speeds with more variation, most likely due 

to drivers being more impatient and stressed in 

heavy traffic (Liu et al., 2023). 

 

Speed Advantage 
Research by Kan et al. (2009) focused on 

mathematically quantifying the speed advantage that 

motivates drivers to change lanes for overtaking 

manoeuvres. They proposed a comprehensive 

approach that incorporates the vehicle's acceleration 

rate, surrounding vehicle distances, and potentially 

remaining travel time, building upon existing 

models that considered speed and distance (Jin et al., 

2019; Balal et al., 2016) and speed differences (Zhou 

et al., 2019). 

 

Time Pressure and Situational Factors 
Time pressure can lead to faster, potentially riskier 

choices due to limited situation awareness (Hwang, 

1994). Situational criticality, measured by time-to-

collision with oncoming traffic, also plays a major 

role in overtaking decisions (Miller et al., 2022; Stoll 

et al., 2020). As criticality increases, drivers may 

choose smaller safety margins or even abandon the 

overtake altogether (Bianchi Piccinini et al., 2018; 

Yan et al., 2019). 

 

Automation Level 
Studies have examined how driver behaviour 

changes with varying levels of vehicle automation 

(manual, partially automated, and conditionally 

automated). Research suggests that vehicle 

automation may lead to improved driver control, 

with drivers exhibiting calmer eye movements and 

lower speed variations during automated driving 

(Madigan et al., 2018; Goncalves et al., 2020; Chen 

et al., 2015). 

 

User Preferences and Acceptance 

Some studies indicate a preference for cautious 

overtaking manoeuvres in AVs compared to human 

driving (Basu et al., 2017; TRL, 2017). People 

generally favour AVs maintaining larger distances 

from vulnerable road users and initiating overtaking 

only after clear opportunities arise (Abe et al., 2018). 

This suggests a general aversion to risk-taking by 

AVs during overtaking. 

 

Learning Overtaking 

 

The complexity of overtaking manoeuvres in 

autonomous vehicles has led researchers to explore 

various machine learning approaches, with a 

particular focus on reinforcement learning (RL) 

techniques. RL has shown promise in handling the 

sequential decision-making nature of overtaking, 

allowing vehicles to learn optimal behaviours 

through environmental interaction (Liu et al., 2017). 

 

Reinforcement Learning Approaches 

Reinforcement learning is considered effective in 

autonomous vehicle decision-making due to its 

ability to handle unpredictable driving scenarios. 

Unlike supervised and unsupervised learning 

methods, RL allows the vehicle to continuously 

learn and adapt its behaviour based on 

environmental feedback (Du et al., 2019). This 

approach has been successfully applied to various 

aspects of autonomous driving, including driver 
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activity recognition (Xing et al., 2019), lane 

changing, and car-following control (Wang et al., 

2018). 

Zheng et al. (2013) demonstrated the effectiveness 

of RL in overtaking scenarios by using the Least 

Squares Policy Iteration (LSPI) algorithm to model 

overtaking decisions as a Markov Decision Process 

(MDP). Their simulations in a highway environment 

showed promising results for safe overtaking 

manoeuvres. 

Building on this work, Yu et al. (2017) proposed a 

deep Q-learning method for overtaking decisions, 

which considers the velocities of surrounding 

vehicles in various situations. Their model focused 

on training for high-speed overtaking scenarios, 

further advancing the application of RL in complex 

driving situations. 

 

Multi-Objective Approaches 

Recognizing the multi-faceted nature of overtaking 

decisions, researchers have developed multi-

objective RL approaches. Ngai and Yung (2011) 

proposed a multiple-goal RL method for complex 

vehicle overtaking manoeuvres. Similarly, Xu et al. 

(2018) modelled overtaking as a sequential decision 

process using an MDP with multiple goals, 

developing a multi-objective algorithm to address 

these complex decisions effectively. 

 

Fuzzy Logic Integration 

To handle real-world uncertainties in overtaking 

scenarios, some researchers have proposed 

integrating fuzzy logic with RL. Wu et al. (2021) 

introduced a fuzzy logic-enhanced reinforcement 

learning (FIRL) approach that considers safety, 

comfort, and efficiency in overtaking decisions. This 

method combines fuzzy logic for uncertainty 

handling with a RL technique (DF-TDL) for optimal 

decision-making, enabling autonomous vehicles to 

navigate overtaking manoeuvres more effectively. 

 

Hierarchical Reinforcement Learning 

Recent research has explored hierarchical 

reinforcement learning (HRL) approaches to 

overtaking. Yu et al. (2020) proposed a two-module 

system that considers the social preferences of 

overtaken vehicles. The first module uses an MDP-

based approach for high-level decision-making, 

analyzing the behaviour of overtaken vehicles and 

generating appropriate overtaking manoeuvres. The 

second module acts as a low-level controller, 

handling the execution of the overtaking manoeuvre. 

This hierarchical approach combines technical 

aspects with social etiquette considerations on the 

road. 

 

 

 

Deep Learning and V2I Communication 

Several studies have proposed deep learning 

approaches assisted by Vehicle-to-Infrastructure 

(V2I) communication for crash detection and 

avoidance in overtaking scenarios. Abdou et al. 

(2019), Gumaei et al. (2020), and Alamri et al. 

(2020) developed systems that leverage V2I to share 

real-time accident information with nearby vehicles, 

allowing them to adjust their routes and avoid 

potential collisions during overtaking. 

Shen and Yan (2018) addressed blind spot 

monitoring using a deep learning model that predicts 

the likelihood of accidents and estimates the number 

of vehicles present, triggering driver alarms when 

necessary during overtaking. 

Thus, learning-based approaches, particularly 

reinforcement learning and its variants, offer the 

flexibility and adaptability required to handle the 

unpredictable nature of real-world driving scenarios. 

 

Control of Overtaking 

 

The control of overtaking manoeuvres in 

autonomous vehicles presents a complex challenge 

that requires sophisticated approaches to ensure 

safety, efficiency, and smooth execution. This 

section explores various control strategies and 

methodologies used in autonomous overtaking. 

Traditional automated vehicle control systems 

typically follow a hierarchical structure consisting of 

four layers (Paden et al., 2016; Pereira et al., 2017): 

Route Planning. Generates the optimal path 

between start and destination points. 

Behavioral Layer. Determines appropriate actions 

based on the vehicle's current state and environment. 

Motion Planning. Formulates safe and feasible 

trajectories to execute the desired behaviour. 

Control Layer. Directly controls the vehicle's 

steering and acceleration to follow the planned 

trajectory. 

The last three layers play the most crucial role in the 

on-board automated driving control system, 

particularly for overtaking. 

 

Unified Control Approaches 

The complexity of real-world traffic scenarios has 

led researchers to explore unified control methods 

that can directly translate traffic situations into 

control commands. This approach aims to bypass the 

need for separate decision-making and trajectory 

planning modules, addressing issues such as 

potential loss of crucial commands during inter-

module communication. 

 

MPC-Based Overtaking Control 

Model Predictive Control (MPC) has emerged as a 

popular unified control method for autonomous 

vehicles (Camacho & Alba, 2013; Mayne, 2014). By 
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treating roads, lanes, and obstacles as virtual 

potential fields (Volpe & Khosla, 1990; Wolf & 

Burdick, 2008), MPC-based systems can 

comprehensively handle dynamic traffic scenarios 

while incorporating vehicle limitations and safety 

distances as constraints. 

Several researchers have explored MPC-based 

methods for autonomous vehicle control, 

particularly for overtaking. Murgovski and Sjoberg 

(2015) used convex modelling to generate safe 

overtaking trajectories. Chandru et al. (2017) 

employed MPC to determine safe lane changes 

during overtaking. Gray et al. (2012) and Nilsson et 

al. (2013) focused on collision avoidance during 

overtaking using MPC for trajectory planning and 

control. Qian (2016) formulated motion planning as 

a mixed-integer optimization problem within the 

MPC framework for obstacle avoidance during 

overtaking. Wang et al. (2009) utilized MPC to 

estimate conflict probability during overtaking 

manoeuvres. 

MPC offers several advantages for overtaking 

control, including the ability to integrate various 

constraints (obstacle avoidance, path following, 

speed limits), enforce safety with hard control and 

state limitations, and adapt quickly to changing 

environments due to its receding horizon nature (Vu 

et al., 2021). 

 

Reachability Analysis for Safe Overtaking 

Reachability analysis is being adapted to guarantee 

safety in autonomous overtaking (Scott & Barton, 

2013). This approach predicts all possible future 

states a vehicle can reach, accounting for external 

disruptions. Two main approaches exist: 

1. Robust methods: Offer strong safety 

guarantees but require precise vehicle and 

environment models (Bertsekas & Rhodes, 1971). 

2. Stochastic methods: Account for 

uncertainties using probability (Abate et al., 2008). 

Recent research has explored the use of martingales 

as a less restrictive model for human drivers, 

reducing the data needed for safe overtaking (Sadigh 

et al., 2018; Gao et al., 2019). 

 

Fuzzy Logic Control 

Fuzzy logic systems have been proposed for 

autonomous overtaking control. One approach aims 

to keep the vehicle centred in its lane during normal 

driving, with slight deviations allowed for 

overtaking. This system tolerates small lateral and 

angular deviations to ensure smooth operation and 

prevent lane departure, with specific thresholds 

determined through real-world driving experiments. 

 

 

 

Overtaking-Enabled Eco-Approach Control 

(OEAC) 

A novel strategy called Overtaking-Enabled Eco-

Approach Control (OEAC) has been proposed for 

autonomous vehicles at traffic lights. OEAC 

prioritizes both fuel efficiency and reduced travel 

time by allowing overtaking under specific 

conditions. It employs a two-stage receding horizon 

control approach: 

1. Markov Decision Process (MDP) to 

determine optimal lane and speed trajectories. 

2. Pontryagin's Minimum Principle (PMP) for 

real-time speed optimization. 

This approach balances energy usage and traffic 

flow while considering traffic lights, preceding 

vehicles, and potential disruptions. 

 

Nonlinear Adaptive Control 

Recent research has proposed a nonlinear adaptive 

controller specifically designed for autonomous 

overtaking. This approach addresses the 

complexities of overtaking, which requires a 

sequence of lane changes, trajectory tracking, and 

another lane change. The proposed method builds 

upon existing research on overtaking control, 

including two-layer fuzzy logic controllers (Naranjo 

et al., 2008) and real-time trajectory planning 

(Resende & Nashashibi, 2010). 

 

Trajectory Planning and Optimization 

 

Trajectory planning and optimization play a crucial 

role in ensuring safe and efficient overtaking 

manoeuvres for autonomous vehicles. This section 

explores various approaches to designing and 

optimizing overtaking trajectories. 

 

Potential-Field-Based Method 

A promising approach for designing overtaking 

trajectories involves the use of potential-field-based 

methods. This technique optimizes multiple 

performance criteria by assigning a potential value 

to each feasible trajectory, thereby simplifying the 

search process. The primary goal is to identify a 

collision-free trajectory that aligns with desired 

performance specifications. 

Key features of this method include: 

1. Multi-criteria optimization: Considers 

various factors such as safety, efficiency, and 

comfort. 

2. Simplified search process: Potential values 

guide the selection of optimal trajectories. 

3. Neural network integration: Complex 

calculations are estimated using neural networks, 

enhancing computational efficiency. 
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Comprehensive Trajectory Planning 

Effective overtaking requires precise execution of 

lane change manoeuvres while avoiding collisions 

with other vehicles. To achieve this, autonomous 

vehicles must plan trajectories that consider both 

longitudinal and lateral movement. A 

comprehensive trajectory planning approach 

typically involves: 

1. Longitudinal planning: Determining the 

appropriate speed profile for overtaking. 

2. Lateral planning: Calculating the optimal 

path for changing lanes safely. 

3. Obstacle avoidance: Incorporating real-

time sensor data to avoid potential collisions. 

4. Vehicle dynamics: Considering the 

physical limitations and capabilities of the 

autonomous vehicle. 

 

Importance of Robust Trajectory Planning 

Developing a robust autonomous overtaking system 

is essential for improving the overall safety and 

performance of self-driving cars. Key benefits of 

advanced trajectory planning and optimization 

include: 

1. Enhanced safety: Minimizing the risk of 

collisions during overtaking manoeuvres. 

2. Improved efficiency: Optimizing the 

overtaking process to reduce travel time and energy 

consumption. 

3. Smoother operation: Ensuring comfortable 

and natural-feeling manoeuvres for passengers. 

4. Adaptability: Enabling the vehicle to 

handle diverse traffic scenarios and unexpected 

obstacles. 

 

Conclusion 

 

This comprehensive review has explored the various 

aspects of autonomous vehicle overtaking, including 

decision-making processes, learning approaches, 

control strategies, and trajectory planning 

techniques. The findings reveal a complex landscape 

of interdisciplinary research aimed at developing 

safe, efficient, and adaptable overtaking systems for 

autonomous vehicles. 

Key insights from this review include the growing 

prominence of reinforcement learning and deep 

learning techniques in decision-making and control, 

the potential of MPC for unified vehicle control 

during overtaking manoeuvres, and the importance 

of advanced trajectory planning methods that 

consider multiple performance criteria. The 

integration of fuzzy logic systems and the 

application of reachability analysis for safety 

guarantees highlight the multifaceted approach 

required to address the challenges of autonomous 

overtaking. 

Despite the significant progress in this field, several 

limitations and challenges remain. First, the 

complexity of real-world traffic scenarios makes it 

difficult to develop universally applicable 

overtaking strategies. Second, the balance between 

safety and efficiency in overtaking decisions 

continues to be a critical concern. Third, the 

transition from simulation-based research to real-

world implementation presents significant hurdles, 

particularly in terms of sensor accuracy, 

computational efficiency, and robustness to 

unexpected situations. 

The implications of this research are far-reaching for 

the automotive industry and transportation 

infrastructure. As autonomous overtaking 

capabilities improve, we can expect enhanced road 

safety, improved traffic flow, and increased public 

acceptance of self-driving vehicles. However, these 

advancements also require updates to traffic 

regulations and infrastructure to accommodate the 

unique behaviour of autonomous vehicles during 

overtaking manoeuvres. 

Future research in this field should focus on 

improved integration of machine learning 

techniques with traditional control methods to 

leverage the strengths of both approaches. It should 

also aim for development of more sophisticated 

sensor fusion algorithms to enhance situational 

awareness during overtaking. It is also important to 

research into human factors and user acceptance of 

autonomous overtaking behaviours. 

Thus, while significant strides have been made in 

autonomous vehicle overtaking, continued 

interdisciplinary research and development are 

crucial to overcome existing challenges and realize 

the full potential of this technology. As autonomous 

vehicles become increasingly prevalent on our 

roads, the ability to perform safe and efficient 

overtaking manoeuvres will be a key factor in their 

successful integration into our transportation 

systems. 
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