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Abstract— The influence of Diffusion — Thermo (Dufour)
and Non-Darcian effect on Three - Component Rayleigh
Benards (TCRB) convection in a two-layered system, has
investigated analytically by using the Regular Perturbation
technique. The upper and lower boundaries of the
composite system are rigid and rigid-free with surface
tension respectively, these boundaries are insulating to
both heat and mass. At the interface of the composite
system, the heat and heat flux, normal velocity, normal and
shear stress, and mass and mass flux, are assumed to be
continuous. The Non-Darcy term and Dufour term are
employed in the momentum and energy equation
respectively. The impact of various physical parameters on
TCRB convection is investigated in a detailed manner and
results are portrayed graphically.

Index Terms- Rayleigh Benard Convection, Dufour effect,
Two — Component Convection, Composite layer.

I INTRODUCTION

Variations in concentration cause the Dufour
(Diffusion Thermo) effect, which is the flow of
energy. It is the combined impact of irreversible
processes that causes energy to flow due to a
concentration gradient. The survey of literature
focuses primarily on the various classes of techniques
related to our field of study, which is the effects of
Dufour and non-Darcian effects on three-component
Rayleigh Benard (TCRB) convection in a two-layered
system with rigid-free boundaries. Research has been
done on the issues of triple diffusive/three-component
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convection in fluids by Pearlstein et al. [7] and Lopez
et al. [1]. Rudraiah and Vortmeyer [9] used a
gravitationally stable density gradient to examine the
linear stability of the system. They did this by
considering the porous medium. Poulikakos [8] stated
that adding a third diffusive component with low
diffusivity can significantly alter the character of the
convective instabilities in the system. The
compound/composite layer has limited impact on
triple diffusional convection. A more advanced
technique to investigate triple diffusive (three-
component) Marangoni convection in a two-
layer/composite layer has been devised by Sumithra R
[14]. It obtains an algebraic equation for the
Marangoni number, solves the resulting eigenvalue
issue exactly, and thoroughly examines the effects of
changing various physical parameters on it
Manjunatha [4] presented a different approach that
examines the impact of temperature profiles on triple
diffusive convection. On the other hand, Mokhtar et al.
[2] looked at how internal heat generation affects a
two-layer system or a composite system with
Marangoni effects. They use the well-known method
of normal mode analysis to convert the system of
PDEs into a system of ODEs. The regular perturbation
methodology effectively solves the ODE system,
which is employed to handle other Rayleigh Benard
(RB) convection-related issues. The influences of non-
Darcian effects and thermal diffusion (Soret) effects
on Rayleigh Benard (RB) convection in a two-layer
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composite layer were investigated in a conceptually
equivalent study using a similar approach proposed by
Sumithra et al. [13]. We assume that both borders of
this system are rigid. The regular perturbation
approach, a widely used method, solves Rayleigh
Benard's (RB) convection with the Darcy Brinkmann
model. The Rayleigh number can be derived
algebraically by solving the linked equations.
Rayleigh Benard (RB) convection has been studied by
Park et al. [4] with the assumption that the heat flux is
constant at the boundary.

Il. MATHEMATICAL FORMULATION

The physical model under the consideration of a
composite layer system with a horizontal two-
component fluid-saturated, incompressible, isotropic,
and sparsely packed porous layer is of thickness d,
and a fluid layer of thickness d,. The boundaries of
the composite layer system are considered rigid-free;
these boundaries act like heat and mass insulators
along with maintained, distinct concentration and
temperature.

Z-axis

Regu:*n (1) free Fluid layer

=1

=0

Zr=1 Y-axis

a L0

. Porous layer
Region (2) Rigid

X-axis

The origin point of the Cartesian coordinate system is
taken exactly at the intersection of the porous and fluid
layer along with the direction of the z-axis vertically
upwards. In addition to that, for the effect of density
variation, the Boussinesq approximation is included.
Under these following assumptions, the governing
equations are, the continuity, momentum, temperature,
concentration, and state equations as follows.

For the region — 1 (Fluid layer)

V.3 =0
1)
aq_) — e
Po [ﬁ + (e -V)qa] @)
a

= —VP, + lg VZW

~ Pa Ga k
aoT, . .
E‘l’(qa.v)Ta:Klv Ta‘l'KzV C(Z (3)
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aﬁ+(‘* V)Cq = k3 V2 C,
qa - a K3 a

at, 4
G —. 2
E + (qa . V)Cﬁ = K4_V Cﬁ (5)
Pa = po[l_ 261 (Toc_ Ti)+(xCa (Coc
— Cai)] +ag, (Cp (6)
= Cgi)l

For the region — 2 (Porous layer)

Var-?ar =0
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[P_o 09 ar _ 7p
@1 ot,, “ ‘Z 8
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= Par Yar k
A '—aT‘”] + @y V)T,
_atr ar. Var)lar (9)
= Klrvazr Tar
+ Kor VaZCar
¢-acm]+@, V) Cor = Kzp V2.C
-atar ar.Var/~ar 3r Yar ~ar (10)
[0Cs] . ,
¢ F +(q ar.var)cﬁr = Kar Vor Cﬁr (11)
| Vlar
Par = Po [1 — Ugr (Tar - Tri)

+ O‘CO,r (Car - Cari )] (12)
+ aCBr (CBr - CBri )]

Where, g, = (Ug1, Va1, Wa1) IS Velocity, t, is the
time, p, is the referring density of fluid, y, is the fluid
viscosity, P, is pressure, p, is the density of fluid, g,
is the gravitation, T, is the temperature, x; is the
thermal  diffusivity, k;&k, are the solutal
diffusivities, k, is the Dufour coefficient, C, is the
concentration, a,is the coefficient of thermal
expansion, ac & acp are the solutal analogs of «;,

o, U & K, are the porosity, effective viscosity and
permeability of the porous medium, Ais the heat
capacities ratio. Subscript "r"refers to physical
quantities which are defined in the porous medium.

I1l.  LINEAR STABILITY THEORY

The fluid layer is stable in the composite system by
assuming the primary state is inactive, which is
quiescent. Therefore there is no fluid motion, so,

setting the velocity vector g is zero, where, the
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conduction will happen only by transforming mass and
heat assuming the following assumptions, for fluid
|ayerﬁ) = [ualr Va1, Wal] =0

and [T Co Co P Pl =
[Tup (@), Cop(2), Cpp(2) Pop(2), pup (2)] for the
porous layer, §’q = 0and [Ty, Cor, Cgry Pars Par| =
[Tarb' Carb(zr)' Cﬁrb(zr)' Parb(zr)' parb(zr)]
finally, we get the temperature and the concentration
distributions for fluid and porous layers, after
substituting these basic states to the equations (1) to
(10).

Temperature  distribution  and  concentration
distribution in the fluid layer (0 <z <d,)

T —T, (13)
T = L= 102,
Coun — Coi 14
o) = Cam— a2 (14)
a
+Cy
(Cpoo = Cpi) 2
Cpn(2) = a4, (15)
+ Cg;

Temperature  distribution  and  concentration
distribution in the porous layer (—d,, < z. < 0)

(Ti B Toor)Zr (16)
dar
+ T
(C(xi - Car)zr (17)
dar
+ Cyi
Cgi — Cgy )z,
(G daf ) )
+ Cp;
Temperature  distribution  and  concentration
distribution at the interface.

Torp (Zr) =
Carp (Z.,) =

Cﬁrb (Zr) =

T, (19
kidoyr Too +dg by Toor  dorky Cpoo + k3 )
kl dar + da klr kl dar + dc
o (da kyr + dor kz)
“\key doy + dy oy

_ k3 Caoodar + da k3rCar (20
4 kay + gy ks )
oo kg Cpeolar + dg karCpr 1

B A ke + gy kg )

Now established the perturbed quantities to analyze
the linear stability of the primary state solution.

For fluid layer
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[%): Py Ca: CB T Pa ] ) (22
{[ 0, Pay(2), Ca(2), Cpp (D) Ty (2), Py (2) )
+ [@a P St Sp 6 0 |

For porous layer

[Gars Pars Cars Cor Tars Par) =

{[0: Porb(21), Corp (21), Cprp (21, Tarn(Z1), Pary (Zr)]}
+ [Gars Pars St Sir Oirs Pl |

(23)

Substitute equations (22) and (23) into equations
(1) — (12) after that in order to vanish the pressure
term in the perturbed momentum equation by applying
curl twice. The resulting perturbed equations are
linearized for (1) — (12), introduce non-dimensional
quantities, see (Sumithra[]) then Applying normal
mode expansions to the perturbed non-
dimensionalised quantities using

[Wa(2),02(2), 54(2), 55 (2)]" = [Wal2), 04(2),
S2(2), S3(2)] fulx, ¥, ©)

[szr (24), 00r(21), Ser ( 21), Sﬁr( Zr)]T =
[War (2r), 0ar(2)), Sar (2), Sﬁr (Zr)]Tfar (X, Yrr tr)

Where, fa = fo ei(lx+my)—nt' far =
fO ei(l Xpr+m y)—n ty

Which returns the following ordinary differential
equations,

For region — 1(Fluid layer)

[(D2 -a®) + pl (D* —aH) W, (24)
T
= Ra%@ — R,a’s,
— RB a2 SB
(D? —a? +n) 6, + D,(D? — a?) S, (25)
+W, =0
[t,(D? —a®) +n]S, + W, =0 (26)
[‘L’,;(D2 —a?) +n| Sg+W,=0 (27)

For region —2 (porous layer)
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p* (D} —a7) (28)
+nT B? -1 (DE - arg)War
Drr

= Rrarzgar
- Rararzsar
- RﬁrafSﬁr

(DE - af + n, A)Qar + Wor (29)
+ Dp(DZ — a2)Sgr = 0

[Tocr(D'rg - a12") +¢ nr] Sar + Wor =0 (30)

[T[s’r(D7g - avz”) + ¢ nr] Sb’r + War =0 (31)

Where, for the fluid layer, g = ? is the viscosity

ratioD = % is the differential operator with respect to

z, pr = — isthe Prandtl number, 7, = % is the ratio
1 1

of thermal diffusivity to solutel diffusivity, 7z = L s

K1

the ratio of thermal diffusivity to solute 2 diffusivity

. . - . Ti—Teo) d3
v = is the kinematic viscosity, R = £%Ti-Te)da
Po VEKa 5
. . ac,,(Cqi—C, ay .
is the Rayleigh number, R, = W is
1

the solutel Rayleigh number, Rg =
Jalcg (Cpi—Cpoo) A%

is the solute2 Rayleigh number and

VKq

D, = W is Dufour coefficient. Similarly for
1 \Ui=1leo

the porous layer the physical quantities are defined

with  the  subscripts"r". Fora  specific set

of numerous parameters,

the principle of change instability is set up to

be precisely authentic for fluid or porous
layer problems separately and it's far assumed that
the precept holds for this situation also, so, fixed n =
n, = 0, equations (24) — (31) becomes.

For region — 1 (Fluid layer)

(D? —a?)? W, = Ra?6 — R a%S, (32)
— RB a2 SB

(D?-a?)6,+ W, +D,(D?—-a?)Ss, (33)
=0

[t,(D?—a?)]S, + W, =0 (34)
[TB (DZ - az )]SB + Wa =0 (35)

For region —2 (porous layer)
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[28%(D} — af) — 1](D? — a})War = Ry, %8y —
Rararzsar - Rﬁagsﬁr (36)

(DE - a?)gar + W, + Dﬁ (DE - avz”)sar =0(37)
[Tar (D — af)] Sar + Wor = 0 (38)
[Tﬁr(Dg - a%)] SBr +W,=0 (39)

Finally we obtain the system of ordinary differential
equations of order 20, so we need 20 boundary
conditions, such boundary conditions are mentioned
below.

IV.  BOUNDARY CONDITIONS

At the upper boundary, z = 1

W,(z) =0, D*W,(z) =0,
DSe(2)=0,DS5(z) =0

DO, (z) =0,

At the interface,z=0and z, = 1

T We(2) = War(z,),
DWer(2:), 00 (2) = T Ogr(2,)

T dDW,(z) =

D 04(2) = Dy 0gr(2), Sa(2) =
§; Sar(zr):SB (2) = S:B SBT‘(ZT)!
D, Sar(Zr)
T d®B%[ D3W,(z) — 3 a?D W,(2)]
_DrWar(Zr)
N +//I:82 [Dr3War(Zr) - 3ar2DrWar(Zr)]

DS, (z) =

At the lower boundary, z, = 0

War(zr) =0, DrWar(Zr) =0, D, 04, (Zr) =0,
Drsar(zr) = 0' Drsﬁr(zr) =0

Where,
5 dagr 5 d _ kir & To-T;] =
= dar k=7=£,7=[ o l]'5a=
dg T fey Ti=Toor
Car—Cai|l < Cpr=Cpi
[ 5 - [
Cai—Caco Cpi=Cpoo

V. REGULAR PERTURBATION METHOD

For the consistent mass and heat fluxes, expanding the
physical parameters in terms of horizontal wave
number "a" and "a,."
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We Wai Wer DOy (2) = d?D, 0 1(2,),  Sen(2) =
o I el bl I D Sa @Sars(z), $1(2) = 55 A2y (2)
a ai ar
pdo bl e T 32D W,y (7) = —D, Wyrs (2) +
(»})arj. ﬁﬁz [DrSWarl(Zr)]
20| s, “0) . 2
S[)’r; T D*W,oy(2) = & Dy*Weri(2,), DSa1(2) =
D, Sarl(zr):DSﬁl(Z) = D, Sﬁr1(zr)
The basic objective of the regular perturbation
technique is to substitute equation (40) into equations At the lower boundary, z, = 0

(32) to (39). The first few terms in a perturbation series

expansion are called the perturbation approximations Weri1(2:) =0, DeWori(2,) =0, DpOgpq (z,) =0,

or solutions, the zero-order equations are solved using D;Sar1(2) = 0,DySpr1(2;) = 0
corresponding zero-order boundary conditions, and
solutions are mentioned below. The equations (30) and (33) solved using the relevant
. boundary conditions then we get velocity distributions
Wao (2) = 0, Wero(2r) = 0,540(2) = Sg) Sa0(2) as below,
=5
T R—SqRq—SgR
- Wi (2) = [—22EL (K, + Kpz + Kyz2 +
Saro(zr) = 1'Sﬁr0(zr) =1,040(2) =T, 04 () (@) [ 24 ] Ky 2 3
=1 K,z% + z%) (49)

Ks + K¢z, + K,eP? + Kge™P%r
+ (Rar+R,8;_Rr)Zr2 + (Rocr‘*'ifr_Rr) (50)

The ordinary differential equations at first order are
given below. Wori(2r) =

For region — 1 (Fluid layer)

D*W,, —RT + R,S, + RpSg =0 (41) Ky =
D20, + Dy(D?S,y —S)) + Wy — T (42) 94 2 K;(—e™?+1—-pe?)+KgeP(—=1+p+e?)
=0 (T R-S.Rq—SpRp)e? 4 " (Rar+Rgr—Ry)
— 2
Ty D?Syy + Wy — 745, =0 (43)
Tﬁ DZSBl + Wal - Tﬁ gl; =0 (44) KZ =
24d pK; —pK;e? +Kgpe P(1—e7?)

For regi40n -2 (porc;us layer) T e~P(T R-SzRa—SpRp) +(Rar + Rg, — Rr) e P

[[ﬁzDr Warl - Dr Warl - Rr + Rar + (45)

Rﬁr =0 K3 = A12 #A — [K7 p2 + KS P2 g—2p +

Dr2®ar1 + Werr + DBDrZSral —Dp — (46) T(T R=SaRa=SgRp)e

1=0 e P(Ryr + Rgr — R,)|

TarDTZSarl + Wer1 —Tar =0 (47)

TBTDTZSBrl + W(xrl - TBT =0 (48) K4’ = _ s
Boundary conditions corresponding to first order I S Crp(e™ +(p— 1)+ Cgpe (1 —p —eP)
equations in a? are as mentioned below. @ B*T(T R=SaRa=SgRp)e™? +e"P(Rgr + Rgr — Ry)
At the upper boundary, z = 1 K = —K, — Kg — (R“r“;fr‘RT)'K() = —pK, +
Wer(2) =0, DWe(2z)=0, DOa(2)=0, PKe

DSer(z) =0,DS3,(z) =0 K, =

T (T R-SgRa—SgRp)e P(mz— 12 A2)+(Rar+Rpgr—Ry) (A3 Mz —Az T3)

At the interface,z =0and z, = 1 Aymt—dyT

T\Wal(z) =d? Warl(zr)’ T\DWal(z) = Kg =
d DrWarl(Zr)! 0 41 (2) = d? Tgarl (Zr) T (T R—SqRq—SgRp)e P (12 Ay—m1)+(Rar+Rpr—Ry)(A1Tiz—Ag 1)
Apmy—Aqmy
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VI. COMPATIBILITY CONDITION

The differential equations corresponding to
concentration and temperature and corresponding
boundary conditions give the compatibility condition
as below.

{’14 Jy War (@)dz + 25 Warl(zr)dzr} =T +
2d%+Sg (51)
Now to find Critical Rayleigh number substitute (49)

and (50) in equation (51) then solving for the critical
Rayleigh number, we get

_ (2@%+T+5p)+Rq (SaX2—X3A1)+Rp (SpXo—X3d3)

(T X;—X343)
Where,
M sl A4d d2, _
1= %7ap2° %2 = 67’ 63_ 104 = 7 ' =

pe ?(1—p—eP), n; = e Pp?

XZ = 14 + AIT e_p(‘rtz - 12 AZ)XI +
A;TeP(12A, — )X, 3 =p(1—eP)

=
A; = Yo St — A5 (1"‘%— (ep )),Az =

4 2p —1+e” P
mﬂawk—%(l—f—(———ﬂ

P
_ plp+e™P)-1] e Pp? __p(1-e7P)
Vi=— 5 V2= V3= 5 Ve =
1-pe P—eP
e P

X3 = A1 X1 (A3, — Apmiz) + A (Aqmg —
Azmy)Xq + As, n=p—1+e?

=—61+62+63+ +15 AS—I:dZ‘l'__

DBd

BZa3s, B2d3s Bzd3T
M=—" 1= A3 = Ay = -

k k
Dg f 1\ 1 » 1
Ta Tp 120' 1= AZ 1'[1—A1 m
Ay =24d*’(1—-eP(p—-1)+24d p(—e P+
2 | 4p (p+P1)
D+12pp® +-=5

A, = 24d%(Py + p)e™® + 24peP(1—e7P) +

P 4pe~2P(1-p-eP)
12fip2e~2P + sz
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Ay =128%eP +24de P +12fe? -5
~ _ 12e¢7P
Ty = 24de™? + 24fie7P — =52
my = 24dp(1 - e ™) + 24 fip? + 2D =

(@B%) 2, B = yDa
T, = e? 24dp(1 — eP) + 24fip*e~ P

12pe~2P(1-p-eP)
dB2

VII.  RESULTS AND DISCUSSIONS
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