
© September 2024 | IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 167673 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 249

Alexa Controlled 3-DoF Articulated Robot using ROS

S B Shakthi Bala1, Yuvan R S2, and Anbarasi M P3
1Department of Robotics and Automation Engineering/PSG College of Technology

21Department of Robotics and Automation Engineering/PSG College of Technology
31Department of Robotics and Automation Engineering/PSG College of Technology

Abstract- This research paper presents the development

and implementation of a simple yet effective Alexa

voice-controlled 3-DOF (Degrees of Freedom) robotic

arm. The power of Amazon's Alexa voice assistant and

ROS (Robot Operating System) is used to enable

seamless and intuitive control of the robotic arm

through voice commands. The system demonstrates the

integration of voice recognition, natural language

processing, and robotics, making it accessible and user-

friendly.

I. INTRODUCTION

In recent years, the field of robotics and automation

has witnessed remarkable advancements, greatly

influenced by a multitude of research endeavors

aimed at improving the performance, control, and

integration of robotic manipulators in various

industrial and healthcare applications. Researchers

and engineers have been exploring diverse avenues

to enhance the capabilities of robotic systems. Rani

et al. (2018) have contributed to this effort by

developing intelligent tracking control mechanisms

for redundant robot manipulators, a critical aspect

in achieving precise and efficient manipulation in

various applications. Robust control strategies for

robotic manipulators have also been a focus of

research. Massaoudi, Elleuch, and Damak (2019)

have delved into robust control mechanisms for

two degrees of freedom (DOF) robot manipulators,

which are essential for ensuring stability and

precision in complex tasks, from manufacturing to

surgery. Hinrichs et al. (2023) have introduced an

innovative robotic system designed to anchor

patients in a lateral position, significantly reducing

the physical strain on healthcare professionals. This

development represents a pivotal step in enhancing

healthcare processes and addressing the challenges

faced by medical staff, particularly in the context of

patient care and comfort. Moreover, the interaction

between robotic manipulators and technological

equipment has been a critical area of exploration.

Kim, Zhidkov, and Polyansky (2021) have made

notable contributions in this regard, focusing on

organizing interactions between a robotic

manipulator and a technological equipment control

panel. This work not only emphasizes the

importance of seamless communication between

robots and equipment but also underscores the

broader scope of research in industrial automation

and smart manufacturing. Furthermore, Zhao,

Pashkevich, Klimchik, and Chablat (2021) have

presented a novel elastostatic modeling approach

for multi-link flexible manipulators, based on a 2D

dual-triangle tensegrity mechanism. Their research

addresses the growing demand for precision and

control in applications where flexibility and

adaptability are paramount. These advancements

underscore the dynamic and ever-evolving

landscape of robotics research, reflecting the

multidisciplinary nature of the field and the

collaborative efforts to drive innovation across

various domains. As we delve deeper into the

specific contributions and innovations presented in

these papers, it becomes evident that robotics and

automation continue to be at the forefront of

technological progress, with substantial potential to

revolutionize industries and healthcare.

Following the references, this paper discusses

about Ubuntu 20.04, ROS Noetic, VS Code,

establishing a Catkin workspace, and configuring

the robot model using a digital twin, various file

types, including YAML, launch, Xacro, URDF,

were explained. The explanation covered the setup

of the robot's configuration, and the process of

creating a custom PID controller. Additionally, both

forward and inverse kinematics for the robot were

addressed. The communication protocol was also a

focal point, and integration with Alexa for voice-

controlled robot operation was included. The setup

of parameters for configuring the voice assistant

was also described.

II. OPERATING SYSTEM USED

Ubuntu 20.04, codenamed "Focal Fossa," is a

Long-Term Support (LTS) release of the popular

Ubuntu Linux distribution. Released in April 2020,

Ubuntu 20.04 Noetic serves as a reliable and stable

platform for both desktop and server environments.

This release combines the robustness of a mature

operating system with modern features and

extensive community support.

One of the key highlights of Ubuntu 20.04 is its use

of the ROS (Robot Operating System) Noetic

Ninjemys framework. ROS is widely used in

robotics and automation research, making Ubuntu

20.04 a favored choice for roboticists and

© September 2024 | IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 167673 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 250

researchers in these fields. ROS Noetic offers

improved compatibility with Python 3, which is

aligned with the broader industry shift toward

Python 3 as the standard. This enhancement

simplifies the development of robotic applications

and accelerates the adoption of modern

programming practices.

In addition to ROS Noetic, Ubuntu 20.04 includes a

variety of software packages that cater to different

user needs. The GNOME desktop environment

provides a user-friendly interface for those on the

desktop version, while the server edition offers a

stable foundation for hosting web services,

databases, and other server applications.

Security is a primary concern for any operating

system, and Ubuntu 20.04 addresses this by

integrating the latest security updates and features.

It benefits from the Linux kernel's security

enhancements, AppArmor profiles, and the ability

to manage and apply updates easily through the

Software Updater.

Ubuntu 20.04 LTS provides users with a consistent

and reliable computing experience that is well-

supported for five years. This makes it an excellent

choice for organizations and individuals looking for

a versatile, secure, and community-driven

operating system. Whether developing robotics

applications, running servers, or simply using it as

daily driver, Ubuntu 20.04 Noetic offers a

dependable platform to meet the needs. Its

combination of stability, performance, and

extensive software availability makes it a solid

choice in the Linux ecosystem.

III. ROS NOETIC

ROS (Robot Operating System) Noetic Ninjemys is

a significant milestone in the world of robotics and

automation. Released in May 2020, ROS Noetic is

the latest Long-Term Support (LTS) version of this

open-source middleware framework. It brings a

host of improvements, features, and compatibility

enhancements that have solidified its position as a

leading platform for developing and controlling

robots.

One of the standout features of ROS Noetic is its

embrace of Python 3. With the transition from

Python 2 to Python 3, ROS Noetic aligns itself with

modern software development practices, providing

robotics engineers and researchers with access to

the latest Python language features and libraries.

This transition is crucial for ensuring that ROS

remains relevant and well-supported within the

broader software ecosystem.

ROS Noetic is designed to be versatile,

accommodating a wide range of robots and

applications. Whether working on autonomous

vehicles, industrial manipulators, drones, or even

space robots, ROS Noetic provides a robust and

flexible framework for building, simulating, and

controlling robotic systems. Its modularity allows

developers to assemble the precise set of libraries

and tools they need for their specific project,

reducing unnecessary overhead.

The release also features improved support for

cross-compilation, enabling developers to target a

broader range of platforms and architectures. This

is particularly valuable for robotics applications

where resource constraints and varied hardware are

common challenges. Furthermore, ROS Noetic

maintains compatibility with previous versions,

ensuring that existing codebases can transition

smoothly to the latest version. This stability is

crucial for industries and research institutions that

have invested heavily in ROS-based projects.

III. ROS NOETIC INSTALLATION AND

SETUP:

ROS Noetic can be downloaded from the official

website of ROS.org. This website provides the

required codes to install Noetic and down load

other packages and required dependencies. Then a

workspace has to be created. For this the following

code snippet can be used:

mkdir ~p <workspace_name>_ws/src

Then the packages can be created with required

libraries using the code:

catkin_create_pkg <package_name> roscpp

rospy std_msgs

 Then build the package using:

catkin_make

Then go into the workspace and source it using,

cd <workspace_name>_ws

source devel/setup.bash

This can be used to create new packages in the

workspace.

IV. VS CODE

Visual Studio Code (VS Code) is an invaluable

integrated development environment (IDE) for

ROS (Robot Operating System) programming,

offering a range of essential features that streamline

and enhance the development process. Its robust

ROS integration, through extensions like "ROS"

and "ROS Preview," simplifies package

management, node launching, and monitoring.

Code autocompletion and IntelliSense improve

coding efficiency and accuracy, while the

integrated terminal allows seamless execution of

ROS commands. VS Code's built-in Git support

© September 2024 | IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 167673 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 251

facilitates version control and collaboration on

ROS projects. Debugging tools, task automation,

and code navigation make troubleshooting and

code exploration effortless. Moreover, its

extensibility and a vibrant developer community

ensure ROS developers have access to tailored

extensions and plugins. Finally, its cross-platform

compatibility ensures ROS programmers on

different operating systems can enjoy these

benefits. In essence, VS Code is a powerful tool

that empowers ROS developers to work more

efficiently and effectively.

A. DIGITAL TWIN

In ROS (Robot Operating System), a digital twin is

a virtual replica of a physical robot or robotic

system. It accurately models the robot's behavior

and components, facilitating simulation, testing,

and algorithm development without the need for

physical hardware access. Digital twins enhance

safety, support educational endeavors, enable

remote operation, and provide valuable insights for

monitoring and optimizing robot performance.

These virtual models are invaluable tools in ROS,

empowering engineers and developers to create and

enhance real-world robots efficiently and reliably.

A digital twin model can be created using URDF

file.

B. URDF AND XACRO FILE

The URDF (Unified Robot Description Format) file

is a fundamental component in the world of ROS

(Robot Operating System) for describing the

physical properties and kinematic structure of

robotic systems. It serves as a standardized XML-

based format that defines a robot's links, joints,

sensors, visual and collision properties, and other

critical characteristics. URDF files are pivotal for

robot modeling, visualization, and simulation in

ROS.

Converting a URDF file into an XACRO file is a

common practice in ROS to enhance modularity

and maintainability. XACRO (XML Macros) is an

extension of URDF that introduces powerful

features like macros, which allow for the reuse of

robot descriptions and simplified parameterization.

XACRO files are written in XML and include the

URDF definitions along with macros, making them

more versatile and human-readable.

This conversion process simplifies robot

descriptions, reduces redundancy, and promotes

code reuse, making robot modeling and

maintenance more efficient and comprehensible in

ROS environments. It's a valuable technique for

ROS developers seeking to create modular and

reusable robot descriptions.

C. PARAMETER SERVER:

In ROS Noetic Ninjemys, the "parameter server" is

a vital component facilitating the management and

sharing of configuration data among nodes within a

robotic system. It acts as a centralized repository

for storing parameters such as robot dimensions,

sensor calibrations, and control gains. Parameters

are organized into namespaces, streamlining their

management, particularly in complex robotic

setups. The parameter server offers dynamic

reconfiguration capabilities, allowing nodes to

modify parameters in real-time, enabling on-the-fly

adjustments without requiring node restarts. With

dedicated APIs and integration with ROS launch

files, parameter management is seamless. It serves

as a cornerstone for configuring and coordinating

ROS nodes, enhancing the efficiency of robotic

applications.

D. RVIZ:

RViz, short for "ROS Visualization," is an

indispensable tool within the ROS (Robot

Operating System) ecosystem, particularly when

integrated with ROS Noetic Ninjemys. This 3D

visualization tool plays a pivotal role in the

development and troubleshooting of robotic

systems, providing real-time insights into robot

states, sensor data, and environments. It enables

users to visualize intricate robotic scenarios, assess

robot performance, and debug behaviors, whether

in simulation or real-world settings. RViz excels in

displaying robot states, sensor data, and occupancy

grid maps, making it crucial for tasks like mapping,

navigation, and sensor evaluation. Its support for

interactive markers facilitates teleoperation and

simulation adjustments, while customization

options and extensibility allow users to tailor it to

specific needs. RViz's integration with ROS Noetic

amplifies its utility, aiding in the early

identification of issues and the refinement of

control strategies, ultimately accelerating the

development of reliable robotic systems.

E. GAZEBO:

Gazebo is a powerful and versatile open-source

robotics simulator that plays a pivotal role in the

world of robotics, particularly when integrated with

ROS Noetic Ninjemys. This simulation

environment offers a realistic and highly

configurable platform for designing, testing, and

validating robotic systems, making it an

indispensable tool for robotics researchers,

developers, and enthusiasts.

One of the key strengths of Gazebo is its seamless

integration with ROS Noetic. This integration

allows for the development and testing of robotic

algorithms and control strategies within a simulated

© September 2024 | IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 167673 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 252

environment that mirrors the real world. ROS

Noetic's extensive libraries and tools, when

combined with Gazebo, enable the creation of

complex and accurate robot simulations.

Gazebo supports a wide range of robotic platforms,

sensors, and environments. Users can model and

simulate everything from simple mobile robots to

intricate multi-robot systems, aerial drones, and

even humanoid robots. The ability to replicate

diverse real-world scenarios in a controlled virtual

environment is invaluable for refining algorithms,

optimizing sensor configurations, and ensuring that

robots operate safely and effectively.

Furthermore, Gazebo provides various sensor

plugins that mimic real-world sensors, including

cameras, lidars, and IMUs, among others. These

plugins enable users to develop and validate

perception and navigation algorithms before

deploying them on physical robots. This reduces

the risk of errors and enhances the overall

efficiency of the development process.

Gazebo's physics engine accurately simulates the

interactions between robots and their environments,

accounting for factors such as gravity, friction, and

collisions. This realism is essential for testing the

stability and robustness of robot control systems

and allows developers to identify and address

potential issues early in the development cycle.

F. LAUNCH FILES:

In ROS (Robot Operating System), a launch file is

a crucial configuration file used to start and manage

various ROS nodes, set parameters, and configure

system behavior. It provides a streamlined and

reproducible way to launch multiple nodes and

configure their interactions. Launch files simplify

the initialization of complex robotic systems,

allowing developers to specify node names,

packages, parameters, and arguments. By defining

launch dependencies and configurations, users can

ensure that ROS nodes are launched in the correct

sequence with the desired settings, making launch

files an essential tool for orchestrating the behavior

of robotic applications in a structured and efficient

manner.

G. ROS TIMER:

A ROS timer is a crucial component for scheduling

and executing tasks at predefined intervals within

ROS (Robot Operating System) nodes. It allows

developers to automate periodic operations, such as

sensor data processing or control loop execution.

When creating a timer, users specify the callback

function to run at a specified frequency or delay.

Timers help maintain real-time behavior and ensure

precise execution of tasks, making them invaluable

for robotics applications. They can be started,

stopped, and set to single-shot mode as needed.

ROS timers play a pivotal role in enabling time-

sensitive actions and controlling the timing of

various processes in robotic systems.

H. ROS SERVICES:

ROS services provide a communication mechanism

in the Robot Operating System (ROS) for

requesting and receiving specific, stateless

functionalities between nodes. Nodes can offer

services, defining a set of functions that can be

invoked by other nodes. These services typically

take requests with specific inputs, process them,

and send back responses. ROS services ensure

synchronous, point-to-point communication,

enabling nodes to request tasks like sensor data

retrieval or robot actions. The requesting node

blocks until it receives a response or a timeout

occurs. This mechanism is valuable for tasks

requiring intermittent interactions, such as

configuration changes, diagnostic checks, or

custom functionalities in a ROS-based robotic

system. Thus, a service server called the Angles

Converter.srv for angle conversions between ROS

and motors has been created.

I. YAML FILE:

A YAML file is a human-readable data serialization

format used to structure and represent data

hierarchies in a simple and concise manner. YAML

files use indentation to define data structures,

making them easy for both humans and machines

to understand. They are commonly used for

configuration files, data exchange between

programs, and in various applications like

configuration management, data persistence, and

more. YAML's readability and versatility make it a

popular choice for settings, configurations, and

structured data storage, and it has wide support in

programming languages and software tools, making

it an efficient way to manage and communicate

data in a clear and organized format.

These are the two YAML files

 trajectory_contollers.yaml

 joint_state_controller.yaml

which performs the motion control and controlling

of states of the joints respectively.

IV. JOINT ANGLE CONVERSION:

The following equations allows to convert the

angles of the joints of the robot from the ROS

convention in radians to the Arduino one that is in

degrees. This conversion is useful to actuate the

servomotors of the robot and retrieve its position.

© September 2024 | IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 167673 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 253

A. Motor Angle to ROS Angle Conversion:

 Base Angle in ROS (𝑏�𝑎�𝑠�𝑒�𝑟�𝑎�𝑑�𝑖�𝑎�𝑛�𝑠�) = π

* (Base Angle in Motor - π) / (2 * 180)

 Shoulder Angle in ROS

(𝑠�ℎ𝑜�𝑢�𝑙�𝑑�𝑒�𝑟�𝑟�𝑎�𝑑�𝑖�𝑎�𝑛�𝑠�) = 180 - π *

(Shoulder Angle in Motor + π) / (2 * 180)

 Elbow Angle in ROS (𝑒�𝑙�𝑏�𝑜�𝑤�𝑑�𝑖�𝑎�𝑛�𝑠�) = π

* (Elbow Angle in Motor - π) / (2 * 180)

 Gripper Angle in ROS (𝑔�𝑟�𝑖�𝑝�𝑝�𝑒�𝑟�𝑑�𝑖�𝑎�𝑛�𝑠�)
= -π * Gripper Angle in Motor / (2 * 180)

 B. ROS Angle to Motor Angle Conversion:

 Base Angle in Motor = (π * Base Angle in

ROS - π) / (2 * 180)

 Shoulder Angle in Motor = 180 - (Shoulder

Angle in ROS * π + π) / (2 * 180)

 Elbow Angle in Motor = (π * Elbow Angle in

ROS - π) / (2 * 180)

 Gripper Angle in Motor = - (π * Gripper Angle

in ROS) / (2 * 180)

These formulas are used in the anglesconverter.cpp

file.

V. CONTROLLER:

The motors responsible for actuating the robotic

joints play a crucial role in achieving desired robot

movements through commanded actions. This

process is known as control and forms the basis of

a mathematical field of study involving controllers.

The primary objective is to understand techniques

for defining a variable termed "command," which

serves as input to a system, such as a motor. In

practice, this command represents a target, like

specifying that a motor's axis should rotate at one

radian per second. The control system then

orchestrates the motor's motion to meet this target.

The input, or target, is compared to the current

system state, such as the motor's actual speed.

Consequently, the disparity between the output

(current state) and the input (desired state) results

in a variable known as "error," indicating the extent

to which the current state deviates from the desired

state. This error guides the control system's actions.

A PID controller is used in this for precise

controlling of the joints.

Fig. 1. General block diagram of controller

A launch file control.launch is used to control the

movements of joints. This ROS launch file is a

pivotal configuration script for a robotic system. It

conditions component execution based on the

system mode (simulation or real hardware) using

the "is_sim" argument. It loads controller

configurations from YAML files, sets the

"robot_description" parameter using URDF, and

handles angle conversions with the

"angles_converter.py" node. In real hardware

mode, it initiates the "arduinobot_interface_node"

for hardware communication. Additionally, it

spawns controllers, ensuring proper joint state

transformations. This versatile file streamlines

ROS-based robotic system setup, catering to

various scenarios with efficiency.

VI. KINEMATICS OF ARTICULATED ARM:

 There are two purposes to find kinematics of

an articulated arm, which are:

 To determine the position of the gripper by

knowing angle of each joint which is

known as forward kinematics.

 To calculate angle knowing position of the

gripper in the space which is known as

Inverse kinematics.

A. FORWARD KINEMATICS

In order to move robot by forward kinematics, A

python package known as tf is used to calculate

link transformation matrix. A Transformation

matrix of base frame with respect to inertial frame

(end effector frame) is required in order to solve

forward kinematics problem.

Since it is not possible at one shot, let us break

down into pieces where Transformation matrix of

each link with respect to previous link is found and

then multiplied in order to obtain the total

transformation matrix of base frame with respect to

inertial frame.

Fig. 2. Kinematic diagram of the robot with local

frame representation

The total transformation matrix can be found by,

T= 𝑇𝑤1(q1) 𝑇12(q2) +𝑇23(q3)�𝑇3𝑒

© September 2024 | IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 167673 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 254

where,

𝑇𝑤1- Transformation matrix of frame 1

with respect to world frame

q1 - Angle made by joint 1

𝑇12- Transformation matrix of frame 2

with respect to frame 1

q2 - Angle made by joint 2

𝑇23 - Transformation matrix of frame 3

with respect to frame2

q3 - Angle made by joint 3

𝑇3𝑒 -Transformation matrix of end

effector frame with respect to frame3

The skeletal framework of all the co-ordinate

frames associated with each of joints is in RVIZ as,

Fig. 3. Kinematic diagram visualization in Rviz

This transformation matrix is found automatically

and joint angles are updated through feedback by

means of Tf package, for visualization, RVIZ

software is used for publishing the results of user

input through robot state publisher which is

subscribed to Tf package. By using the command

“ros topic echo /tf”, One can visualize the changes

occurring on Rotational and Transformation matrix

of the arm as it is moved.

Fig. 4. Graph of nodes in use

B. INVERSE KINEMATICS

In order to move robot through inverse kinematics,

The end effector position is given on the 3-

dimensional space and the joint angles are

calculated. A library known as “MOVE GROUP” is

used for exchange of functionalities and make them

available to the user. There can actually be several

configurations of the joints to bring gripper on the

same position. This converges to a point where

direct kinematics is ambiguous to have a unique

solution, while inverse kinematics have multiple

solutions, Infinite solution as well as no solution.

Fig. 5. Robot visualization in Rviz

Fig. 6. Robot visualization in Gazebo

Instead of solving this problem with set of

equations, optimizers are used that recursively look

for the best solution that solve inverse kinematics

problem. For this purpose, a software “MOVE IT”

which offers solution to solve inverse kinematic,

Trajectory planning and obstacle avoidance

problem is used, URDF model of the robot is

provided to use “MOVE IT” and it will be able to

solve inverse kinematic problem and the gripper

can be able to move in three-dimensional space.

In this case a goal is assigned to the gripper and

“MOVE IT” will calculate trajectory that each joint

has to execute in order to move the gripper the

current position to the desired position, by avoiding

obstacles.

© September 2024 | IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 167673 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 255

The core component of “MOVE IT” is “MOVE

GROUP” that manages all functionalities and the

interfaces of ROS. The purpose of this node is to

enable communication between all the “MOVE IT”

modules and allow the exchange of messages

between all the functionalities and make them

available to the user via a graphical interface and

also via a programming interface or API.

Fig. 7. Graph of nodes in use

VII. COMMUNICATION PROTOCOL USED ON

ROS:

A. PUBLISHER SUBSCRIBER PROTOCOL

The Publisher-Subscriber pattern is a fundamental

communication paradigm used in the Robot

Operating System (ROS), which is a popular

middleware framework for building robotic

systems. This pattern allows different parts of a

ROS system to communicate with each other in a

distributed and decoupled manner. Here's an

overview of how the Publisher-Subscriber protocol

works in ROS:

Publishers: Publishers are components in a ROS

system that produce data (e.g., sensor data, robot

state information, camera images) and make it

available to other parts of the system. Publishers

encapsulate the data and send it to a specific topic.

Each topic represents a particular type of data, and

multiple publishers can publish data to the same

topic.

Subscribers: Subscribers are components that want

to receive and process data from specific topics.

Subscribers subscribe to one or more topics and

receive data whenever a publisher publishes new

information to those topics. Subscribers can

process data in real-time or store it for later

analysis.

Topics: Topics are named communication channels

in ROS. They act as message buses where data is

published and subscribed to. Topics are organized

by their data type, and multiple publishers and

subscribers can interact with the same topic as long

as they use compatible data types.

Messages: Data exchanged between publishers and

subscribers are packaged into messages. Messages

are structured data formats defined using the ROS

message description language. Each message type

corresponds to a specific topic, and publishers and

subscribers must agree on the message type to

exchange data correctly.

B. SERVICE-SERVER PROTOCOL

In the Robot Operating System (ROS), the Service-

Server pattern is another communication paradigm

that complements the Publisher-Subscriber pattern.

While the Publisher-Subscriber pattern is used for

asynchronous communication, the Service-Server

pattern is used for synchronous, request-response-

style communication between ROS nodes. Here's

an overview of how the Service-Server protocol

works in ROS:

Service Server: The Service Server is a ROS node

that provides a specific service. A service is

essentially a named function with a defined input

(request) and output (response). The service server

registers itself with a specific service name.

Service Client: The Service Client is another ROS

node or component that requests a service by

sending a service request to the service server. The

service client specifies the service name and

provides the necessary request data.

Service Request: The service request is a message

(data structure) that contains the input data for the

service. It is sent from the service client to the

service server when the client requests the service.

Service Response: The service response is a

message (data structure) that contains the output

data generated by the service server in response to

the client's request. The service server sends the

response back to the service client.

C. ACTION SERVER & CLIENT PROTOCOL

In the Robot Operating System (ROS), the Action

Server protocol is a communication pattern

designed for handling long-running, asynchronous

tasks and actions. It provides a more advanced and

flexible way to manage actions that can take a

significant amount of time to complete and need to

provide feedback on their progress. The Action

Server pattern extends the capabilities of ROS

beyond the simple Publisher-Subscriber and

Service-Server patterns. Here's an overview of how

the Action Server protocol works in ROS:

Action Server: The Action Server is a ROS node

that is responsible for managing and executing a

specific action. Each action type corresponds to a

unique action server. An action server registers

itself with a specific action name.

Action Client: The Action Client is another ROS

node or component that initiates an action by

sending a request to the action server. Unlike

services, action clients can preempt and cancel

ongoing actions, and they can receive periodic

feedback on the progress of the action.

© September 2024 | IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 167673 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 256

Action Goal: The Action Goal is a message (data

structure) that the action client sends to the action

server to initiate an action. It contains the necessary

input data and specifications for the action.

Action Result: The Action Result is a message

(data structure) that the action server sends back to

the action client when the action is successfully

completed. It contains the final result of the action.

Fig. 8. Task Server

Action Feedback: The Action Feedback is a

message (data structure) that the action server

periodically sends to the action client to provide

updates on the progress of the action. This allows

the client to monitor the ongoing process.

Fig. 9. Robot moves when task server sends a

command

IX. ALEXA INTEGRATION:

The robot used on industries are very often

controlled and moved by a very large and difficult

joysticks, especially during the learning of the

movements, this way of moving robot is suitable

for an industrial environment where dust, water and

strict security measures requires the robot to be

moved with these kinds of devices. However, the

world witnessing a transition from the industrial to

domestic robotics and in this scenario the robots are

shifting from having a safe and secure space

reserved only for their angling to share their space

with human. In this new scenario where robots

interact with humans, Voice might be the better tool

that allowed us to communicate with one another.

Through voice one can communicate their

intension or can request the execution of some

tasks and also get some feedback from the robot.

And this increase the awareness about the

movements that the robot is going to make among

all the available voice assistant. “Amazon Alexa” is

used because it offers the possibility to create or

add new functionalities and behaviours also called

skills to voice assistant. Also, for developing such

functionalities Amazon provides some very

intuitive API (Application Program Interface) and

also a GUI (Graphical user interface) for testing

these functionalities.

Amazon Alexa developer web is used to create new

skills, new behaviour of the assistant and using this

one can trigger the execution of the task of the

robot with the voice, before that one need to

connect the robot to the internet so that it is

reachable from the assistant, and to do so, a very

simple and useful tool called “NGROK” is used

and this tool allows us to open a HTTP port on the

PC to the internet. It will also provide a public

address where the robot, the PC is reachable in this

way in a computer.

A. SPECIFYING PARAMETERS FOR VOICE

ASSISTANT:

Create an Amazon account and then login to

“Amazon developer console” and Create a New

skill and specify a trigger word, which in this case

is “Activate the robot”

Fig. 10. Invocation set-up

Now specify the intents such as “Wake_intent”,

“Pick_intent”, “Sleep_intent”, Which in this case is

specified as follows:

© September 2024 | IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 167673 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 257

Fig. 11. Setting up SleepIntent

Fig. 12. Setting up WakeIntent

Fig. 13. Setting up PickIntent

The API is specified through an endpoint to access

the robot’s controls.

By this way the integration of Alexa can be

possible with the articulated arm.

Fig. 14. Setting up Endpoints

X. CONCLUSION:

In conclusion, this research showcases the

successful creation of an Alexa voice-controlled 3-

DOF robotic arm, bridging the gap between voice

assistants and robotics. The system's performance,

as validated through experiments and user

feedback, demonstrates its reliability and

practicality. This innovation has the potential to

transform the way people interact with robotic

systems, offering enhanced accessibility and ease

of use. As voice-controlled technology continues to

advance, this work contributes to the growing field

of human-robot collaboration, opening doors to a

wide range of applications that benefit from

intuitive voice-based control in robotics.

REFERENCE

[1]. Smith, C., & Christensen, H. I. (2009). IEEE

Robotics & Automation Magazine.

[2]. Rani, M., Ruchika, & Kumar, N. (2018).

Intelligent Tracking Control of Redundant

Robot Manipulators including Actuator

Dynamics.

[3]. Kim, N. V., Zhidkov, V. N., & Polyansky, V.

V. (2021). Organizing Interactions Between

a Robotic Manipulator and a Technological

Equipment Control Panel.

[4]. Yang, X., Xu, Z., Zhang, W., Zhang, W., &

Liu, P. X. (2021). Model-free control of

manipulators in task space containing

mismatched uncertainty.

[5]. Hinrichs, P., Seibert, K., Gómez, P. A.,

Pfingsthorn, M., & Hein, A. (2023). A

Robotic system to anchor a patient in a

Lateral Position and Reduce Nurse's

Physical Strain.

[6]. Massaoudi, F., Elleuch, D., & Damak, T.

(2019). Robust Control for a Two DOF

Robot Manipulator.

[7]. He, W., Li, H., Wang, Y., & Liu, S. (2020).

Suppression of the Disturbance of Robotic

Manipulators Based on Nonlinear

Disturbance Observer and Fuzzy Logic

System.

[8]. Zhao, W., Pashkevich, A., Klimchik, A., &

Chablat, D. (2021). Elastostatic modeling of

multi-link flexible manipulator based on 2D

dual-triangle tensegrity mechanism.

[9]. Alonso, R., Concas, E., & Recupero, D. R.

(2021). An Abstraction Layer Exploiting

Voice Assistant.

[10]. Yan, Q., Cai, J., Zhang, Y., & Yang, Z.

(2021). Adaptive Iterative Learning Control

for Robot Manipulators with Time-Varying

Parameters and Arbitrary Initial Errors.

