
© September 2024 | IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 167757 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 385

Optimizing SVD for Object Tracking: A Hardware-

Software Co-Design Methodology

Priyanka Singh1, Mohd.Murtaja2, and Gaurav Verma3
1,2 Chaudhary Charan Singh University Campus, Meerut-250005, UP, India

3National Institute of Technology Kurukshetra-136119, Haryana, India

Abstract—The present study suggests the development of

a customized processor architecture designed

specifically for tracking applications, taking into

account the complex nature of tracking in nonlinear

systems. We design the prototype platform to enhance

tracking capabilities by incorporating singular value

decomposition (SVD), a crucial component of the

tracking algorithm. By including SVD in the processor

design, the suggested architecture can solve the

problems that come up with real-time vision algorithms

used in object tracking, smart cameras, and automated

security systems.

Index Terms—Singular value decomposition, Tracking

Algorithm, Profiling, Co-Design

I. INTRODUCTION

This paper proposes a method to analyse and

develop real-time vision algorithms for tracking

objects. Apart from standard accuracy requirements,

the algorithms must satisfy the target processing

architecture's memory, frame rate, and latency

constraints [1]. A closed-loop control system uses

latency, the time it takes to produce results for a

frame, as a critical constraint for purposeful motion

control of the camera. Developing real-time

algorithms for the processing architecture to extract

high-level descriptors from streaming video poses

key challenges. These issues necessitate the

development of special-purpose processor

architectures different from traditional DSPs [2].

This paper focuses on tracking applications.

Tracking creates an interface that provides

information on an object's motion based on a series

of photographs. Motion capture, motion recognition,

surveillance, targeting, and other applications that

use tracking are a few examples [3]. An inference

problem more accurately describes the tracking

process. Each frame necessitates determining the

internal status of the moving object. To estimate the

state of the object, it is imperative to optimize the

integration of our measurements to accurately

determine the condition of the object. There are two

important cases. The first scenario occurs when both

the dynamics and measurements are linear, resulting

in a straightforward inference problem with a

standard solution. Even minor deviations in system

dynamics have a significant impact on the outcome

when dealing with nonlinear dynamics. As a result,

drawing inferences can be challenging and may even

seem unattainable. If the dimension of the state

space is low, there is a useful algorithm that often

works. We have chosen tracking as the application

for processor design. Within the framework of the

tracking algorithm, the singular value

decomposition (SVD) function is an essential

component. We aim to propose a prototype platform

development strategy that utilizes SVD for tracking

applications [4]. We can approach SVD from three

complementary perspectives. It can be considered a

technique for converting correlated variables into a

collection of uncorrelated variables that exhibits a

more accurate representation of the various

relationships that exist between the initial data

segments. On the other hand, we can use SVD to

identify and arrange the dimensions where an

individual data point exhibits the highest variance.

The third way of looking at SVD connects to the

possibility of obtaining the best approximation of

the original data points by using fewer dimensions.

Discovering the most variance allows us to make the

best approximation. Therefore, we can consider

SVD as a technique for data reduction. To illustrate

these concepts, examine the 2-dimensional data

elements in Figure 1(a). The regression line that

passes through them represents the most accurate

approximation of the original data using a one-

dimensional object (a line). Because the line reduces

the space between the original points and the line, it

is the most accurate approximation [5].

To estimate the true data point, we can construct a

perpendicular line connecting every point to the

regression line, and then use the point where these

lines join as the approximation statistic. This

approach would aim to capture the maximum

amount of the original deviation possible.

© September 2024 | IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 167757 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 386

Figure 1(a)

Figure 1 (b)

Figure 1(a) shows that the best-fit regression line

integrates two-dimensional data into one. Figure

1(b) shows that the second dimension causes the

regression line to capture less variation in the

original data.

As we can see from figure 1(b) that displays a

second regression line perpendicular to the first one.

To the best of our knowledge, this line represents the

original data set's second dimension. Because it

pertains to a dimension that initially had less

variance, it does not perform as well in

approximating the original data. Using these

regression lines, one can create a dataset devoid of

correlation, revealing hidden patterns in the original

data that might not be immediately apparent.

The fundamental concepts of SVD are as follows:

first, we take a high-dimensional, highly variable

dataset and reduce it to a lower-dimensional space.

This makes the original data's substructure more

apparent and sorts it from most variable to least

variable. By ignoring variation below a certain

threshold, you can drastically compress your data

using SVD for natural language processing

applications while maintaining the essential

associations of interest. A linear algebraic theorem,

the foundation of SVD, asserts that we can divide a

rectangular matrix A into three matrices: the

transpose of an orthogonal matrix V, an orthogonal

matrix U, and a diagonal matrix S. The theorem

typically takes the following form:

In this case, UTU = I, VTV = I. The columns U and

V represent the orthonormal eigenvectors of AAT

and ATA, respectively. S is a diagonal matrix that

has the square roots of the singular values or

eigenvalues from V or U arranged in decreasing

order [6].

Amn = Umm Smn (Vnn) T

Where UTU = I; VTV = I; the columns of U are

orthonormal eigenvectors of AAT, the columns of V

are orthonormal eigenvectors of ATA, and S is a

diagonal matrix containing the square roots of

Eigenvalues or singular values from U or V in

descending order. The decomposition of the matrix

into different matrices aids many image processing

applications in analysing various features in the

image independently at the same time with reduced

noise.

II. WORKING OF SVD

The application's matrix data, a memory-stored

image matrix, initiates the SVD operation. The

householder function will take the data in an array

and convert it from an ordinal matrix to a bidiagonal

matrix. After converting the data into a bidiagonal

matrix, the right-hand and left-hand accumulation

functions utilize the bidiagonal matrix to compute

the U and V matrices. Following this, we utilize the

calculated data to compute the diagonal matrix from

the bidiagonal matrix and subsequently determine

the Eigenvalues from the data.

III. METHODOLOGY: HW/SW PARTITIONING

The hardware and software practitioner determines

which part of the application should be implemented

in hardware and which one in software, specifically

identifying which function requires dedicated

hardware. In this manner, when the processor

executes certain functions, it directs them to the

appropriate hardware, and after completing that

function.

© September 2024 | IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 167757 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 387

Figure 2. SVD Flowcharts

 It proceeds to execute other functions using its own

set of instructions [7]. The steps used for the

HW/SW partitioning in this project are as follows:

i. For a functional modular implementation,

we have modified the code to include some essential

functions.

ii. In the Linux operating system, we use the

"gprof" profiler tool to profile the C code and

estimate the execution time of each function.

iii. Based on each function's execution time,

we can determine which function requires dedicated

hardware based on the execution time of each

function.

A.Hardware-Software Co-Design

 A primary objective of co-design is to expedite the

time-to-market by minimizing the design work and

expenses associated with the resulting products. As

a result, the designer must take advantage of the

diversity of the chosen architecture. The benefit of

employing processors is multifaceted, as software

offers greater flexibility and cost-effectiveness

compared to raw hardware. The software's

versatility allows for the inclusion of late design

modifications and easier debugging. Moreover, the

potential for software reuse through iterative

portability to different processors decreases both the

time required to bring the product to market and the

design work [8]. Primarily, the utilization of

processors is generally more cost-effective than the

expenses incurred in developing ASICs due to the

large-scale production of processors, resulting in a

substantial price decrease. However, when the CPUs

fail to achieve the required performance, the

designer always employs hardware. This trade-off

between the hardware and the software

demonstrates the optimization part of the co-design

challenge. Co-design is an example of an

interdisciplinary activity that combines ideas and

concepts from many fields, such as software

engineering, hardware design, and system-level

modelling. Figure 3 shows the overall co-design

process flow. The first step in a co-design project is

to define the system-level behavior specifications.

The next step involves breaking down the system

specification into smaller components, referred to as

granules, akin to building blocks. During the cost-

estimating phase, we determine the grain values for

several cost indicators. Projected expenses can

comprise both software and hardware investments.

Some examples of hardware cost metrics include

runtime, power consumption, area on the chip, and

testability. Metrics for software costs could include

runtime data and program memory requirements.

After calculating the cost, the next step is to divide

the granules into hardware or software groups. We

accomplish this by determining the optimal method

for mapping the granules to the appropriate

hardware or software and then implementing the

groups of granules on the appropriate hardware and

software [9]. The mapping necessitates extra

interface components between ASICs and CPUs to

implement the system on a heterogeneous target

architecture. The specification refinement stage

converts the system specification, which is

independent of implementation, into specifications

for both hardware and software components. Every

specification inherently incorporates

communication protocols that facilitate the transfer

of data between CPUs and ASICs. The selected

processor compiles the software specification and

synthesizes the hardware based on the provided

specification. The co-synthesis phase produces a

collection of integrated circuits (ASICs) and

assembler programs designed for the systems.

Finally, the processors co-simulate the ASICs while

they execute the assembler instructions they

designed. After all performance restrictions and

design costs have been considered, the co-design

process comes to a halt. If not, the design

optimization through repartitioning continues until

an adequate system implementation is discovered.

© September 2024 | IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 167757 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 388

Moreover, apart from the aforementioned issues,

there are extra challenges in the domain of

hardware-software co-design. The issue of co-

validation in system-level design involves several

approaches to identify faults at various levels of

abstraction

Figure 3. The Complete Flow of Hardware-

Software Co-Design

B. Profiling of SVD Algorithm

We can design the various basic computing blocks

of SVD using VHDL or the System C language and

implement the processor on an FPGA [12]. Before

implementation, hardware and software partitioning

is required. At this moment, we are using profiling.

Profiling enables us to ascertain the allocation of

time and the invocation of corresponding functions

by our software throughout its execution. Moreover,

it can furnish us with insights into whether our

software invokes a function at a frequency higher or

lower than expected. This methodology may

facilitate the identification of bugs that have

previously been undetected. The profiler's reliance

on data gathered during program execution makes it

applicable to programs too large or intricate for

source analysis [13]. Nevertheless, the execution of

our program will impact the content observed in the

profile data. Failure to use a certain feature of our

application during the profiling process will result in

no profile information for that feature. The GNU

Gprof 2.15.92.02 is the specific Gprof profiler

version used

C.Hardware Software Co-Design: Platform-Based

Design

In this paper, we propose an idea for the

development and implementation of an algorithm

using a platform-based design, as shown in Figure 4.

As depicted in Figure 4, an application developer

will construct his application using the available

library elements. We will use the API to compile the

application code and then map the generated bit

pattern into the FPGA device. Before

implementation, hardware and software partitioning

are required. For this purpose, we are currently using

profiling. The Power PC will receive the software

portion of the code, while the logic and block RAMs

will receive the hardware portion of the code. The

proposed prototype platform-based design aims to

achieve all the aforementioned goals [11]. The block

diagram for the hardware-software co-design system

is shown below.

Figure 4: Hardware Software Co-design System

C. Performance Analysis

The original SVD code is plain and has only one

important function, "main." Modifying the code to

include a few critical functions will create a

functional modular implementation. Implementing

this code directly on the hardware with a synthesis

tool will result in a large chip or hardware area filled

with numerous redundant hardware functions [14].

The most effective method for implementing a code

or algorithm is to break it down into smaller

© September 2024 | IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 167757 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 389

components, allowing for reusable functions

without the need for repeated synthesis.

IV. CONCLUSION & FUTURE PROSPECTIVE

We have proposed a methodology for implementing

the SVD function. This work provides

recommendations for implementing the SVD

function in both software and hardware to achieve

desired results. The modified SVD code runs

successfully on a Linux-based system. We have

profiled the system for hardware-software

partitioning. Based on the analysis results, we can

identify certain computation-intensive functions that

the application frequently requires. By selecting the

appropriate hardware devices and implementing the

software on a Power PC, we have designed the

embedded system of SVD. System-based SVD code

implementation has been done to generate dedicated

hardware for tracking applications in smart camera

systems. This is done so that it can be added as a

library element for the smart camera system in the

proposed platform-based design. The software-

hardware partitioning has been done by profiling.

Based on performance analysis results, we identified

functions that are computationally intensive and

frequently required by the application.

The application of object tracking is central to this

research, which involves generating information

about an object's motion from a sequence of images.

This capability is vital in various fields, including

motion capture, recognition from motion,

surveillance, and targeting. Tracking,

conceptualized as an inference problem, requires

accurately estimating the internal state of a moving

object based on sequential measurements. In

scenarios where system dynamics and

measurements are linear, standard solutions are

applicable. However, even slight nonlinearities can

complicate the inference process, making it

challenging and sometimes infeasible. By

leveraging the proposed prototype platform-based

implementation of SVD in Smart Camera Systems,

Embedded Vision Systems, Medical Imaging, and

Data Compression areas, systems can achieve higher

efficiency, reduced latency, and improved

performance, particularly in applications where real-

time processing is essential.

REFERENCES

[1]. Harris S, Harris D. Digital Design and

Computer Architecture, RISC-V Edition.

Morgan Kaufmann; 2021 Jul 12.

[2]. Liu D. Embedded DSP processor design:

Application-specific instruction set

processors. Morgan Kaufmann; 2008 May

30.

[3]. Sankaranarayanan AC, Veeraraghavan A,

Chellappa R. Object detection, tracking and

recognition for multiple smart cameras.

Proceedings of the IEEE. 2008 Oct

17;96(10):1606-24.

[4]. Doblander A, Zoufal A, Rinner B. A novel

software framework for embedded

multiprocessor smart cameras. ACM

Transactions on Embedded Computing

Systems (TECS). 2009 Apr 22;8(3):1-30.

[5]. Klema V, Laub A. The singular value

decomposition: Its computation and some

applications. IEEE Transactions on automatic

control. 1980 Apr;25(2):164-76.

[6]. Lange K, Lange K. Singular value

decomposition. Numerical analysis for

statisticians. 2010:129-42.

[7]. Clements A. Principles of computer

hardware. Oxford University Press, USA;

2006 Feb 9.

[8]. Anasuodei M, Akpofure N. Software

Reusability: Approaches and Challenges.

International Journal of Research and

Innovation in Applied Science. 2021;6(05).

[9]. Cirstea M, Benkrid K, Dinu A, Ghiriti R,

Petreus D. Digital Electronic System-on-

Chip Design: Methodologies, Tools,

Evolution, and Trends. Micromachines. 2024

Feb 7;15(2):247.

[10]. FORNACIARI W. Co-synthesis and co-

simulation of control-dominated embedded

systems. Readings in Hardware/Software Co-

Design. 2001 Jun 19:395.

[11]. Xue S. Overview of Computer Architecture

Development Direction Breaking Through

Von Neumann Architecture. International

Core Journal of Engineering. 2021 Aug

1;7(8):330-4.

[12]. Fummi F, Loghi M, Perbellini G, Poncino M.

SystemC co-simulation for core-based

embedded systems. Design Automation for

Embedded Systems. 2007 Sep;11:141-66.

[13]. Gangarapu S, Chilukoori SS. Profiling-

Driven Performance Enhancement:

Accelerating Embedded Firmware

Execution. memory. 2024 Jul;11(07).

[14]. Gottschall B. Time-Proportional

Performance Analysis for Out-of-Order

Processors. 2024

