
© September 2024 | IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 167645 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 9

A Survey on Usage of Vectorizers for Textual Data in

Exploratory Data Analysis (EDA)-Generative AI

DEVARAM SHARATHCHNDRA

Software Engineer, Machine Learning Enthusiast

Abstract— In the early age of Artificial Intelligence (AI)

and Machine Learning (ML) domain, mostly training of

ML models are depended on numerical data to classify,

predict or generate. In today’s world we achieved the state

“Machine models” can interact with human in a pure form

of humanized text. Natural Language Processing (NLP) is

the growing domain where it interacts with human in a way

of speech recognition, text classification and text

generation. The present era is experiencing prompt-based

AI, where we can generate new images with a simple text

prompt input or can generate a professional video or chat

bot types models for virtual assistance. Simultaneously we

are interacting with speech with a machine. The core

technology behind this textual input is vectorizing the text

data. When we interact with ML model with a speech input,

in the background-the speech is converted into a textual

format and then vectorized for prediction or generation to

produce output. Based on the produced output the output

layer can interact with human according to the choice

provided by the end user weather it is belonging to NLP or

Text generation transformer type model. The best example

for humanized text generation model we are experiencing

in today’s technology era are Google’s Gemini and Open

AI’s Generative Pre-Trained Transformer (GPT) model.

Vectorizers are the main technology behind these text

transformation and analyzation models. The main amin

these vectorizers re to improve machine learning model

accuracy and reducing computational complexity of a ML

model. NLP use multilayered neural networks for a Deep

Learning (DL) model. Before feeding the first input layer

with this textual data, we are using this vectorizers concept

while training the deep learning model. Vectorization

concept is involved in feature extraction and these will

include different type of vectorizers. In this survey paper

we discussed most of the vectorizers in section wise. In the

I. Introduction section, I am going to introduce the

concepts of vectors and what are different types of vectors

available to use for machine learning model. From the

section II. Core Technology, I’ll explain how we use

vectorizers for a Machine Learning, Deep Learning and

Transformer models to train. From the final section III.

Results, difference between all type of vectorizers are

concluded.

Index Terms—Vectorizers, Machine Learning (ML), Deep

Learning, NLP, Transformers, Artificial Intelligence (AI).

I. INTRODUCTION

The term vectorizer itself conveys a primary meaning

“vector” which means it has some directional things.

We can define vectors with its close relative term

Matrix. Similarly vector also has a size. As we are

considering textual data for a machine learning model,

we converting text to numbers with this vectorizers.

The process of converting textual data to numerical

data is called as “Vectorizing”. Fitting of a ML model

for a textual data is achieved with the help of

vectorizers. The textual data may include a paragraph

or a group of words or some letters to categorize. The

below image represents the concept of vectorization.

Fig 1. Concept of Vectorizers.

Types of Vectorizers:

Vectorizers[1-8] are primary method to convert textual

data to numerical data. When we have a different type

of data, we deal with different types of vectorizers.

1. Count Vectorizers:

The input textual data has a structure of sentences, we

can process with Count Vectorizers. In general count

vectorizers are able to differentiate vocabulary from

the sentence input. Once vectorizer was initialized

with count vectorizers module from sci-kit learn, we

are fitting the sentence into vectorizers. From the

below example we can clearly observe what is

© September 2024 | IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 167645 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 10

happening with count vectorizers for a sentence

structure.

Example sentence: “Hi hello how are you, I am from

India. We are using vectorizers to categorize text to

numerical.”

After vectorization process, we can observe a

numerical array format for the specific sentence. The

numerical array is size of One row and 15 columns

matrix of class integer with NumPy. The size of the

matrix is [1 x 15]. Numerical array is as this format

[[2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1]]. The logic

behind these count vectorizers are, primarily these

Count Vectorizers differentiate unique vocabulary

from the input sentence and fixes the size of array. For

our input sentence we have 15 unique words. So, the

size of output NumPy array is 15. Once vocabulary is

fixed, it will compare the frequency of the word with

in sentence.

Fig 2. Representation of Count Vectorizers for a

Single Sentence.

Count Vectorizers for a paragraph: While we are

dealing with a paragraph count vectorizers collects all

the vocabulary in all sentences and makes a numerical

array with vocabulary length. This will create a multi-

dimensional NumPy array. The example of a

paragraph is explained. Example paragraph is “I love

India”. “I am a python programmer”. “Programming

is a fun task”. We got the numerical array as [3 x9]

matrix. [[0 0 1 0 1 0 0 0 0][1 0 0 0 0 1 0 1 0][0 1 0 1 0

0 1 0 1]].

Fig 3. Usage of count vectorizers for a paragraph.

2. Tokenizers

The world of textual data which is dealing with

Natural Language Processing (NLP) uses tokenizers

concept. The tokenizers are very similar to count

vectorizers. Tokenizers are available in both Natural

Language Toolkit (NLTK) and Keras module. From

nltk, tokenizers first convert paragraphs into sentences

and then sentences to words to numerical. Tokenizers

from keras module arranges all vocabulary in an order

through frequency count of a word in total vocabulary.

The highest frequency word gets lowest number and

vice versa. Here is the example usage of a paragraph

“Hi all, how are you. We are discussing about the topic

tokenizers. We are considering both the module nltk

and keras preprocessing module.” The result is

paragraph is divided into sentences and then words

with the help of word tokenizer from nltk. The result

is ['Hi all, how are you.', 'We are discussing about the

topic tokenizers.', 'We are considering both the module

nltk and keras preprocessing module.'], after the word

tokenizers we need to consider for further evaluation.

The below picture shows the details.

Fig 4. Sentences defined for toekniztion.

The word tokenizer result is ['Hi', 'all', ',' ,'how', 'are',

'you.', 'We', 'are', 'discussing', 'about', 'the', 'topic',

'tokenizers.', 'We', 'are', 'considering', 'both', 'the',

'module', 'nltk', 'and', 'keras', 'preprocessing',

© September 2024 | IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 167645 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 11

'module.”']. Keras module handles paragraphs

different which is based on word frequency count.

Word Index is {'are': 1, 'we': 2, 'the': 3, 'module': 4, 'hi':

5, 'all': 6, 'how': 7, 'you': 8, 'discussing': 9, 'about': 10,

'topic': 11, 'tokenizers': 12, 'considering': 13, 'both': 14,

'nltk': 15, 'and': 16, 'keras': 17, 'preprocessing': 18} and

we got a numeric array from NumPy as follows

Sequences: [[5, 6, 7, 1, 8], [2, 1, 9, 10, 3, 11, 12], [2,

1, 13, 14, 3, 4, 15, 16, 17, 18, 4]]

Normalization is used to train a ML model for better

model training. We’ll discuss in next section of this

survey.

3. TF-IDF

The term TF-IDF is elaborated as Term Frequency

Inverse Document Frequency. Term frequency is

similar to the concept of count vectorizers, it calculates

the frequency of a word in a document or a paragraph.

After that document frequency is calculated as inverse

of a document which are having the word and total

number of documents. The final product of term

frequency and Invers of Document frequency is

known as TF-IDF value. Mathematical representation

of TF is shown below

Fig 5. TF-IDF Vectorizers.

Here some other researches may use inverse as

logarithmic value. Here is the example for tokenizers.

We got numerical array as below array([0.47952794,

0.47952794, 0.47952794, 0.47952794, 0.28321692,

0., 0., 0., 0., 0.,0.,0., 0., 0., 0.,0., 0., 0.]).

4. One Hot Encoders

One hot encoder’s works very similar to count

vectorizers. Let we have a sentence of words, firstly

vocabulary count is calculated and the according to

vocabulary length NumPy array column length is

calculated and based on the frequency of word with

respect to vocabulary count. Consider a paragraph

“This is data science domain. We are dealing with

data. Machine learning is related to data science. Deep

learning is a sub domain of Machine learning”. Now

the numerical representation of this paragraph is as [[0.

1. 0. 0.] [0. 0. 0. 1.] [0. 0. 1. 0.] [1. 0. 0. 0.]].

Fig 6. One Hot Encoded Values Text to Numerical

II. CORE TECHNOLOGY-APPLICATIONS WITH

ML, DL AND TRANSFORMER TYPE MODELS

1. Machine Learning Model

Machine Learning model fitting is the next step after

converting textual data into a numeric array.

Classification models are suitable for classification

analysis and Naïve Bayes models are mostly preferred

while handling textual data. One of the fines bayes

model we can use for easy understanding is “Bernoulli

Naïve Bayes”. We can import BernoulliNB() model

from sci-kit learn module, ensemble models. Here is

the model selection and import process.

Fig 7. Selecting BernoulliNB ML model.

Once we imported Bernoulli NB model to our

workspace, we can fit our count vectorizer results

through train-test-split to ML model. Once model is fit

with specific data, we can predict the final result. We

consider a data frame with few rows and columns.

Consider a single column with textual data. So here,

© September 2024 | IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 167645 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 12

we convert the specific text column using Count

Vectorizer to a numeric column and fit the specific

data frame to ML model. Below image represents the

usage of count vectorizer and fitting of ML model for

a textual data. In major Naïve Bayes models are

suitable for textual data handling part. Assume a

variable “x” is a data frame which contains some rows

of textual data as shown in figure.

Fig. 8 Variable “x” has some textual data.

Initialize a Count Vectorizer as cv and fit the “x” to

Count Vectorizer with specific data frame. Once this

step is completed, we can use train_test_split module

to split the data into training and testing data. Divided

data is fitted with BernoulliNB() model and predict the

results.

Fig 9. Initializing Count Vectorizer for a Textual

Data

Fig 10. Fitting BernoulliNB Model with Count

Vectorizer Data.

From the above figures we can estimate a training

accuracy score as 98 percent for a specific textual data.

Usage of Count Vectorizers is not appropriate for too

large textual data frames due to larger computational

time and memory is required to handle all the data.

2. Deep Learning Model with Natural Language

Processing

Deep Learning is a subset of Machine Learning.

Neural Network type architecture is present in DL

models. It has a input layer and some hidden layers and

final output layer. Let us consider a Data frame which

has a column of textual data. The next step to process

this textual data is tokenizing. Tokenizer is available

from keras module. Once we initiated Tokenizer and

applied the textual data to the tokenizer the results are

available in numerical format.

Example textual data is a list of sentences:

Fig 11. Sentence list definition.

Once sentence list is prepared, tokenizing the list

converts these sentences to a numerical format. Here

is the numerical format of above sentences. We used

padding concept to achieve uniform length numerical

array.

Fig 12. Tokenized sentences.

Apply this tokenized[9-15] data to a deep leaning model

with good number of epochs, so that model training

accuracy will be increased. Below image describes a

Sequential Model which has one input layer, tokenized

data is fed into this layer, has two hidden layers with

“relu” activation and one output layer. This model is

compiled and executed with 10 number epochs for

simple data. Here is the result image shown below.

© September 2024 | IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 167645 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 13

Fig 13. Deep Learning Model with Tokenizer

Concept and Model Fitting.

3.Transformer Model with Tokenizers concept.

Transformer models are extended version of deep

learning, which are able to generate new textual data

based on the trained data. When new text prompt is

given to this model, it processes the data and produces

the text generated from trained data. A simple

transformer model is considered below for this survey

analysis. Consider a simple ‘BERT’ transformer

model with tokenizer. BERT is a Bidirectional

Representations from Transformers. This model uses

tokenizers from hugging face platform.

Fig 14. Transformer model from Hugging face

platforms.

III. RESULTS

As we discussed different types of vectorizers and

their application across models, choosing the exact

vectorizer or tokenizers purely depends on the use case

of a machine learning model. If we are about to

generate series of sentences, tokenizers would be a

good choice in some cases. For word-based gaming

models word vectorizers or count vectorizers are good

choice. Below image represent comparison of count

vectorizer and tokenizers.

First image represents usage of count vectorizers and

the second image shows usage of tokenizers in for the

same text documents.

Fig 15. Sample text documents for survey analysis.

Fig 16. Count vectorizer plots for text for four

documents

Fig 17. Tokenizers from Keras module in for same

four text documents.

CONCLUSION

This survey paper discussed about effective usage of

vectorizers from small scale ML models to large

language models (Transformers). Different types of

text to numeric conversation helpful tin training

machine learning models.

© September 2024 | IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 167645 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 14

REFERENCES

[1] Machine Learning in python via scikit learn

official from https://scikit-learn.org/stable/

[2] Transformer models from hugging face platform,

https://huggingface.co/

[3] Mikolov, T., Sutskever, I., Chen, K., Corrado,

G.S., & Dean, J. (2013). Distributed

representations of words and phrases and their

compositionality. Advances in Neural

Information Processing Systems, pp. 1–9

[4] Harris, C.R., Millman, K.J., van der Walt, S.J. et

al. Array programming with NumPy. Nature 585,

357–362 (2020). DOI: 10.1038/s41586-020-

2649-2. (Publisher link).

[5] The pandas development team, ‘pandas-

dev/pandas: Pandas’. Zenodo, Apr. 10, 2024.

doi: 10.5281/zenodo.10957263.

[6] Buitinck, L. et al., 2013. API design for machine

learning software: experiences from the scikit-

learn project. In ECML PKDD Workshop:

Languages for Data Mining and Machine

Learning. pp. 108–122.

[7] Chollet F, others. Keras [Internet]. GitHub; 2015.

Available from:

https://github.com/fchollet/keras

[8] Nazzal, Fayez & Abualrob, Ahmad & Husni,

Ahmad. (2022). Classification of Item's category

using the CountVectorizer, The Linear Support

Vector Machine Algorithm and Python's sklearn

module. 10.13140/RG.2.2.24423.32169.

[9] Yang, Jinbiao. (2024). Rethinking tokenization:

Crafting better tokenizers for large language

models. International Journal of Chinese

Linguistics. 11. 94-109.

10.1075/ijchl.00023.yan.

[10] (2024). Large language models (LLMs): survey,

technical frameworks, and future challenges.

Artificial Intelligence Review. 57.

10.1007/s10462-024-10888-y.

[11] Yang, Jingfeng & Jin, Hongye & Tang, Ruixiang

& Han, Xiaotian & Feng, Qizhang & Jiang,

Haoming & Zhong, Shaochen & Yin, Bing &

Hu, Xia. (2024). Harnessing the Power of LLMs

in Practice: A Survey on ChatGPT and Beyond.

ACM Transactions on Knowledge Discovery

from Data. 18. 10.1145/3649506.

[12] Ananthaswamy, Anil. (2023). In AI, is bigger

always better?. Nature. 615. 202-205.

10.1038/d41586-023-00641-w.

[13] Raza, Muhammad & Meghji, Areej & Mahoto,

Naeem & Al Reshan, Mana & Abosaq, Hamad &

Sulaiman, Adel & Shaikh, Asadullah. (2024).

Reading Between the Lines: Machine Learning

Ensemble and Deep Learning for Implied Threat

Detection in Textual Data. International Journal

of Computational Intelligence Systems. 17.

10.1007/s44196-024-00580-y.

[14] Ulah, Arif & Khan, Sundas & Mohd Nawi,

Nazri. (2022). Review on sentiment analysis for

text classification. Multimedia Tools and

Applications. 82. 10.1007/s11042-022-14112-3.

[15] Zhang, Tianyi & Ladhak, Faisal & Durmus, Esin

& Liang, Percy & McKeown, Kathleen &

Hashimoto, Tatsunori. (2024). Benchmarking

Large Language Models for News

Summarization. Transactions of the Association

for Computational Linguistics. 12. 39-57.

10.1162/tacl_a_00632.

