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Abstract— The influence of Diffusion – Thermo (Dufour) 

and Non-Darcian effect on Three - Component Rayleigh 

Benards (TCRB) convection in a two-layered system, has 

investigated analytically by using the Regular Perturbation 

technique. The upper and lower boundaries of the 

composite system are rigid and rigid-free with surface 

tension respectively, these boundaries are insulating to 

both heat and mass. At the interface of the composite 

system, the heat and heat flux, normal velocity, normal and 

shear stress, and mass and mass flux, are assumed to be 

continuous. The Non-Darcy term and Dufour term are 

employed in the momentum and energy equation 

respectively. The impact of various physical parameters on 

TCRB convection is investigated in a detailed manner and 

results are portrayed graphically. 

 

Index Terms- Rayleigh Benard Convection, Dufour effect, 

Two – Component Convection, Composite layer. 

 

I. INTRODUCTION 

 

Variations in concentration cause the Dufour 

(Diffusion Thermo) effect, which is the flow of 

energy. It is the combined impact of irreversible 

processes that causes energy to flow due to a 

concentration gradient. The survey of literature 

focuses primarily on the various classes of techniques 

related to our field of study, which is the effects of 

Dufour and non-Darcian effects on three-component 

Rayleigh Benard (TCRB) convection in a two-layered 

system with rigid-free boundaries. Research has been 

done on the issues of triple diffusive/three-component 

convection in  fluids  by Pearlstein et al. [7] and Lopez 

et al. [1]. Rudraiah and Vortmeyer [9] used a 

gravitationally stable density gradient to examine the 

linear stability of the system. They did this by 

considering the porous medium. Poulikakos [8] stated 

that adding a third diffusive component with low 

diffusivity can significantly alter the character of the 

convective instabilities in the system. The 

compound/composite layer has limited impact on 

triple diffusional convection. A more advanced 

technique to investigate triple diffusive (three-

component) Marangoni convection in a two-

layer/composite layer has been devised by Sumithra R 

[14]. It obtains an algebraic equation for the 

Marangoni number, solves the resulting eigenvalue 

issue exactly, and thoroughly examines the effects of 

changing various physical parameters on it. 

Manjunatha [4] presented a different approach that 

examines the impact of temperature profiles on triple 

diffusive convection. On the other hand, Mokhtar et al. 

[2] looked at how internal heat generation affects a 

two-layer system or a composite system with 

Marangoni effects. They use the well-known method 

of normal mode analysis to convert the system of 

PDEs into a system of ODEs. The regular perturbation 

methodology effectively solves the ODE system, 

which is employed to handle other Rayleigh Benard 

(RB) convection-related issues. The influences of non-

Darcian effects and thermal diffusion (Soret) effects 

on Rayleigh Benard (RB) convection in a two-layer 
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composite layer were investigated in a conceptually 

equivalent study using a similar approach proposed by 

Sumithra et al. [13]. We assume that both borders of 

this system are rigid. The regular perturbation 

approach, a widely used method, solves Rayleigh 

Benard's (RB) convection with the Darcy Brinkmann 

model. The Rayleigh number can be derived 

algebraically by solving the linked equations. 

Rayleigh Benard (RB) convection has been studied by 

Park et al. [4] with the assumption that the heat flux is 

constant at the boundary. 

II. MATHEMATICAL FORMULATION 

The physical model under the consideration of a 

composite layer system with a horizontal two–

component fluid-saturated, incompressible, isotropic, 

and sparsely packed porous layer is of thickness 𝑑𝛼𝑟 

and a fluid layer of thickness 𝑑𝛼 . The boundaries of 

the composite layer system are considered rigid-free; 

these boundaries act like heat and mass insulators 

along with maintained, distinct concentration and 

temperature.   

 

The origin point of the Cartesian coordinate system is 

taken exactly at the intersection of the porous and fluid 

layer along with the direction of the z-axis vertically 

upwards.  In addition to that, for the effect of density 

variation, the Boussinesq approximation is included.  

Under these following assumptions, the governing 

equations are, the continuity, momentum, temperature, 

concentration, and state equations as follows.  

For the region – 1 (Fluid layer) 

∇. 𝑞𝛼 ⃗⃗ ⃗⃗  ⃗ = 0        

(1) 

𝜌0 [
𝜕𝑞𝛼 ⃗⃗ ⃗⃗  ⃗

𝜕𝑡𝛼
+ (𝑞𝛼  ⃗⃗ ⃗⃗  ⃗. ∇)𝑞𝛼  ⃗⃗ ⃗⃗  ⃗]

= −∇𝑃𝛼 + 𝜇𝛼 ∇2𝑞𝛼 ⃗⃗ ⃗⃗  ⃗

−  𝜌𝛼 𝑔𝛼 𝑘 ̂ 

       

(2) 

𝜕𝑇𝛼

𝜕𝑡𝛼
+ (𝑞𝛼 ⃗⃗ ⃗⃗  ⃗. ∇)𝑇𝛼 = 𝜅1 ∇

2𝑇𝛼 + 𝜅2 𝛻
2𝐶𝛼 

       

(3) 

𝜕𝐶𝛼

𝜕𝑡𝛼
+ (𝑞𝛼  ⃗⃗ ⃗⃗  ⃗. 𝛻)𝐶𝛼 = 𝜅3 

𝛻2 𝐶𝛼 
       

(4) 

𝜕𝐶𝛽

𝜕𝑡𝛼
+ (𝑞𝛼  ⃗⃗ ⃗⃗  ⃗. 𝛻)𝐶𝛽 = 𝜅 4

𝛻2 𝐶𝛽 
       

(5) 

ρα = ρ0 [ 1 −  α1 (Tα − Ti) + αCα
 (Cα

− Cαi )] + αCβ
 (Cβ

− Cβi )] 

       

(6) 

 

For the region – 2 (Porous layer) 

𝛻𝛼𝑟 . 𝑞 ⃗⃗⃗  𝛼𝑟 = 0          

(7) 

[
𝜌0

𝜙
]
𝜕𝑞 ⃗⃗⃗  𝛼𝑟

𝜕𝑡𝛼𝑟

= −𝛻𝛼𝑟𝑝𝛼𝑟

−
𝜇𝛼𝑟

𝐾𝑟

 𝑞⃗⃗  𝛼𝑟 +  𝜇𝛼𝑟∇
2 𝑞⃗⃗  𝛼𝑟

− 𝜌𝛼𝑟  𝑔𝛼𝑟 𝑘̂ 

       

(8) 

𝐴 [
𝜕𝑇𝛼𝑟

𝜕𝑡𝑟
] + (𝑞 ⃗⃗⃗  𝛼𝑟 .∇𝛼𝑟)𝑇𝛼𝑟 

= 𝜅1𝑟𝛻𝛼𝑟 
2 𝑇𝛼𝑟

+ 𝜅2𝑟 𝛻𝛼
2𝐶𝛼𝑟 

       

(9) 

𝜙 [
𝜕𝐶𝛼𝑟

𝜕𝑡𝛼𝑟

] + (𝑞 ⃗⃗⃗  𝛼𝑟 .∇𝛼𝑟)𝐶𝛼𝑟 = 𝜅3𝑟  
𝛻𝛼𝑟 

2 𝐶𝛼𝑟 

  

     

(10) 

𝜙 [
𝜕𝐶𝛽𝑟

𝜕𝑡𝛼𝑟

] + (𝑞 ⃗⃗⃗  𝛼𝑟 .∇𝛼𝑟)𝐶𝛽𝑟 = 𝜅4𝑟  
𝛻𝛼𝑟 

2 𝐶𝛽𝑟 
     

(11) 

ρ𝛼r = ρ0 [ 1 −  α1r (T𝛼r − Tri)
+ αC𝛼r

 (C𝛼r − C𝛼ri )]

+ αCβr
 (Cβr − Cβri )] 

   

(12) 

 

Where, 𝑞𝛼 ⃗⃗ ⃗⃗  ⃗ = (𝑢𝛼1, 𝑣𝛼1, 𝑤𝛼1)  is velocity, 𝑡𝛼 is the 

time, 𝜌0 is the referring density of fluid, 𝜇α is the fluid 

viscosity, 𝑃α is pressure, 𝜌α is the density of fluid, 𝑔α 

is the gravitation, 𝑇α is the temperature, 𝜅1 is the 

thermal diffusivity, 𝜅3& 𝜅4 are the solutal 

diffusivities, 𝜅2 is the Dufour coefficient, 𝐶α is the 

concentration, 𝛼1 is the coefficient of thermal 

expansion, 𝛼𝐶α
& 𝛼𝐶𝛽

 are the solutal analogs of 𝛼1 , 

𝜙, 𝜇αr & 𝐾𝑟 are the porosity, effective viscosity and 

permeability of the porous medium, 𝐴 is the heat 

capacities ratio. Subscript "𝑟" refers to physical 

quantities which are defined in the porous medium.  

III. LINEAR STABILITY THEORY 

The fluid layer is stable in the composite system by 

assuming the primary state is inactive, which is 

quiescent.  Therefore there is no fluid motion, so, 

setting the velocity vector 𝑞 ⃗⃗⃗   is zero, where, the 
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conduction will happen only by transforming mass and 

heat assuming the following assumptions, for fluid 

layer 𝑞α ⃗⃗⃗⃗  ⃗ = [𝑢α1, 𝑣α1, 𝑤α1] = 0  

and [𝑇α, 𝐶α, 𝐶α  𝑃α,   𝜌α] =

[𝑇α𝑏(𝑧),   𝐶α𝑏(𝑧), 𝐶β𝑏(𝑧) 𝑃α𝑏(𝑧), 𝜌α𝑏 (𝑧)] for the 

porous layer, 𝑞 ⃗⃗⃗  α𝑟 = 0 and [𝑇𝛼𝑟 ,  𝐶𝛼𝑟 , 𝐶𝛽𝑟 , 𝑃𝛼𝑟 , 𝜌𝛼𝑟] =

[𝑇𝛼𝑟𝑏 ,  𝐶𝛼𝑟𝑏(𝑧𝑟), 𝐶𝛽𝑟𝑏(𝑧𝑟), 𝑃𝛼𝑟𝑏(𝑧𝑟),  𝜌𝛼𝑟𝑏(𝑧𝑟)] 

finally, we get the temperature and the concentration 

distributions for fluid and porous layers, after 

substituting these basic states to the equations (1) to 

(10). 

Temperature distribution and concentration 

distribution in the fluid layer (0 ≤ 𝑧 ≤ 𝑑𝛼)  

𝑇𝛼𝑏(𝑧) =
(𝑇 ∞

− 𝑇𝑖) 𝑧

𝑑𝛼

+ 𝑇𝑖  
(13) 

𝐶𝛼𝑏(𝑧) =
(𝐶𝛼∞ − 𝐶𝛼𝑖) 𝑧

𝑑𝛼

+ 𝐶𝛼𝑖 

(14) 

𝐶𝛽𝑏(𝑧) =
(𝐶𝛽∞ − 𝐶𝛽𝑖) 𝑧

𝑑𝛼

+ 𝐶𝛽𝑖 

                                                                

(15) 

Temperature distribution and concentration 

distribution in the porous layer (−𝑑𝛼𝑟 ≤ 𝑧𝑟 ≤ 0)  

𝑇𝛼𝑟𝑏(𝑧𝑟) =
(𝑇𝑖 − 𝑇∞𝑟)𝑧𝑟

𝑑𝛼𝑟

+ 𝑇𝑖  

(16) 

𝐶𝛼𝑟𝑏(𝑧𝑟) =
(𝐶𝛼𝑖 − 𝐶𝛼𝑟)𝑧𝑟

𝑑𝛼r

+ 𝐶𝛼𝑖  

(17) 

 

𝐶𝛽𝑟𝑏(𝑧𝑟) =
(𝐶𝛽𝑖 − 𝐶𝛽𝑟)𝑧𝑟

𝑑𝛼r

+ 𝐶𝛽𝑖 

                                                                

(18) 

Temperature distribution and concentration 

distribution at the interface. 

𝑇𝑖

=

[
 
 
 
 
𝑘1 𝑑𝛼𝑟 𝑇∞ + 𝑑𝛼  𝑘1𝑟 𝑇∞𝑟

𝑘1 𝑑𝛼𝑟 + 𝑑𝛼 𝑘1𝑟

+
𝑑𝛼𝑟𝑘2 𝐶𝛼∞ + 𝑘2𝑟 𝑑𝛼 𝐶𝛼∞

𝑘1 𝑑𝛼𝑟 + 𝑑𝛼 𝑘1𝑟

−𝐶𝛼𝑖 (
𝑑𝛼 𝑘2𝑟 + 𝑑𝛼𝑟  𝑘2

𝑘1 𝑑𝛼𝑟 + 𝑑𝛼 𝑘1𝑟

)
]
 
 
 
 

 

(19

) 

𝐶𝛼𝑖 =
𝑘3 𝐶𝛼∞𝑑𝛼𝑟 + 𝑑𝛼  𝑘3𝑟𝐶𝛼𝑟

𝑑𝛼  𝑘3𝑟 + 𝑑𝛼𝑟 𝑘3

 
(20

) 

𝐶𝛽𝑖 =
𝑘4 𝐶𝛽∞𝑑𝛼𝑟 + 𝑑𝛼 𝑘4𝑟𝐶𝛽𝑟

𝑑𝛼 𝑘4𝑟 + 𝑑𝛼𝑟 𝑘4

 
(21

) 

Now established the perturbed quantities to analyze 

the linear stability of the primary state solution. 

For fluid layer 

[𝑞𝛼⃗⃗⃗⃗ , 𝑃𝛼 , 𝐶𝛼 , 𝐶𝛽 , 𝑇𝛼 , 𝜌𝛼 ]

= {
[ 0,  𝑃𝛼𝑏(𝑧), 𝐶𝛼𝑏(𝑧), 𝐶𝛽𝑏(𝑧)𝑇𝛼𝑏(𝑧), 𝜌𝛼𝑏(𝑧)]

+ [𝑞𝛼⃗⃗⃗⃗ , 𝑃𝛼
′ , 𝑆𝛼

′ , 𝑆𝛽
′  𝜃𝛼

′ , 𝜌𝛼
′  ]

} 

(22

) 

 

For porous layer 

[𝑞𝛼𝑟⃗⃗ ⃗⃗ ⃗⃗  , 𝑃𝛼𝑟 , 𝐶𝛼𝑟 , 𝐶𝛽𝑟 , 𝑇𝛼𝑟 , 𝜌𝛼𝑟] =

{
[0, 𝑃𝛼𝑟𝑏(𝑧𝑟), 𝐶𝛼𝑟𝑏(𝑧𝑟), 𝐶𝛽𝑟𝑏(𝑧𝑟), 𝑇𝛼𝑟𝑏(𝑧𝑟), 𝜌𝛼𝑟𝑏(𝑧𝑟)]

+ [𝑞𝛼𝑟 ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑃𝛼𝑟
′ , 𝑆𝛼𝑟

′ , 𝑆𝛽𝑟
′  𝜃𝛼𝑟

′ , 𝜌𝛼𝑟
′  ]

} 

(23) 

Substitute equations (22) and (23) into equations 

(1) − (12) after that in order to vanish the pressure 

term in the perturbed momentum equation by applying 

curl twice.  The resulting perturbed equations are 

linearized for (1) − (12), introduce non-dimensional 

quantities, see (Sumithra[]) then Applying normal 

mode expansions to the perturbed non-

dimensionalised quantities using  

[𝑤𝛼(𝑧), 𝜃𝛼(𝑧), 𝑠𝛼(𝑧), 𝑠𝛽(𝑧)]
𝑇

= [𝑊𝛼( 𝑧), Θ𝛼(𝑧),

𝑆𝛼( 𝑧), 𝑆𝛽( 𝑧)]
𝑇
 𝑓𝛼(𝑥, 𝑦, 𝑡)  

[𝑤𝛼𝑟 (𝑧𝑟), 𝜃𝛼𝑟( 𝑧𝑟), 𝑠𝛼𝑟( 𝑧𝑟), 𝑠𝛽𝑟( 𝑧𝑟)]
𝑇

=

[𝑊𝛼𝑟(𝑧𝑟), Θ𝛼r(𝑧𝑟), 𝑆𝛼𝑟(𝑧𝑟), 𝑆𝛽𝑟(𝑧𝑟)]
𝑇
𝑓𝛼𝑟 (𝑥𝑟 , 𝑦𝑟 , 𝑡𝑟)  

Where, 𝑓𝛼 = 𝑓0 𝑒
𝑖(𝑙𝑥+𝑚𝑦)−𝑛𝑡 , 𝑓𝛼𝑟 =

𝑓0 𝑒
𝑖(𝑙 𝑥𝑟+𝑚 𝑦𝑟)−𝑛 𝑡𝑟 

Which returns the following ordinary differential 

equations,  

For region – 1(Fluid layer) 

[(𝐷2 − 𝑎2) + 
𝑛

𝑝𝑟

] (𝐷2 − 𝑎2) 𝑊𝛼

= 𝑅𝑎2𝜃 − 𝑅𝛼𝑎2𝑆𝛼

− 𝑅𝛽 𝑎
2 𝑆𝛽 

 

(24) 

(𝐷2 − 𝑎2 + 𝑛) 𝛩𝛼 + 𝐷𝛼(𝐷2 − 𝑎2) 𝑆𝛼

+ 𝑊𝛼 = 0 

(25) 

  

[𝜏𝛼(𝐷2 − 𝑎2) + 𝑛] 𝑆𝛼 + 𝑊𝛼 = 0 

 

(26) 

[𝜏𝛽(𝐷2 − 𝑎2) + 𝑛] 𝑆𝛽 + 𝑊𝛼 = 0 (27) 

For region −2 (porous layer) 
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[

 𝜇̂𝛽2(𝐷𝑟
2 − 𝑎𝑟

2)

+
𝑛𝑟 𝛽2

𝑝𝑟𝑟

− 1
] (𝐷𝑟

2 − 𝑎𝑟
2)𝑊𝛼𝑟

= 𝑅𝑟𝑎𝑟
2𝜃𝛼𝑟

− 𝑅𝛼𝑟𝑎𝑟
2𝑆𝛼𝑟

− 𝑅𝛽𝑟𝑎𝑟
2𝑆𝛽𝑟  

 

(28) 

(𝐷𝑟
2 − 𝑎𝑟

2 + 𝑛𝑟 𝐴)𝛩𝛼𝑟 + 𝑊𝛼𝑟

+ 𝐷𝛽(𝐷𝑟
2 − 𝑎𝑟

2)𝑆𝛼𝑟 = 0 

 

(29) 

[𝜏𝛼𝑟(𝐷𝑟
2 − 𝑎𝑟

2) + 𝜙 𝑛𝑟 ] 𝑆𝛼𝑟 + 𝑊𝛼𝑟 = 0
  

(30) 

[𝜏𝛽𝑟(𝐷𝑟
2 − 𝑎𝑟

2) + 𝜙 𝑛𝑟 ] 𝑆𝛽𝑟 + 𝑊𝛼𝑟 = 0  (31) 

 

Where, for the fluid layer,  𝜇̂ =
𝜇𝛼𝑟

𝜇 𝛼 
 is the viscosity 

ratio 𝐷 =
𝑑

𝑑𝑧
  is the differential operator with respect to 

𝑧,  𝑝𝑟 =
𝜈

𝜅1
   is the Prandtl number,  𝜏𝛼 =

𝑘3

𝜅1
  is the ratio 

of thermal diffusivity to solute1 diffusivity, 𝜏𝛽 =
𝑘4

𝜅1
  is 

the ratio of thermal diffusivity to solute 2 diffusivity 

𝜈 =
𝜇𝛼

𝜌0
  is the kinematic viscosity, 𝑅 =  

𝑔 𝛼1(𝑇𝑖−𝑇∞) 𝑑𝛼
3  

𝜈 𝜅𝛼 
 

is the Rayleigh number, 𝑅𝛼 =  
𝑔𝛼𝛼𝐶𝛼(𝐶𝛼𝑖−𝐶𝛼∞) 𝑑𝛼

3  

𝜈 𝜅1 
 is 

the solute1 Rayleigh number, 𝑅𝛽 =

 
𝑔𝛼𝛼𝐶𝛽

(𝐶𝛽𝑖−𝐶𝛽∞) 𝑑𝛼
3  

𝜈 𝜅1
 is the solute2 Rayleigh number and 

𝐷𝛼 =
𝑘2 (𝐶𝛼𝑖−𝐶𝛼∞)

𝜅1 (𝑇𝑖−𝑇∞)
 is Dufour coefficient.  Similarly for 

the porous layer the physical quantities are defined 

with the subscripts "𝑟". For a specific set 

of numerous parameters, 

the principle of change instability is set up to 

be precisely authentic for fluid or porous 

layer problems separately and it's far assumed that 

the precept holds for this situation also, so, fixed  𝑛 =
 𝑛𝑟 = 0, equations (24) − (31) becomes. 

For region – 1 (Fluid layer) 

( 𝐷2 − 𝑎2 )2 𝑊𝛼 = 𝑅𝑎2𝜃 − 𝑅𝛼𝑎2𝑆𝛼

− 𝑅𝛽 𝑎
2 𝑆𝛽 

 

(32) 

( 𝐷2 − 𝑎2 ) 𝛩𝛼 + 𝑊𝛼 + 𝐷𝛼( 𝐷2 − 𝑎2 )𝑆𝛼

= 0 

(33) 

  

[𝜏𝛼( 𝐷2 − 𝑎2 )]𝑆𝛼 + 𝑊𝛼 = 0 

 

(34) 

[𝜏𝛽 ( 𝐷2 − 𝑎2 )]𝑆𝛽 + 𝑊𝛼 = 0              

 

(35) 

For region −2 (porous layer) 

 

[ 𝜇̂𝛽2(𝐷𝑟
2 − 𝑎𝑟

2) − 1](𝐷𝑟
2 − 𝑎𝑟

2)𝑊𝛼𝑟 = 𝑅𝑟𝑎𝑟
2𝜃𝛼𝑟 −

𝑅𝛼𝑟𝑎𝑟
2𝑆𝛼𝑟 − 𝑅𝛽𝑎𝑟

2𝑆𝛽𝑟    (36) 

(𝐷𝑟
2 − 𝑎𝑟

2)𝛩𝛼𝑟 + 𝑊𝛼𝑟 + 𝐷𝛽(𝐷𝑟
2 − 𝑎𝑟

2)𝑆𝛼𝑟 = 0 (37) 

[𝜏𝛼𝑟(𝐷𝑟
2 − 𝑎𝑟

2)] 𝑆𝛼𝑟 + 𝑊𝛼𝑟 = 0 (38) 

[𝜏𝛽𝑟(𝐷𝑟
2 − 𝑎𝑟

2)] 𝑆𝛽𝑟 + 𝑊𝑟 = 0 (39) 

Finally we obtain the system of ordinary differential 

equations of order 20, so we need 20 boundary 

conditions, such boundary conditions are mentioned 

below.  

IV. BOUNDARY CONDITIONS 

At the upper boundary, 𝑧 = 1 

𝑊𝛼( 𝑧 ) = 0, 𝐷2𝑊𝛼( 𝑧 ) = 0, 𝐷Θ𝛼 ( 𝑧 ) = 0, 

𝐷𝑆𝛼( 𝑧 ) = 0, 𝐷𝑆𝛽( 𝑧 ) = 0 

At the interface, 𝑧 = 0 and 𝑧𝑟 = 1 

𝑇 ̂𝑊𝛼(𝑧) =  𝑊𝛼𝑟(𝑧𝑟),  𝑇 ̂ 𝑑 ̂𝐷𝑊𝛼(𝑧) =

 𝐷𝑟𝑊𝛼𝑟(𝑧𝑟), Θ𝛼(𝑧) =  𝑇 ̂Θ𝛼𝑟(𝑧𝑟) 

𝐷 Θ𝛼(𝑧) =  𝐷𝑟 Θ𝛼𝑟(𝑧𝑟), 𝑆𝛼(𝑧) =

 𝑆𝛼̂  𝑆𝛼𝑟(𝑧𝑟), 𝑆𝛽(𝑧) =  𝑆̂𝛽 𝑆𝛽𝑟(𝑧𝑟), 𝐷𝑆𝛼(𝑧) =

  𝐷𝑟 𝑆𝛼𝑟(𝑧𝑟) 

𝑇 ̂ 𝑑3𝛽2[ 𝐷3𝑊𝛼(𝑧) − 3 𝑎2𝐷 𝑊𝛼(𝑧)]

= [
−𝐷𝑟𝑊𝛼𝑟(𝑧𝑟)

+ 𝜇 ̂𝛽2[𝐷𝑟
3𝑊𝛼𝑟(𝑧𝑟) − 3𝑎𝑟

2𝐷𝑟𝑊𝛼𝑟(𝑧𝑟)]
] 

At the lower boundary, 𝑧𝑟 = 0 

𝑊𝛼𝑟(𝑧𝑟) = 0, 𝐷𝑟𝑊𝛼𝑟(𝑧𝑟) = 0, 𝐷𝑟Θ𝛼𝑟  (𝑧𝑟) = 0, 

 𝐷𝑟𝑆𝛼𝑟(𝑧𝑟) = 0, 𝐷𝑟𝑆𝛽𝑟(𝑧𝑟) = 0 

Where, 

𝑑̂ =
𝑑𝛼𝑟

𝑑𝛼
,  𝑘̂ =

𝑑 ̂

𝑇 ̂
=

𝑘1𝑟

𝑘1
, 𝑇̂ = [

 𝑇∞−𝑇𝑖

𝑇𝑖−𝑇∞𝑟
] , 𝑆𝛼̂ =

[
 𝐶𝛼𝑟−𝐶𝛼𝑖

𝐶𝛼𝑖−𝐶𝛼∞
] , 𝑆𝛽̂ = [

 𝐶𝛽𝑟−𝐶𝛽𝑖

𝐶𝛽𝑖−𝐶𝛽∞
]  

 

V. REGULAR PERTURBATION METHOD 

For the consistent mass and heat fluxes, expanding the 

physical parameters in terms of horizontal wave 

number "𝑎" and  "𝑎𝑟" 
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[

𝑊𝛼

Θ𝛼

𝑆𝛼

𝑆𝛽

] =  ∑ 𝑎2𝑖 [

𝑊𝛼𝑖

Θ𝛼𝑖

𝑆𝛼𝑖

𝑆𝛽𝑖

]∞
𝑖=0    &   [

𝑊𝛼𝑟

Θ𝛼r

𝑆𝛼𝑟

𝑆𝛽𝑟

] =

 ∑ 𝑎2𝑗

[
 
 
 
 
𝑊𝛼𝑟𝑗

Θ𝛼𝑟𝑗

𝑆𝛼𝑟𝑗

𝑆𝛽𝑟𝑗 ]
 
 
 
 

∞
𝑗=0       (40) 

The basic objective of the regular perturbation 

technique is to substitute equation (40) into equations 

(32) to (39). The first few terms in a perturbation series 

expansion are called the perturbation approximations 

or solutions, the zero-order equations are solved using 

corresponding zero-order boundary conditions, and 

solutions are mentioned below. 

𝑊𝛼0 (𝑧) = 0,𝑊𝛼𝑟0(𝑧𝑟) = 0, 𝑆𝛼0(𝑧) =  𝑆𝛼̂ , 𝑆𝛼0(𝑧)

=  𝑆𝛽̂  

𝑆𝛼𝑟0(𝑧𝑟) = 1, 𝑆𝛽𝑟0(𝑧𝑟) = 1 , Θ𝛼0(𝑧) = 𝑇 ̂, Θ𝛼𝑟0 (𝑧𝑟)

= 1  

The ordinary differential equations at first order are 

given below. 

For region – 1 (Fluid layer)  

𝐷4𝑊𝛼1 − 𝑅𝑇̂ + 𝑅𝛼𝑆𝛼̂ + 𝑅𝛽𝑆𝛽̂ = 0 (41) 

𝐷2Θ𝛼1 + 𝐷𝛼(𝐷2𝑆𝛼1 − 𝑆𝛼̂) +  𝑊𝛼1 − 𝑇 ̂
= 0 

(42) 

𝜏𝛼 𝐷2𝑆𝛼1 + 𝑊𝛼1 − 𝜏𝛼 𝑆𝛼̂  = 0  (43) 

𝜏𝛽 𝐷2𝑆𝛽1 + 𝑊𝛼1 − 𝜏𝛽 𝑆𝛽̂  = 0 (44) 

For region −2 (porous layer)  

𝜇 ̂𝛽2𝐷𝑟
4𝑊𝛼𝑟1 − 𝐷𝑟

2𝑊𝛼𝑟1 − 𝑅𝑟 + 𝑅𝛼𝑟 +
𝑅𝛽𝑟 = 0  

(45) 

𝐷𝑟
2Θ𝛼𝑟1 + 𝑊𝛼𝑟1 + 𝐷𝛽𝐷𝑟

2𝑆𝑟𝛼1 − 𝐷𝛽 −

1 = 0  

(46) 

𝜏𝛼𝑟𝐷𝑟
2𝑆𝛼𝑟1 + 𝑊𝛼𝑟1 − 𝜏𝛼𝑟 = 0  (47) 

𝜏𝛽𝑟𝐷𝑟
2𝑆𝛽𝑟1 + 𝑊𝛼𝑟1 − 𝜏𝛽𝑟 = 0 (48) 

Boundary conditions corresponding to first order 

equations in 𝑎2 are as mentioned below. 

At the upper boundary, 𝑧 = 1  

𝑊𝛼1( 𝑧 ) = 0, 𝐷𝑊𝛼1( 𝑧 ) = 0, 𝐷Θ 𝛼1( 𝑧 ) = 0, 

𝐷𝑆𝛼1( 𝑧 ) = 0, 𝐷𝑆𝛽1( 𝑧 ) = 0 

At the interface, 𝑧 = 0 and 𝑧𝑟 = 1 

𝑇 ̂𝑊𝛼1(𝑧) = 𝑑 ̂ 2 𝑊𝛼𝑟1(𝑧𝑟),    𝑇 ̂𝐷𝑊𝛼1(𝑧) =

𝑑̂ 𝐷𝑟𝑊𝛼𝑟1(𝑧𝑟),     Θ 𝛼1 (𝑧) = 𝑑̂2 𝑇 ̂Θ𝛼𝑟1(𝑧𝑟) 

𝐷 Θ 𝛼1 (𝑧) =  𝑑̂2𝐷𝑟 Θ 𝛼𝑟1(𝑧𝑟),     𝑆𝛼1(𝑧) =

 𝑆𝛼  ̂ 𝑑̂2𝑆𝛼𝑟1(𝑧𝑟),     𝑆𝛽1(𝑧) =  𝑆𝛽̂ 𝑑̂2𝑆𝛽𝑟1(𝑧𝑟)  

𝑇 ̂ 𝑑 ̂𝛽2𝐷3𝑊𝛼1(𝑧) = −𝐷𝑟𝑊𝛼𝑟1(𝑧𝑟) +

𝜇 ̂𝛽2[𝐷𝑟
3𝑊𝛼𝑟1(𝑧𝑟)]  

𝑇 ̂ 𝐷2𝑊𝛼1(𝑧) = 𝜇 ̂ 𝐷𝑟
2𝑊𝛼𝑟1(𝑧𝑟), 𝐷𝑆𝛼1(𝑧) =

  𝐷𝑟 𝑆𝛼𝑟1(𝑧𝑟), 𝐷𝑆𝛽1(𝑧) =   𝐷𝑟 𝑆𝛽𝑟1(𝑧𝑟)  

At the lower boundary, 𝑧𝑟 = 0 

𝑊𝛼𝑟1(𝑧𝑟) = 0,  𝐷𝑟𝑊𝛼𝑟1(𝑧𝑟) = 0,   𝐷𝑟Θ𝛼𝑟1 (𝑧𝑟) = 0, 

 𝐷𝑟𝑆𝛼𝑟1(𝑧𝑟) = 0, 𝐷𝑟𝑆𝛽𝑟1(𝑧𝑟) = 0 

The equations (30) and (33) solved using the relevant 

boundary conditions then we get velocity distributions 

as below, 

𝑊𝛼1(𝑧) = [
𝑇 ̂𝑅−𝑆𝛼̂𝑅𝛼−𝑆𝛽̂𝑅𝛽

24
] (Κ1 + Κ2𝑧 + Κ3𝑧

2 +

Κ4𝑧
3 + 𝑧4) (49) 

𝑊𝛼𝑟1(𝑧𝑟) = [
Κ5 + Κ6𝑧𝑟 + Κ7𝑒

𝑝𝑧𝑟 + Κ8𝑒
−𝑝𝑧𝑟

+
(𝑅𝛼𝑟+𝑅𝛽𝑟−𝑅𝑟)𝑧𝑟

2

2
+

(𝑅𝛼𝑟+𝑅𝛽𝑟−𝑅𝑟)

𝑃2

] (50) 

Κ1 =

 
24 𝑑̂2 

𝑇̂( 𝑇 ̂𝑅−𝑆𝛼̂𝑅𝛼−𝑆𝛽̂𝑅𝛽)𝑒−𝑝 {
Κ7 (−𝑒−𝑝 + 1 − 𝑝𝑒−𝑝) + Κ8𝑒

−𝑝(−1 + 𝑝 + 𝑒−𝑝)

+
𝑒−𝑝(𝑅𝛼𝑟+𝑅𝛽𝑟−𝑅𝑟)

2

}  

Κ2 =

 
24 𝑑 ̂

𝑇̂ 𝑒−𝑝( 𝑇 ̂𝑅−𝑆𝛼̂𝑅𝛼−𝑆𝛽̂𝑅𝛽)
{
pΚ7 − 𝑝𝐾7𝑒

−𝑝  + Κ8 𝑝 𝑒−𝑝(1 − 𝑒−𝑝)

+(𝑅𝛼𝑟 + 𝑅𝛽𝑟 − 𝑅𝑟) 𝑒
−𝑝 }  

Κ3 = 
12 𝜇 ̂

𝑇̂( 𝑇 ̂𝑅−𝑆𝛼̂𝑅𝛼−𝑆𝛽̂𝑅𝛽)𝑒−𝑝  [Κ7 𝑃
2 + Κ8 𝑃

2 𝑒−2𝑝 +

𝑒−𝑝(𝑅𝛼𝑟 + 𝑅𝛽𝑟 − 𝑅𝑟)]  

Κ4 =

 
4

𝑑 ̂ 𝛽2𝑇̂( 𝑇 ̂𝑅−𝑆𝛼̂𝑅𝛼−𝑆𝛽̂𝑅𝛽)𝑒−𝑝  [
𝐶7 𝑝(𝑒−𝑝 + (𝑝 − 1)) + 𝐶8 𝑝𝑒−2𝑝(1 − 𝑝 − 𝑒𝑝)

+𝑒−𝑝(𝑅𝛼𝑟 + 𝑅𝛽𝑟 − 𝑅𝑟)
]  

Κ5 = −Κ7 − Κ8 −
(𝑅𝛼𝑟+𝑅𝛽𝑟−𝑅𝑟)

𝑃2 , Κ6 = −𝑝 Κ7 +

𝑝 Κ8  

Κ7 =
𝑇 ̂( 𝑇 ̂𝑅−𝑆𝛼̂𝑅𝛼−𝑆𝛽̂𝑅𝛽)𝑒−𝑝(π2− 12 Δ2)+(𝑅𝛼𝑟+𝑅𝛽𝑟−𝑅𝑟)(Δ3 π2−Δ2 π3)

Δ2π1−Δ1π2
   

Κ8 =
𝑇 ̂(𝑇 ̂𝑅−𝑆𝛼̂𝑅𝛼−𝑆𝛽̂𝑅𝛽)𝑒−𝑝(12 Δ1−π1)+(𝑅𝛼𝑟+𝑅𝛽𝑟−𝑅𝑟)(Δ1π3−Δ3 π1)

Δ2π1−Δ1π2
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VI. COMPATIBILITY CONDITION 

The differential equations corresponding to 

concentration and temperature and corresponding 

boundary conditions give the compatibility condition 

as below. 

{𝜆4 ∫ 𝑊𝛼1(𝑧)𝑑𝑧 + 𝜆5 ∫ 𝑊𝛼𝑟1(𝑧𝑟)𝑑𝑧𝑟
1

0

1

0
} = 𝑇 ̂ +

2𝑑 ̂2 + 𝑆𝛽̂     (51) 

Now to find Critical Rayleigh number substitute (49) 

and (50) in equation (51) then solving for the critical 

Rayleigh number, we get 

𝑅 =
(2𝑑̂2+𝑇̂+𝑆𝛽̂)+R𝛼 (𝑆̂𝛼𝑋2−𝑋3𝜆1)+R𝛽 (𝑆𝛽̂𝑋2−𝑋3𝜆2)

(𝑇 ̂𝑋2−𝑋3𝜆3)
  

Where,  

𝜹𝟏 =
𝝀𝟒

𝟐𝟒 𝑻̂ 𝒅̂𝜷𝟐 , 𝜹𝟐 =
𝝀𝟒 𝝁̂

𝟔𝑻̂
,   𝜹𝟑 =

𝝀𝟒𝒅̂

𝟐 𝑻̂
, 𝜹𝟒 =

𝒅̂𝟐𝝀𝟒

𝑻̂
 , 𝜼𝟏 =

𝒑𝒆−𝒑(𝟏 − 𝒑 − 𝒆𝒑),  𝜼𝟐 = 𝒆−𝒑𝒑𝟐  

𝑿𝟐 = 𝝀𝟒 + 𝑨𝟏𝑻̂ 𝒆−𝒑(𝛑𝟐 − 𝟏𝟐 𝚫𝟐)𝑿𝟏 +

𝑨𝟐𝑻̂𝒆−𝒑(𝟏𝟐 𝚫𝟏 − 𝛑𝟏)𝑿𝟏, 𝜼𝟑 = 𝒑 ( 𝟏 − 𝒆− 𝒑)  

𝑨𝟏 = ∑ 𝜹𝒌𝜼𝒌 − 𝝀𝟓 (𝟏 +
𝒑

𝟐
− (

𝒆𝒑−𝟏

𝒑
))𝟒

𝒌=𝟏 , 𝑨𝟐 =

∑ 𝜹𝒌𝜸𝒌
𝟒
𝒌=𝟏 − 𝝀𝟓 (𝟏 −

𝟐𝒑

𝟒
− (

−𝟏+𝒆− 𝒑

𝒑
))  

𝜸𝟏 =
𝒑[(𝒑+𝒆−𝒑)−𝟏]

𝒆−𝒑 , 𝜸𝟐 =
𝒆−𝒑 𝒑𝟐

𝒆−𝟐𝒑 , 𝜸𝟑 =
𝒑 ( 𝟏−𝒆−𝒑)

𝒆−𝒑 , 𝜸𝟒 =

𝟏−𝒑𝒆−𝒑−𝒆−𝒑

𝒆−𝒑   

𝑿𝟑 = 𝑨𝟏𝑿𝟏(𝚫𝟑𝛑𝟐 − 𝚫𝟐𝛑𝟑) + 𝑨𝟐(𝚫𝟏𝛑𝟑 −

𝚫𝟑𝛑𝟏)𝑿𝟏 + 𝑨𝟑,               𝜼𝟒 = 𝒑 − 𝟏 + 𝒆−𝒑  

𝑨𝟑 = −𝜹𝟏 + 𝜹𝟐 + 𝜹𝟑 +
𝜹𝟒

𝟐
+

𝝀𝟓

𝟔
, 𝝀𝟓 = [𝒅̂𝟐 +

𝒅̂𝟐

𝝉𝜷𝒓
−

𝑫𝜷𝒅̂𝟐

𝝉𝜶𝒓
] , 𝑷𝟏 = 𝑒−𝒑 − 𝟏  

𝛌𝟏 =
𝚩𝟐𝒅̂𝟑𝑺𝜷

𝒌̂
, 𝛌𝟐 =

𝚩𝟐𝒅̂𝟑𝑺𝜶

𝒌̂
, 𝛌𝟑 =

𝚩𝟐𝒅̂𝟑𝑻 ̂

𝒌̂
, 𝝀𝟒 = (𝟏 −

𝑫𝜶

𝝉𝜶
+

𝟏

𝝉𝜷
)

𝟏

𝟏𝟐𝟎
, 𝑿𝟏 =

𝟏

𝚫𝟐 𝝅𝟏−𝚫𝟏 𝝅𝟐
  

𝚫𝟏 = 𝟐𝟒 𝒅̂𝟐(𝟏 − 𝑒−𝒑(𝒑 − 𝟏)) + 𝟐𝟒 𝒅  ̂𝒑 (−𝑒− 𝒑 +

𝟏) + 𝟏𝟐 𝝁 𝒑𝟐 +
𝟒𝒑  (𝒑+𝑷𝟏)

𝒅̂𝚩𝟐   

𝚫𝟐 = 𝟐𝟒𝒅𝟐̂(𝑷𝟏 + 𝒑)𝑒−𝒑 + 𝟐𝟒𝒑𝑒−𝒑(𝟏 − 𝑒−𝒑) +

𝟏𝟐𝝁̂𝒑𝟐𝑒−𝟐𝒑 +
𝟒𝒑𝑒−𝟐𝒑(𝟏−𝒑−𝑒𝒑)

𝒅𝚩𝟐   

𝚫𝟑 = 𝟏𝟐𝒅̂𝟐𝑒−𝒑 + 𝟐𝟒 𝒅 ̂𝑒−𝒑 + 𝟏𝟐 𝝁 ̂𝑒−𝒑 −
𝟒𝑒−𝒑

𝒅̂ 𝚩𝟐 ,

𝛑𝟑 = 𝟐𝟒𝒅̂𝑒−𝒑 + 𝟐𝟒𝝁̂𝑒−𝒑 −
𝟏𝟐𝑒−𝒑

𝒅̂𝚩𝟐   

 𝛑𝟏 = 𝟐𝟒𝒅̂𝒑(𝟏 − 𝑒−𝒑) + 𝟐𝟒 𝝁̂ 𝒑𝟐 +
𝟏𝟐𝒑(𝑷𝟏+𝒑)

𝒅̂𝚩𝟐 , 𝒑 =

(𝝁̂ 𝚩𝟐)
−𝟏

𝟐⁄ , 𝚩 = √𝐃𝐚 

𝛑𝟐 = 𝑒−𝒑 𝟐𝟒𝒅̂𝒑(𝟏 − 𝑒−𝒑) + 𝟐𝟒𝝁̂𝒑𝟐𝑒−𝟐𝒑 +
𝟏𝟐𝒑𝑒−𝟐𝒑(𝟏−𝒑−𝑒𝒑)

𝒅̂𝚩𝟐   

 

VII. RESULTS AND DISCUSSIONS 

 

Fig. 1. effect of  𝒟𝒶 on ℛayleigh Number 𝑅 

 

Fig. 2. effect of  𝒟𝒶  on ℛayleigh Number 𝑅 
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Fig. 3. effect of  𝒟𝑚𝑟  on ℛayleigh Number 𝑅 

 

Fig. 4. effect of  𝒟𝑚𝑟  on ℛayleigh Number 𝑅 

 

Fig. 5.  Effect of 𝜅̂ on ℛayleigh Number 𝑅 

 

Fig. 6.  Effect of 𝜅̂ on ℛayleigh Number 𝑅 

 

Fig. 7.  Effect of 𝜇 on ℛayleigh Number 𝑅 

 

Fig. 8.  Effect of 𝜇 on ℛayleigh Number 𝑅 
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Fig. 9. effect of  𝒟𝑟  on ℛayleigh Number 𝑅 

 

Fig. 10. effect of  𝒟𝑟  on ℛayleigh Number 𝑅 

 

Fig. 11.  Effect of 𝑅𝑠1 on ℛayleigh Number 𝑅 

 
Fig. 12.  Effect of 𝑅𝑠1 on ℛayleigh Number 𝑅 

 

 
Fig. 13.  Effect of 𝑅𝑠2 on ℛayleigh Number 𝑅 

 

 
Fig. 14.  Effect of 𝑅𝑠2 on ℛayleigh Number 𝑅 
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Fig. 15.  Effect of 𝜏1 on ℛayleigh Number 𝑅 

 

 
Fig. 16.  Effect of 𝜏1 on ℛayleigh Number 𝑅 

 

 
Fig. 17.  Effect of 𝜏2 on ℛayleigh Number 𝑅 

 

 
Fig. 18.  Effect of 𝜏2 on ℛayleigh Number 𝑅 

 

 
Fig. 19.  Effect of 𝜏1𝑝 on ℛayleigh Number 𝑅 

 

 
Fig. 20.  Effect of 𝜏1𝑝 on ℛayleigh Number 𝑅 
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Fig. 21.  Effect of 𝜏2𝑝 on ℛayleigh Number 𝑅 

 

 
Fig. 22.  Effect of 𝜏2𝑝 on ℛayleigh Number 𝑅 
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