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Abstract— Structural Health Monitoring (SHM) of 

aircraft is one of the sophisticated technologies applied 

that ensures aircraft’s serviceability, safety, and 

reliability. Traditional SHM methods rely on physical 

models and expert judgement to identify and assess 

damage. The traditional methods can consume more 

time and can be expensive. They may be unable to 

diagnose and detect certain types of damage. Machine 

learning (ML) is a powerful tool that can be used to 

automate and improve the accuracy of SHM. ML has 

emerged as a promising approach for automating the 

diagnostic and prognostic process of structural internal 

and external damages in aircraft, leading to improved 

maintenance practices and enhanced operational safety. 

This paper depicts the overall findings and challenges 

involved in SHM, discusses various ML algorithms and 

methodologies employed in this field, and presents case 

studies highlighting the effectiveness of ML techniques in 

detecting and predicting structural defects. The paper 

also discusses the scientific application of machine 

learning processes to identify and rectify structural 

defects and challenges in any aircraft. We shall discuss 

the different types of ML algorithms that can be 

facilitated by SHM and some examples of how ML has 

been applied to manage and improve the health of 

aircraft. 

Index Terms— ML, SHM, Reliability, Fatigue, 

Predictive Maintenance 

 

1. INTRODUCTION 

Aircraft (SHM) has emerged to be of great importance 

due to the fact that it is directly related to aircraft 

structural health management. With the aircraft fleets 

becoming complicated and aged, advanced methods 

for detecting, diagnosing, and predicting structural 

damage are in increasing demand. Machine learning 

has been one of the most promising solutions to meet 

these challenges and increase effectiveness in aircraft 

SHM systems. [11],[15],[16]. Machine Learning 

algorithms offer automated analysis of large volumes 

of sensor data collected from aircraft structures, 

enabling the identification of subtle patterns and 

anomalies indicative of structural defects [12]. By 

leveraging ML techniques such as classification, 

regression, anomaly detection, and clustering, aircraft 

SHM systems can provide real-time assessments of 

structural integrity, facilitating proactive maintenance 

and improving operational safety [11]. 

The machine learning algorithms benefit the aircraft 

SHM process in many ways over traditional methods 

[15, 20]. ML models are designed for the learning and 

reinforcement of historical data based on variable 

conditions, and they continuously learn and improve 

their performance. These models can handle complex 

relationships between various parameters, allowing 

for more accurate damage detection and prediction 

[11][25]. Furthermore, ML techniques can 

complement human expertise by providing data-

driven insights and necessary recommendations [16]. 

Additionally, it presents real time case studies that 

demonstrate the effectiveness of ML techniques in 

detecting and predicting structural defects using 

algorithms [12]. Exploring the intersection of ML and 

SHM emphasizes this study to contribute to the overall 

improvement of aircraft structural life and deliver an 

optimized pathway for maintenance management 

[13],[18],[26]. 

Most of the structural components require special 

attention in SHM practices. Structural components 

that are susceptible to high loads, fatigue, and 

environmental factors may experience degradation or 

failure over time. To address this concern, the field of 
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SHM pertaining to critical aircraft structural 

components has developed [18]. The main 

requirement for aerospace structural health monitoring 

can thus be defined to originate from the critical need 

to confirm the integrity of aerospace structures [23]. 

Aircraft defects related to structures and its failures 

can lead to catastrophic consequences, jeopardizing 

passenger safety and causing significant financial 

losses. The integration of advanced SHM systems, 

including ML-based approaches, enables continuous 

monitoring and early detection of structural anomalies, 

contributing to improved maintenance strategies and 

enhanced operation. 

One area where ML has found application in aircraft 

SHM is vibration-based monitoring. Gildish et al. 

(2022) presented a study on helicopter bolt loosening 

monitoring using vibrations and ML [1]. By analyzing 

vibration data collected from sensors, ML models 

were trained to detect and classify bolt loosening 

conditions, enabling proactive maintenance and 

preventing potential failures. Gunawan et al. (2018) 

formulated a technique to enhance the operational 

reliability by the applying the F-statistic method, and 

also by blending the techniques in Linear Support 

Vector Machines [2]. The combination of ML 

techniques with vibration analysis enhances the 

accuracy and sensitivity of damage detection 

algorithms. 

Reliability analysis is another significant aspect of 

SHM systems. Etebu and Shafiee et al. (2018) 

conducted a reliability analysis of SHM systems, 

emphasizing the importance of accurate data 

acquisition and processing for reliable structural 

health assessment [3]. ML algorithms provide 

powerful tools to process large volumes of sensor data 

and extract relevant features for accurate damage 

identification. Real-time monitoring is essential for 

timely maintenance and mitigation of structural issues. 

Laflamme et al. (2021) explored the use of real-time 

ML techniques for high-rate structural health 

monitoring [4]. By employing online ML algorithms, 

the system continuously learns from incoming data, 

adapting to changing conditions and enabling prompt 

decision-making. In addition to vibration analysis, ML 

has been applied to other SHM techniques in 

aerospace applications. Sundaram et al. (2009) utilized 

density modeling and extreme value statistics to 

monitor aircraft engine health, enabling early 

detection of anomalies and maintenance planning [5]. 

Ignatovich et al. (2013) focused on fatigue damage and 

sensor development for Aircraft SHM, employing ML 

algorithms to analyze data and improve damage 

prognosis [6]. Furthermore, Karballaeezadeh and 

Mosavi et al. (2020) proposed smart SHM of flexible 

pavements using ML methods, demonstrated the 

capability for extending ML applications beyond 

aircraft structural life cycle management [7]. 

A variety of techniques and methods have been 

worked out for the challenges connected with 

structural health monitoring and damage 

identification. Several research papers have made 

significant contributions in this field, proposing 

innovative approaches and leveraging machine 

learning algorithms for enhanced monitoring 

capabilities. Gildish, Grebshtein, Aperstein, 

Krushinski, and Makienko et al (2022) introduced a 

new method for monitoring bolt loosening events 

occurring in rotorcrafts using vibrations and machine 

learning [1]. Etebu and Shafiee et.al. (2018) conducted 

reliability analysis of structural monitoring systems, 

highlighting the importance in assessing the 

effectiveness and dependability of these monitoring 

systems [3].  Hu and Dodson et.al. (2021) explored the 

utilization of real-time reinforcement learning 

techniques offering valuable insights into real-time 

data processing and active decision-making [4]. 

Kulkarni and Achenbach delve into the realm of 

fatigue damage prognosis and structural health 

monitoring, highlighting the significance of predictive 

techniques in assessing the remaining useful life of 

fatigue-loaded structures [5]. Ignatov et al. (2013) 

studied on cyclic stress damages and development of 

monitoring sensors in aircraft structural parts, with a 

specific emphasis on the challenges associated with 

aircraft maintenance and safety [6]. Karballaeezadeh 

and Mosavi et al. (2020) proposed an intelligent 

structural health monitoring techniques for inducing 

flexibility in tracking the health, and by utilizing 

machine learning methods to enhance monitoring and 

maintenance strategies [7]. Bos et al. (2015) provides 

a business perspective on fielding structural health 

monitoring systems on legacy military aircraft, 

addressing the economic 
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considerations and benefits of implementing such 

system [8]. These studies collectively contribute to the 

optimization of structural health monitoring and 

damage detection techniques, offering valuable 

insights and innovative solutions to enhance the 

safety, reliability, and maintenance of various 

engineering systems.  

The application of ML in SHM systems also presents 

challenges and considerations. Tanner et al. (2003) 

presented a systematic health monitoring process 

system for gas turbine aero-engines, emphasizing the 

data-fusion requirement with feature extraction, and 

fault diagnosis algorithms [9]. Le et al. (2022) 

proposed an ML approach for the auto-detection and 

testing of non-visible corrosion in aircraft structures 

using electro-magnetic frequency waves to overcome 

complex inspection challenges [10]. 

2. METHODOLOGY 

The methodology focusses mainly on several case 

studies conducted for structural health monitoring of 

aircraft using ML algorithms based on supervised and 

unsupervised learning. This mainly include the 

following steps and is represented in fig.1. 

 Literature Based Analysis: -This methodology was 

carried out so as to identify and study and understand 

the basic properties and application of ML algorithms 

which in turn produces some effects on the operational 

characteristics of the SHM parameters. This method 

merely helps to give a pure theoretical knowledge 

regarding the study.  

Comprehensive and Systematic approach: This mainly 

includes the overall and deeper study conducted 

regarding the subject along with the theoretical 

knowledge through continuous reference of research 

and seminar papers of various eminent scientists and 

researchers who has presented their work in ML 

application towards the monitoring of aerospace 

structures  

Thematic Grouping Approach: - In this methodology, 

case studies are categorized and grouped together 

based on the applications or subject areas they belong 

to. This approach allows for a systematic examination 

of different cases within specific themes or domains, 

facilitating a deeper understanding of the subject area 

by identifying common patterns, trends and insights 

across the grouped cases. Thematic analysis delivers a 

systematic framework to organize and analyze the 

real-time cases in order to provide substantial insights 

and conclusions, which are very well needed for active 

inferential decision-making within the specified 

application contexts. 

Technology Translation study: - In the context of ML 

applied in aerospace structural health monitoring, the 

technology transfer methodology would typically 

involve the following steps: 

1. Identification of the source domain: Determine the 

domain where ML techniques, in this case, aerospace 

structural health monitoring, have been successfully 

applied. 

 

Fig. 1 Methodology of study 
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2. Understanding the target domain: Gain a thorough 

understanding of the target field or industry where the 

ML techniques will be transferred or adapted. For 

example, if ML techniques used in aerospace 

structural health monitoring are being applied to the 

healthcare industry, it is crucial to understand the 

specific challenges and requirements of healthcare-

related applications. 

3. Knowledge transfer: Extract the relevant 

knowledge, techniques, algorithms, or models from 

the source domain (aerospace structural health 

monitoring) and adapt them to suit the specific needs 

and challenges of the target domain. 

A. Aircraft Structural Health Monitoring 

In general health monitoring process is a fast-

advancing technology that has the immense capability 

to change and transform traditional aircraft 

maintenance operations. SHM uses sensors to monitor 

the condition of an aircraft's structure and identify any 

damage or degradation before it causes a failure. This 

can help to prevent aviation accidents and save lives 

of the entire crew and passengers. 

A wide variety of devices are used, which include 

strain gauges, accelerometers, and ultrasonic sensors. 

Each is assigned to perform different functions based 

on the requirements and field of application. For 

example, strain gauges are often used to measure the 

stress levels in an aircraft's structure, while 

accelerometers are used to measure vibration. 

The data from the sensors is collected and processed 

by a computer. The computer uses algorithms to 

identify any changes in the data that could indicate 

damage. If damage is detected, the computer will alert 

the aircraft's crew so that they can take action to repair 

the damage. SHM has numerous benefits over the old 

practices followed in aircraft maintenance. Firstly, 

SHM can detect damage much earlier than traditional 

methods. This means that repairs can be made before 

the damage causes a failure. Secondly, SHM can 

identify the location of the damage, which can help to 

speed up the repair process. Thirdly, it is applied to 

diagnose and track the aircraft structural health of an 

aircraft's structure for its service operational period, 

that helps in identification of trends that could indicate 

critical problems. When technology continues its 

progression, SHM is likely to become an essential part 

of aircraft safety. 

The technological development of machine learning is 

a significant factor in improving the structural 

reliability and safety of aircraft through broader 

means, especially with the advancements in artificial 

intelligence [3]. 

B. ML in Aircraft SHM  

The aircraft structural components are equipped with 

sensors especially with Civil Aircraft structures. 

Applying the integration of active and passive health 

monitoring techniques rely upon on SMART induced 

Layer technology, which was conducted on a fuselage 

skin panel and surface of wing to monitor the 

condition and diagnosing the critical structural defects 

using the ML algorithm [24].  Let’s study some more 

instances where ML is widely applied. 

Helicopter Bolt Loosening Monitoring: - For IAF AH 

-64 Helicopters there was an issue detected on bolt 

loosening in the body of the rotorcraft [1]. Bolt 

loosening has been highlighted as a possible concern 

to flight safety requiring ongoing visual inspection as 

well as higher maintenance and repair costs. 

Automatic fault detection for loosening in helicopter 

bolts through vibration measurement is challenging 

and difficult, as the number of such events is small, 

and the high-energy vibration due to rotating parts 

hides the soft signs given out by the loosening bolts. 

The evaluation of collected hums vibration-related 

data from IAF helicopter fleets was run through a 

newly developed loosening monitoring technique. The 

small number of defective cases were addressed with 

ML-based unsupervised anomaly detection. With the 

application of harmonic filtering to differentiate the 

intense vibrations generated by rotating components 

from the lower-energy vibrations of the structure, the 

predictive power of health characteristics was greatly 

increased. The 

experimental results of loosening monitoring 

techniques convey that the process can be applied 

further to other systems as well, which involve health 

monitoring.  

Damage Classification: This method is mainly used 

for identifying and categorizing structural defects and 

damages through certain guided signals are produced 

by series of piezoelectric sensor network, as well as 
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NLPCA (Non-Linear Principal Component Analysis) 

and structured machine learning algorithms. This is 

depicted in fig.2. As per [11] for the evaluation of this 

methodology, two structures were built, which are 

made of a multilayered sandwich CFRP and a 

composite plate. By applying suitable mechanical 

loads, the damages were purposefully generated on 

these structures, which will simulate damage 

phenomena like skin delamination and cracking 

physically [11]. 

 

Fig. 2 Damage classification Methodology [11]. 

Crack detection in Aircraft engines: - For crack 

detection in aircraft gas turbine engine the CNN is 

employed widely used as an ML tool [12]. For 

effective maintenance of an aircraft gas turbine 

engine, it is important to check for structural cracks 

and irregular variations, which can be observed 

through thorough inspection. The deep learning-

powered image-processed inspection reports provide 

sufficient information, which will really help in the 

assessment of the optimization of repair costs, and in 

turn, they minimize the complexity of maintenance 

monitoring through the increased level of accuracy 

produced by ML classifiers.  

The Structural Monitoring mainly involves 

implementing strategies and techniques on enhancing 

reliability of structures to ensure accurate and 

consistent detection, diagnosis, and prognosis of 

structural health issues. One key aspect of reliability 

enhancement is the selection and deployment of 

appropriate sensor technologies. The choice of sensors 

plays a crucial role in accurately capturing and 

monitoring structural behavior. Advanced sensors, 

such as strain gauges, accelerometers, and acoustic 

emission sensors, have been widely used in SHM 

applications [1][4][7]. These sensors offer high 

sensitivity, reliability, and the ability to capture real-

time data, enabling effective structural health 

monitoring. 

Data analysis methods are another vital component in 

reliability enhancement. Advanced machine learning 

tools have been employed to extract meaningful 

information from the collected data 

[2],[5],[9],[12],[14]. These methods enable the 

identification of damage patterns, the detection of 

anomalies, and the prediction of structural health 

degradation. System optimization is also crucial for 

enhancing reliability in SHM. This includes 

developing robust algorithms, calibration procedures, 

and maintenance protocols to ensure accurate and 

consistent performance of the monitoring system 

[3][6][10][13]. 
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Fig. 3 Basic framework for reliability analysis using SHM. 

 

Reliability analysis tools and methods are utilized to 

estimate and quantify the parameters of performance 

and dependability pertained to SHM system 

[8],[11],[15]. These techniques involve assessing the 

system's functional capability and its total reliability in 

detecting and diagnosing structural health issues. 

Reliability analysis provides insights into system 

weaknesses, allowing for necessary improvements and 

optimizations. The framework is as shown in fig. 5. 

Integration with structural integrity assessment 

methods further enhances the reliability of SHM 

systems. By combining SHM data with structural 

analysis techniques, such as finite element analysis or 

probabilistic methods, a comprehensive understanding 

of structural behavior and health can be achieved 

[16],[19]. This integrated approach enables accurate 

structural health assessment, prognosis, and decision-

making regarding maintenance and repair actions. 

A continuous research and development efforts focus 

on standardization and certification procedures for 

SHM systems [17],[20],[21]. Standardization ensures 

consistent practices, reliable performance, and 

interoperability of SHM systems across different 

applications and industries. Certification procedures 

validate the reliability and performance of SHM 

systems, ensuring they meet specific quality and safety 

requirements. 

Fig.4 On-line Structural Health Monitoring of Aircraft 
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On-line Structural Monitoring: - The potential 

structural defects and damages on the fuselage panels 

are identified through strain field lines and through 

signals which are generated by a network of 

monitoring transducers [17]. The basic process flow is 

represented in fig. 4. 

Fatigue and corrosion detection: These are some of the 

major critical detections concerned with aircraft 

structural and powerplant health monitoring that meet 

the safety standards of the structures. Fatigue damage 

and corrosion pose significant risks to structural 

components. In the field of fatigue detection, research 

has highlighted the importance of monitoring the 

structural health and prognosis of damages. Kulkarni 

and Achenbach [5] emphasize the significance of 

SHM in fatigue. Advanced sensor conceptualized 

technologies, like strain gauges, acoustic emission and 

sensors have been used to measure structural 

responses and identify phenomena due to fatigue 

[5],[6]. Such sensors record in real-time strain 

measurements, vibration, and acoustic emissions 

leading to the identification of locations and 

monitoring of fatigue crack propagations. Machine 

learning algorithms combined with the techniques 

applied for statistical analysis have been used to parse 

the valuable data from sensor data in order to predict 

fatigue-related damage [7],[10],[11]. 

Corrosion detection is equally important in structural 

health monitoring. Currently, there are the most 

commonly used non-destructive testing (NDT) 

methods, which include visual inspection, ultrasonic 

and electromagnetic testing, and eddy current-based 

testing, which are used for corrosion detection [8]. The 

techniques mentioned in fig.5 allows the evaluation of 

corrosion-related damage, such as material thinning, 

pitting, or cracking, without causing further harm to 

the structure. Additionally, the development of 

corrosion sensors utilizing electrochemical techniques 

has shown promising results [10],[20]. 

To enhance the reliability of fatigue and corrosion 

detection, researchers have integrated advanced 

sensing technologies with data analysis methods. Deep 

learning-based image and signal-based processing 

techniques and supervised ML algorithms have been 

utilized for the extraction of relevant information from 

sensor data and to identify fatigue and corrosion 

patterns [11],[22]. Integration with structural analysis 

techniques, such as finite element analysis and 

probabilistic methods, aids in the identification and 

quantification of fatigue and corrosion effects [8]. 

Furthermore, specific sensor technologies designed 

for fatigue and corrosion detection have been 

developed. These sensors provide real-time 

monitoring of parameters directly related to fatigue 

and corrosion, offering targeted and accurate detection 

capabilities [21]. By combining advanced sensing 

technologies, data analysis methods, and integration 

with structural analysis techniques, SHM systems can 

effectively detect and assess fatigue and corrosion-

related damage, enabling proactive maintenance and 

repair actions to affirm the longevity and safety 

standards of aerospace structures. 

 

Fig.5 Corrosion detection process through machine learning 
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3. RESULTS AND DISCUSSION  

The studies performed in this work have demonstrated 

the integration of machine learning in various aspects 

of SHM, ranging from detection and diagnosis to 

predictive maintenance. Studies have explored various 

applications of machine learning, including bolt 

loosening monitoring in helicopters, improving the 

reliability of existing methods, and real-time 

monitoring in concern with diagnostics and detection 

of damages. Advanced algorithms of ML can be 

widely applied to fatigue damage prognosis, hidden 

corrosion detection, damage classification, and smart 

monitoring of flexible pavements. The development of 

real-time, high-rate monitoring systems and the 

utilization of cumulative absolute velocity features 

have improved the accuracy and efficiency of SHM 

processes. Moreover, the integration of machine 

learning with diverse sensor technologies, including 

acoustic emission sensors and electromagnetic testing, 

has expanded the capabilities of SHM for different 

applications. 

The utilization of machine learning methods has also 

led to significant improvements in the reliability and 

effectiveness of SHM systems. By employing linear 

support vector machines and hyper-solution SVM 

classification frameworks, the performance of existing 

methods has been enhanced, ensuring more accurate 

and robust results. Additionally, machine learning has 

enabled the development of predictive models for 

structural health, enabling proactive maintenance 

strategies and minimizing potential risks. The 

integration of SHM systems in legacy aircraft and gas 

turbine engines has brought about significant benefits, 

including enhanced safety, optimized maintenance, 

and extended lifespan of critical components.  

According to the precedence research report the 

fruitful impact created by ML will increase the 

Aviation market for the next decades as showed in 

fig.6.[26]. 

 

Fig. 6 The global artificial intelligence in aviation market size [26]. 

4.  CONCLUSION 

The challenges and opportunities still exist in the field 

of SHM and machine learning. The effective handling 

and analysis of large-scale, high-dimensional data 

remain crucial for accurate modeling and decision-

making. The development of advanced algorithms and 

techniques, along with the exploration of emerging 

technologies, will further enhance the capabilities of 

SHM systems. The importance of SHM in aerospace 

industries and the exploration of emerging 

technologies and high-dimensional data sources have 

been emphasized. 

 Overall, these advancements highlight the potential of 

machine learning to improve the efficiency, reliability, 

and effectiveness of SHM systems, contributing to the 

overall safety and maintenance of structures. 
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