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Abstract—The present study suggests the development of 

a customized processor architecture designed 

specifically for tracking applications, taking into 

account the complex nature of tracking in nonlinear 

systems. We design the prototype platform to enhance 

tracking capabilities by incorporating singular value 

decomposition (SVD), a crucial component of the 

tracking algorithm. By including SVD in the processor 

design, the suggested architecture can solve the 

problems that come up with real-time vision algorithms 

used in object tracking, smart cameras, and automated 

security systems. 

Index Terms—Singular value decomposition, Tracking 

Algorithm, Profiling, Co-Design 

I. INTRODUCTION 

This paper proposes a method to analyse and 

develop real-time vision algorithms for tracking 

objects. Apart from standard accuracy requirements, 

the algorithms must satisfy the target processing 

architecture's memory, frame rate, and latency 

constraints [1]. A closed-loop control system uses 

latency, the time it takes to produce results for a 

frame, as a critical constraint for purposeful motion 

control of the camera. Developing real-time 

algorithms for the processing architecture to extract 

high-level descriptors from streaming video poses 

key challenges. These issues necessitate the 

development of special-purpose processor 

architectures different from traditional DSPs [2]. 

This paper focuses on tracking applications. 

Tracking creates an interface that provides 

information on an object's motion based on a series 

of photographs. Motion capture, motion recognition, 

surveillance, targeting, and other applications that 

use tracking are a few examples [3]. An inference 

problem more accurately describes the tracking 

process. Each frame necessitates determining the 

internal status of the moving object. To estimate the 

state of the object, it is imperative to optimize the 

integration of our measurements to accurately 

determine the condition of the object. There are two 

important cases. The first scenario occurs when both 

the dynamics and measurements are linear, resulting 

in a straightforward inference problem with a 

standard solution. Even minor deviations in system 

dynamics have a significant impact on the outcome 

when dealing with nonlinear dynamics. As a result, 

drawing inferences can be challenging and may even 

seem unattainable. If the dimension of the state 

space is low, there is a useful algorithm that often 

works. We have chosen tracking as the application 

for processor design. Within the framework of the 

tracking algorithm, the singular value 

decomposition (SVD) function is an essential 

component. We aim to propose a prototype platform 

development strategy that utilizes SVD for tracking 

applications [4]. We can approach SVD from three 

complementary perspectives. It can be considered a 

technique for converting correlated variables into a 

collection of uncorrelated variables that exhibits a 

more accurate representation of the various 

relationships that exist between the initial data 

segments. On the other hand, we can use SVD to 

identify and arrange the dimensions where an 

individual data point exhibits the highest variance. 

The third way of looking at SVD connects to the 

possibility of obtaining the best approximation of 

the original data points by using fewer dimensions. 

Discovering the most variance allows us to make the 

best approximation. Therefore, we can consider 

SVD as a technique for data reduction. To illustrate 

these concepts, examine the 2-dimensional data 

elements in Figure 1(a). The regression line that 

passes through them represents the most accurate 

approximation of the original data using a one-

dimensional object (a line). Because the line reduces 

the space between the original points and the line, it 

is the most accurate approximation [5]. 

To estimate the true data point, we can construct a 

perpendicular line connecting every point to the 

regression line, and then use the point where these 

lines join as the approximation statistic. This 

approach would aim to capture the maximum 

amount of the original deviation possible.  
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Figure 1(a)  

 

          
 

                                                                                    

Figure 1 (b) 

Figure 1(a) shows that the best-fit regression line 

integrates two-dimensional data into one. Figure 

1(b) shows that the second dimension causes the 

regression line to capture less variation in the 

original data. 

 

As we can see from figure 1(b) that displays a 

second regression line perpendicular to the first one. 

To the best of our knowledge, this line represents the 

original data set's second dimension. Because it 

pertains to a dimension that initially had less 

variance, it does not perform as well in 

approximating the original data. Using these 

regression lines, one can create a dataset devoid of 

correlation, revealing hidden patterns in the original 

data that might not be immediately apparent.  

 

The fundamental concepts of SVD are as follows: 

first, we take a high-dimensional, highly variable 

dataset and reduce it to a lower-dimensional space. 

This makes the original data's substructure more 

apparent and sorts it from most variable to least 

variable. By ignoring variation below a certain 

threshold, you can drastically compress your data 

using SVD for natural language processing 

applications while maintaining the essential 

associations of interest. A linear algebraic theorem, 

the foundation of SVD, asserts that we can divide a 

rectangular matrix A into three matrices: the 

transpose of an orthogonal matrix V, an orthogonal 

matrix U, and a diagonal matrix S. The theorem 

typically takes the following form: 

In this case, UTU = I, VTV = I. The columns U and 

V represent the orthonormal eigenvectors of AAT 

and ATA, respectively. S is a diagonal matrix that 

has the square roots of the singular values or 

eigenvalues from V or U arranged in decreasing 

order [6]. 

Amn = Umm Smn (Vnn) T 

Where UTU = I; VTV = I; the columns of U are 

orthonormal eigenvectors of AAT, the columns of V 

are orthonormal eigenvectors of ATA, and S is a 

diagonal matrix containing the square roots of 

Eigenvalues or singular values from U or V in 

descending order. The decomposition of the matrix 

into different matrices aids many image processing 

applications in analysing various features in the 

image independently at the same time with reduced 

noise. 

 

II. WORKING OF SVD 

The application's matrix data, a memory-stored 

image matrix, initiates the SVD operation. The 

householder function will take the data in an array 

and convert it from an ordinal matrix to a bidiagonal 

matrix. After converting the data into a bidiagonal 

matrix, the right-hand and left-hand accumulation 

functions utilize the bidiagonal matrix to compute 

the U and V matrices. Following this, we utilize the 

calculated data to compute the diagonal matrix from 

the bidiagonal matrix and subsequently determine 

the Eigenvalues from the data. 

 

III. METHODOLOGY: HW/SW PARTITIONING 

 

The hardware and software practitioner determines 

which part of the application should be implemented 

in hardware and which one in software, specifically 

identifying which function requires dedicated 

hardware. In this manner, when the processor 

executes certain functions, it directs them to the 

appropriate hardware, and after completing that 

function. 
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Figure 2. SVD Flowcharts 

 

 It proceeds to execute other functions using its own 

set of instructions [7]. The steps used for the 

HW/SW partitioning in this project are as follows: 

i. For a functional modular implementation, 

we have modified the code to include some essential 

functions. 

ii. In the Linux operating system, we use the 

"gprof" profiler tool to profile the C code and 

estimate the execution time of each function. 

iii. Based on each function's execution time, 

we can determine which function requires dedicated 

hardware based on the execution time of each 

function. 

 

A.Hardware-Software Co-Design 

 

 A primary objective of co-design is to expedite the 

time-to-market by minimizing the design work and 

expenses associated with the resulting products. As 

a result, the designer must take advantage of the 

diversity of the chosen architecture. The benefit of 

employing processors is multifaceted, as software 

offers greater flexibility and cost-effectiveness 

compared to raw hardware. The software's 

versatility allows for the inclusion of late design 

modifications and easier debugging. Moreover, the 

potential for software reuse through iterative 

portability to different processors decreases both the 

time required to bring the product to market and the 

design work [8]. Primarily, the utilization of 

processors is generally more cost-effective than the 

expenses incurred in developing ASICs due to the 

large-scale production of processors, resulting in a 

substantial price decrease. However, when the CPUs 

fail to achieve the required performance, the 

designer always employs hardware. This trade-off 

between the hardware and the software 

demonstrates the optimization part of the co-design 

challenge. Co-design is an example of an 

interdisciplinary activity that combines ideas and 

concepts from many fields, such as software 

engineering, hardware design, and system-level 

modelling. Figure 3 shows the overall co-design 

process flow. The first step in a co-design project is 

to define the system-level behavior specifications. 

The next step involves breaking down the system 

specification into smaller components, referred to as 

granules, akin to building blocks. During the cost-

estimating phase, we determine the grain values for 

several cost indicators. Projected expenses can 

comprise both software and hardware investments. 

Some examples of hardware cost metrics include 

runtime, power consumption, area on the chip, and 

testability. Metrics for software costs could include 

runtime data and program memory requirements.  

After calculating the cost, the next step is to divide 

the granules into hardware or software groups. We 

accomplish this by determining the optimal method 

for mapping the granules to the appropriate 

hardware or software and then implementing the 

groups of granules on the appropriate hardware and 

software [9]. The mapping necessitates extra 

interface components between ASICs and CPUs to 

implement the system on a heterogeneous target 

architecture. The specification refinement stage 

converts the system specification, which is 

independent of implementation, into specifications 

for both hardware and software components. Every 

specification inherently incorporates 

communication protocols that facilitate the transfer 

of data between CPUs and ASICs. The selected 

processor compiles the software specification and 

synthesizes the hardware based on the provided 

specification. The co-synthesis phase produces a 

collection of integrated circuits (ASICs) and 

assembler programs designed for the systems. 

Finally, the processors co-simulate the ASICs while 

they execute the assembler instructions they 

designed. After all performance restrictions and 

design costs have been considered, the co-design 

process comes to a halt. If not, the design 

optimization through repartitioning continues until 

an adequate system implementation is discovered. 
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Moreover, apart from the aforementioned issues, 

there are extra challenges in the domain of 

hardware-software co-design. The issue of co-

validation in system-level design involves several 

approaches to identify faults at various levels of 

abstraction 

 

Figure 3. The Complete Flow of Hardware-

Software Co-Design 

B. Profiling of SVD Algorithm 

We can design the various basic computing blocks 

of SVD using VHDL or the System C language and 

implement the processor on an FPGA [12]. Before 

implementation, hardware and software partitioning 

is required. At this moment, we are using profiling. 

Profiling enables us to ascertain the allocation of 

time and the invocation of corresponding functions 

by our software throughout its execution. Moreover, 

it can furnish us with insights into whether our 

software invokes a function at a frequency higher or 

lower than expected. This methodology may 

facilitate the identification of bugs that have 

previously been undetected. The profiler's reliance 

on data gathered during program execution makes it 

applicable to programs too large or intricate for 

source analysis [13]. Nevertheless, the execution of 

our program will impact the content observed in the 

profile data. Failure to use a certain feature of our 

application during the profiling process will result in 

no profile information for that feature. The GNU 

Gprof 2.15.92.02 is the specific Gprof profiler 

version used 

C.Hardware Software Co-Design: Platform-Based 

Design 

In this paper, we propose an idea for the 

development and implementation of an algorithm 

using a platform-based design, as shown in Figure 4. 

As depicted in Figure 4, an application developer 

will construct his application using the available 

library elements. We will use the API to compile the 

application code and then map the generated bit 

pattern into the FPGA device. Before 

implementation, hardware and software partitioning 

are required. For this purpose, we are currently using 

profiling. The Power PC will receive the software 

portion of the code, while the logic and block RAMs 

will receive the hardware portion of the code. The 

proposed prototype platform-based design aims to 

achieve all the aforementioned goals [11]. The block 

diagram for the hardware-software co-design system 

is shown below. 

 

Figure 4: Hardware Software Co-design System 

C. Performance Analysis 

The original SVD code is plain and has only one 

important function, "main." Modifying the code to 

include a few critical functions will create a 

functional modular implementation. Implementing 

this code directly on the hardware with a synthesis 

tool will result in a large chip or hardware area filled 

with numerous redundant hardware functions [14]. 

The most effective method for implementing a code 

or algorithm is to break it down into smaller 
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components, allowing for reusable functions 

without the need for repeated synthesis. 

IV. CONCLUSION & FUTURE PROSPECTIVE 

We have proposed a methodology for implementing 

the SVD function. This work provides 

recommendations for implementing the SVD 

function in both software and hardware to achieve 

desired results. The modified SVD code runs 

successfully on a Linux-based system. We have 

profiled the system for hardware-software 

partitioning. Based on the analysis results, we can 

identify certain computation-intensive functions that 

the application frequently requires. By selecting the 

appropriate hardware devices and implementing the 

software on a Power PC, we have designed the 

embedded system of SVD. System-based SVD code 

implementation has been done to generate dedicated 

hardware for tracking applications in smart camera 

systems. This is done so that it can be added as a 

library element for the smart camera system in the 

proposed platform-based design. The software-

hardware partitioning has been done by profiling. 

Based on performance analysis results, we identified 

functions that are computationally intensive and 

frequently required by the application. 

 

The application of object tracking is central to this 

research, which involves generating information 

about an object's motion from a sequence of images. 

This capability is vital in various fields, including 

motion capture, recognition from motion, 

surveillance, and targeting. Tracking, 

conceptualized as an inference problem, requires 

accurately estimating the internal state of a moving 

object based on sequential measurements. In 

scenarios where system dynamics and 

measurements are linear, standard solutions are 

applicable. However, even slight nonlinearities can 

complicate the inference process, making it 

challenging and sometimes infeasible. By 

leveraging the proposed prototype platform-based 

implementation of SVD in Smart Camera Systems, 

Embedded Vision Systems, Medical Imaging, and 

Data Compression areas, systems can achieve higher 

efficiency, reduced latency, and improved 

performance, particularly in applications where real-

time processing is essential. 
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