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Abstract— In the early age of Artificial Intelligence (AI) 

and Machine Learning (ML) domain, mostly training of 

ML models are depended on numerical data to classify, 

predict or generate. In today’s world we achieved the state 

“Machine models” can interact with human in a pure form 

of humanized text. Natural Language Processing (NLP) is 

the growing domain where it interacts with human in a way 

of speech recognition, text classification and text 

generation. The present era is experiencing prompt-based 

AI, where we can generate new images with a simple text 

prompt input or can generate a professional video or chat 

bot types models for virtual assistance. Simultaneously we 

are interacting with speech with a machine. The core 

technology behind this textual input is vectorizing the text 

data. When we interact with ML model with a speech input, 

in the background-the speech is converted into a textual 

format and then vectorized for prediction or generation to 

produce output. Based on the produced output the output 

layer can interact with human according to the choice 

provided by the end user weather it is belonging to NLP or 

Text generation transformer type model. The best example 

for humanized text generation model we are experiencing 

in today’s technology era are Google’s Gemini and Open 

AI’s Generative Pre-Trained Transformer (GPT) model. 

Vectorizers are the main technology behind these text 

transformation and analyzation models. The main amin 

these vectorizers re to improve machine learning model 

accuracy and reducing computational complexity of a ML 

model. NLP use multilayered neural networks for a Deep 

Learning (DL) model. Before feeding the first input layer 

with this textual data, we are using this vectorizers concept 

while training the deep learning model. Vectorization 

concept is involved in feature extraction and these will 

include different type of vectorizers. In this survey paper 

we discussed most of the vectorizers in section wise. In the 

I. Introduction section, I am going to introduce the 

concepts of vectors and what are different types of vectors 

available to use for machine learning model. From the 

section II. Core Technology, I’ll explain how we use 

vectorizers for a Machine Learning, Deep Learning and 

Transformer models to train. From the final section III. 

Results, difference between all type of vectorizers are 

concluded. 

Index Terms—Vectorizers, Machine Learning (ML), Deep 

Learning, NLP, Transformers, Artificial Intelligence (AI). 

I. INTRODUCTION 

The term vectorizer itself conveys a primary meaning 

“vector” which means it has some directional things. 

We can define vectors with its close relative term 

Matrix. Similarly vector also has a size. As we are 

considering textual data for a machine learning model, 

we converting text to numbers with this vectorizers. 

The process of converting textual data to numerical 

data is called as “Vectorizing”. Fitting of a ML model 

for a textual data is achieved with the help of 

vectorizers. The textual data may include a paragraph 

or a group of words or some letters to categorize. The 

below image represents the concept of vectorization.   

Fig 1. Concept of Vectorizers. 

Types of Vectorizers: 

Vectorizers[1-8] are primary method to convert textual 

data to numerical data. When we have a different type 

of data, we deal with different types of vectorizers.  

1. Count Vectorizers: 

The input textual data has a structure of sentences, we 

can process with Count Vectorizers. In general count 

vectorizers are able to differentiate vocabulary from 

the sentence input. Once vectorizer was initialized 

with count vectorizers module from sci-kit learn, we 

are fitting the sentence into vectorizers. From the 

below example we can clearly observe what is 
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happening with count vectorizers for a sentence 

structure.  

Example sentence: “Hi hello how are you, I am from 

India. We are using vectorizers to categorize text to 

numerical.” 

After vectorization process, we can observe a 

numerical array format for the specific sentence. The 

numerical array is size of One row and 15 columns 

matrix of class integer with NumPy. The size of the 

matrix is [1 x 15]. Numerical array is as this format 

[[2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1]]. The logic 

behind these count vectorizers are, primarily these 

Count Vectorizers differentiate unique vocabulary 

from the input sentence and fixes the size of array. For 

our input sentence we have 15 unique words. So, the 

size of output NumPy array is 15. Once vocabulary is 

fixed, it will compare the frequency of the word with 

in sentence.   

 

Fig 2. Representation of Count Vectorizers for a 

Single Sentence. 

 

Count Vectorizers for a paragraph: While we are 

dealing with a paragraph count vectorizers collects all 

the vocabulary in all sentences and makes a numerical 

array with vocabulary length. This will create a multi-

dimensional NumPy array. The example of a 

paragraph is explained. Example paragraph is “I love 

India”. “I am a python programmer”. “Programming 

is a fun task”. We got the numerical array as [3 x9] 

matrix. [[0 0 1 0 1 0 0 0 0][1 0 0 0 0 1 0 1 0][0 1 0 1 0 

0 1 0 1]]. 

 

Fig 3. Usage of count vectorizers for a paragraph. 

2. Tokenizers 

The world of textual data which is dealing with 

Natural Language Processing (NLP) uses tokenizers 

concept. The tokenizers are very similar to count 

vectorizers. Tokenizers are available in both Natural 

Language Toolkit (NLTK) and Keras module. From 

nltk, tokenizers first convert paragraphs into sentences 

and then sentences to words to numerical. Tokenizers 

from keras module arranges all vocabulary in an order 

through frequency count of a word in total vocabulary. 

The highest frequency word gets lowest number and 

vice versa. Here is the example usage of a paragraph 

“Hi all, how are you. We are discussing about the topic 

tokenizers. We are considering both the module nltk 

and keras preprocessing module.” The result is 

paragraph is divided into sentences and then words 

with the help of word tokenizer from nltk. The result 

is ['Hi all, how are you.', 'We are discussing about the 

topic tokenizers.', 'We are considering both the module 

nltk and keras preprocessing module.'], after the word 

tokenizers we need to consider for further evaluation. 

The below picture shows the details.  

 

Fig 4. Sentences defined for toekniztion. 

 

The word tokenizer result is ['Hi', 'all', ',' ,'how', 'are', 

'you.', 'We', 'are', 'discussing', 'about', 'the', 'topic', 

'tokenizers.', 'We', 'are', 'considering', 'both', 'the', 

'module', 'nltk', 'and', 'keras', 'preprocessing', 
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'module.”']. Keras module handles paragraphs 

different which is based on word frequency count. 

Word Index is {'are': 1, 'we': 2, 'the': 3, 'module': 4, 'hi': 

5, 'all': 6, 'how': 7, 'you': 8, 'discussing': 9, 'about': 10, 

'topic': 11, 'tokenizers': 12, 'considering': 13, 'both': 14, 

'nltk': 15, 'and': 16, 'keras': 17, 'preprocessing': 18} and 

we got a numeric array from NumPy as follows 

Sequences: [[5, 6, 7, 1, 8], [2, 1, 9, 10, 3, 11, 12], [2, 

1, 13, 14, 3, 4, 15, 16, 17, 18, 4]] 

Normalization is used to train a ML model for better 

model training. We’ll discuss in next section of this 

survey.  

3. TF-IDF  

The term TF-IDF is elaborated as Term Frequency 

Inverse Document Frequency. Term frequency is 

similar to the concept of count vectorizers, it calculates 

the frequency of a word in a document or a paragraph. 

After that document frequency is calculated as inverse 

of a document which are having the word and total 

number of documents. The final product of term 

frequency and Invers of Document frequency is 

known as TF-IDF value. Mathematical representation 

of TF is shown below 

 

 

 

 

Fig 5. TF-IDF Vectorizers. 

 

Here some other researches may use inverse as 

logarithmic value. Here is the example for tokenizers. 

We got numerical array as below array([0.47952794, 

0.47952794, 0.47952794, 0.47952794, 0.28321692, 

0., 0., 0., 0., 0.,0.,0., 0., 0., 0.,0., 0., 0.]). 

 

4. One Hot Encoders 

One hot encoder’s works very similar to count 

vectorizers. Let we have a sentence of words, firstly 

vocabulary count is calculated and the according to 

vocabulary length NumPy array column length is 

calculated and based on the frequency of word with 

respect to vocabulary count. Consider a paragraph 

“This is data science domain. We are dealing with 

data. Machine learning is related to data science. Deep 

learning is a sub domain of Machine learning”. Now 

the numerical representation of this paragraph is as [[0. 

1. 0. 0.] [0. 0. 0. 1.] [0. 0. 1. 0.] [1. 0. 0. 0.]].  

 

 

Fig 6. One Hot Encoded Values Text to Numerical 

II. CORE TECHNOLOGY-APPLICATIONS WITH 

ML, DL AND TRANSFORMER TYPE MODELS 

1. Machine Learning Model 

Machine Learning model fitting is the next step after 

converting textual data into a numeric array. 

Classification models are suitable for classification 

analysis and Naïve Bayes models are mostly preferred 

while handling textual data. One of the fines bayes 

model we can use for easy understanding is “Bernoulli 

Naïve Bayes”. We can import BernoulliNB() model 

from sci-kit learn module, ensemble models. Here is 

the model selection and import process. 

 

Fig 7. Selecting BernoulliNB ML model. 

 

Once we imported Bernoulli NB model to our 

workspace, we can fit our count vectorizer results 

through train-test-split to ML model. Once model is fit 

with specific data, we can predict the final result. We 

consider a data frame with few rows and columns. 

Consider a single column with textual data. So here, 
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we convert the specific text column using Count 

Vectorizer to a numeric column and fit the specific 

data frame to ML model. Below image represents the 

usage of count vectorizer and fitting of ML model for 

a textual data. In major Naïve Bayes models are 

suitable for textual data handling part. Assume a 

variable “x” is a data frame which contains some rows 

of textual data as shown in figure.   

 

Fig. 8 Variable “x” has some textual data. 

Initialize a Count Vectorizer as cv and fit the “x” to 

Count Vectorizer with specific data frame. Once this 

step is completed, we can use train_test_split module 

to split the data into training and testing data. Divided 

data is fitted with BernoulliNB() model and predict the 

results. 

  

Fig 9. Initializing Count Vectorizer for a Textual 

Data  

 

Fig 10. Fitting BernoulliNB Model with Count 

Vectorizer Data. 

From the above figures we can estimate a training 

accuracy score as 98 percent for a specific textual data. 

Usage of Count Vectorizers is not appropriate for too 

large textual data frames due to larger computational 

time and memory is required to handle all the data.  

2. Deep Learning Model with Natural Language 

Processing 

Deep Learning is a subset of Machine Learning. 

Neural Network type architecture is present in DL 

models. It has a input layer and some hidden layers and 

final output layer. Let us consider a Data frame which 

has a column of textual data. The next step to process 

this textual data is tokenizing. Tokenizer is available 

from keras module. Once we initiated Tokenizer and 

applied the textual data to the tokenizer the results are 

available in numerical format.  

Example textual data is a list of sentences:  

 

Fig 11. Sentence list definition. 

Once sentence list is prepared, tokenizing the list 

converts these sentences to a numerical format. Here 

is the numerical format of above sentences. We used 

padding concept to achieve uniform length numerical 

array. 

 

Fig 12. Tokenized sentences. 

Apply this tokenized[9-15] data to a deep leaning model 

with good number of epochs, so that model training 

accuracy will be increased. Below image describes a 

Sequential Model which has one input layer, tokenized 

data is fed into this layer, has two hidden layers with 

“relu” activation and one output layer. This model is 

compiled and executed with 10 number epochs for 

simple data. Here is the result image shown below. 
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Fig 13. Deep Learning Model with Tokenizer 

Concept and Model Fitting. 

3.Transformer Model with Tokenizers concept. 

Transformer models are extended version of deep 

learning, which are able to generate new textual data 

based on the trained data. When new text prompt is 

given to this model, it processes the data and produces 

the text generated from trained data. A simple 

transformer model is considered below for this survey 

analysis. Consider a simple ‘BERT’ transformer 

model with tokenizer. BERT is a Bidirectional 

Representations from Transformers. This model uses 

tokenizers from hugging face platform. 

 

Fig 14. Transformer model from Hugging face 

platforms. 

III. RESULTS 

As we discussed different types of vectorizers and 

their application across models, choosing the exact 

vectorizer or tokenizers purely depends on the use case 

of a machine learning model. If we are about to 

generate series of sentences, tokenizers would be a 

good choice in some cases. For word-based gaming 

models word vectorizers or count vectorizers are good 

choice. Below image represent comparison of count 

vectorizer and tokenizers. 

First image represents usage of count vectorizers and 

the second image shows usage of tokenizers in for the 

same text documents.  

  

Fig 15. Sample text documents for survey analysis. 

 

Fig 16. Count vectorizer plots for text for four 

documents 

 

Fig 17. Tokenizers from Keras module in for same 

four text documents. 

CONCLUSION 

This survey paper discussed about effective usage of 

vectorizers from small scale ML models to large 

language models (Transformers). Different types of 

text to numeric conversation helpful tin training 

machine learning models. 
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