
© September 2024| IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 168129 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1388

Wireless Temperature and Humidity Monitoring System

Using Node MCU and DHT11 Sensor

Rahul R. Avhad1, Sham R. Avhad2
1Electrical Engineer, AISSMS’s Institute of Information Technology, Pune

2Computer Engineer, D. Y. Patil Institute of Engineering and Technology, Pune

Abstract—This paper presents the design and

implementation of a cost-effective, wireless temperature

and humidity monitoring system using a Node MCU

board (ESP8266) and a DHT11 sensor. The system

captures real-time environmental data and uploads it to

the thingspeak cloud platform, enabling remote

monitoring through internet-connected devices. Battery

power and a custom casing enhance portability, allowing

flexible deployment in residential and industrial

environments. The data can also be utilized for further

analysis or to control other processes and devices.

Index Terms—Node MCU board, DHT11 sensor,

Temperature, humidity, thingspeak cloud platform.

I. INTRODUCTION

In recent years, the proliferation of the Internet of

Things (IoT) has paved the way for innovative

solutions in environmental monitoring, where real-

time data acquisition and remote accessibility are

crucial. Temperature and humidity are fundamental

parameters that affect various aspects of both

residential and industrial environments, influencing

everything from indoor air quality to the stability of

manufacturing processes. Despite the availability of

sophisticated monitoring systems, many are either

prohibitively expensive or lack the flexibility required

for diverse applications.

This paper presents the design and implementation of

a cost-effective, wireless temperature and humidity

monitoring system, utilizing a Node MCU board

(ESP8266) and a DHT11 sensor. The system is

engineered to provide real-time environmental data

that is uploaded to the thingspeak cloud platform,

enabling remote monitoring via any internet-

connected device. The proposed solution combines the

affordability and ease of use associated with the

DHT11 sensor with the versatility of the Node MCU’s

built-in Wi-Fi capabilities, making it an ideal

candidate for deployment in both residential and

industrial settings.

To further enhance portability and user convenience,

the system can be powered by a battery and housed in

a custom casing, transforming it into a compact,

handheld device. This feature allows the device to be

easily relocated or used in various locations without

dependence on a fixed power source, making it

suitable for dynamic environments. Users can

conveniently monitor temperature and humidity levels

from anywhere, whether for maintaining optimal

living conditions at home or ensuring the integrity of

sensitive industrial processes. The application of this

system spans various domains, including smart homes,

greenhouses, server rooms, and production facilities,

where maintaining precise environmental conditions is

paramount.

This work aims to demonstrate that a low-cost,

flexible, and user-friendly IoT solution can effectively

meet the needs of diverse environments, offering a

practical alternative to more complex and expensive

monitoring systems. The following sections will detail

the system’s architecture, implementation process, and

performance evaluation, illustrating its potential for

widespread adoption.

II. RELATED WORK

The advancement of IoT has led to various systems for

environmental monitoring, often using

microcontrollers and sensors to collect and analyze

data. Early systems frequently used Arduino boards

with sensors like the DHT11 or DHT22 to monitor

temperature and humidity, displaying data locally or

on cloud platforms like thingspeak. These solutions,

while effective, often required manual setup and

lacked portability.

© September 2024| IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 168129 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1389

More advanced systems have utilized Raspberry Pi for

greater processing power, enabling local data

processing and integration with cloud services such as

AWS IoT or Google Cloud IoT Core. However, these

systems can be complex and costly for basic

monitoring tasks.

The Node MCU (ESP8266) has emerged as a cost-

effective alternative, integrating Wi-Fi capabilities

with sensors like the DHT11 for compact, affordable

monitoring solutions. Existing projects have

successfully used Node MCU with cloud platforms

like thingspeak, though many lack portability and

user-friendly features.

This project enhances previous systems by combining

the Node MCU’s affordability with battery power and

a custom casing, offering a portable and flexible

solution. Additionally, it extends functionality by

enabling data analysis and control of other devices

through thingspeak addressing limitations of earlier

systems.

III. METHODOLOGY

The system is designed to collect environmental data

and upload it to the thingspeak cloud platform for

remote monitoring. The following steps outline the

approach taken to develop and deploy this system:

A) System Components

Node MCU Board (ESP8266): Acts as the

microcontroller with integrated Wi-Fi capabilities. It

handles data acquisition from the DHT11 sensor and

communicates with the thingspeak cloud platform.

DHT11 Sensor: Measures temperature and relative

humidity (RH). It provides digital output that the Node

MCU processes.

Battery Power Supply: Provides power to the Node

MCU and DHT11 sensor, enabling the system to be

portable and independent of a fixed power source.

Custom Casing: Encloses the electronic components,

protecting them and making the device more portable

and user-friendly.

B) System Design

Circuit Diagram: The DHT11 sensor is connected to

the Node MCU via three jumper wires. The sensor's

data pin is connected to a digital input pin on the Node

MCU, while power and ground pins are connected

accordingly.

For circuit diagram refer to Appendix II Fig. 1, 2.

Software Development:

Programming Environment: The Node MCU is

programmed using the Arduino Integrated

Development Environment (IDE).

For source program refer to Appendix I.

Sensor Integration: The Arduino code reads data from

the DHT11 sensor, including temperature and

humidity values. The DHT library is used to facilitate

communication with the sensor.

Data Upload: The collected data is formatted and sent

to the thingspeak platform via HTTP requests. The

thingspeak API is used to update channels with

temperature and humidity data.

Code Structure: The code includes initialization

routines for the sensor, data acquisition loops, and

functions for connecting to Wi-Fi and sending data to

thingspeak.

C) thingspeak Configuration:

Channel Setup: A thingspeak channel is created to

store and visualize the data. Two fields are defined:

one for temperature and one for humidity.

API Integration: The API key from the thingspeak

channel is used in the Node MCU code to authenticate

and upload data.

D) Testing and Calibration

Initial Testing: The system is tested in various

environments to ensure accurate data collection and

reliable data transmission to thingspeak.

Calibration: The DHT11 sensor is calibrated against

known temperature and humidity standards to verify

accuracy and adjust any discrepancies.

E) Deployment

Battery Integration: The system is powered using a 5V

battery pack, allowing it to operate independently of a

fixed power source.

Enclosure: The Node MCU and DHT11 sensor are

housed in a custom-designed casing to protect the

components and facilitate portability.

F) Data Utilization

Remote Monitoring: Users can access real-time data

from the thingspeak dashboard via web or mobile

applications.

Further Analysis: The data can be analyzed for trends,

and triggers can be set up to control other devices or

processes based on the environmental conditions

recorded.

IV. RESULTS AND DISCUSSION

The developed wireless temperature and humidity

monitoring system was tested to evaluate its

© September 2024| IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 168129 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1390

performance, accuracy, and portability. The system

consistently transmitted real-time data to the

thingspeak cloud platform, which was accurately

visualized on separate graphs for temperature and

humidity. The Node MCU maintained a stable Wi-Fi

connection, ensuring reliable data transmission.

The DHT11 sensor provided temperature readings

with an accuracy of ±2°C and humidity readings with

±5% RH, which is adequate for general residential and

industrial use. However, the sensor may not meet the

precision requirements of more specialized

applications.

The addition of a battery power supply and custom

casing enhanced the device's portability, allowing it to

operate independently from a fixed power source and

be easily relocated to different environments. This

flexibility makes it suitable for dynamic monitoring

scenarios, such as in various rooms of a home or

industrial facility.

Furthermore, the data uploaded to thingspeak can be

used for further analysis or integrated into automation

systems, enabling the control of other devices based

on environmental conditions. This extends the

system’s utility beyond basic monitoring.

While the system performs well for its intended

purpose, future improvements could include using

more accurate sensors and adding other environmental

parameters, like air quality, to broaden its application

scope.

For results refer to Appendix III Fig. 3, 4, 5.

V. CONCLUSION

This project successfully developed a cost-effective,

portable system for monitoring temperature and

humidity using a Node MCU board (ESP8266) and a

DHT11 sensor. The system reliably uploads real-time

data to thingspeak, allowing remote monitoring via

any internet-connected device. With battery power

and a custom casing, the device is easily deployable

in various locations without needing a fixed power

source.

The system’s performance is suitable for residential

and industrial applications, providing valuable

environmental insights.

APPENDIX I

/*source code*/

/*upload temperature and humidity values to Thing

speak

received through the DHT11 sensor*/

#include<ESP8266WiFi.h>

#include<WiFiClient.h>

#include<ESP8266HTTPClient.h>

#include <DHT11.h>

WiFiClient client;

HTTPClient http;

DHT11 dht11(2);

String url;

String API = "YOUR_API_KEY";

String FieldNo;

String FieldNo1 = "1";

String FieldNo2 = "2";

int httpcode;

String ssid = "YOUR_WIFI_SSID";

String passwrd = "YOUR_WIFI_PASSWORD";

void connectToWiFi(void);

void sendGETRequest(int data, String FieldNo);

void setup()

{

 Serial.begin(9600);

 connectToWiFi();

 pinMode(A0, INPUT);

}

void loop()

{

 int temperature = 0;

 int humidity = 0;

 // Attempt to read the temperature and humidity

values from the DHT11 sensor.

 int result =

dht11.readTemperatureHumidity(temperature,

humidity);

© September 2024| IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 168129 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1391

 sendGETRequest(temperature, FieldNo1);

 delay(16000);

 sendGETRequest(humidity, FieldNo2);

 delay(16000);

}

void sendGETRequest(int data, String FieldNo)

{

 /*link*/

 /*GET

https://api.thingspeak.com/update?api_key=9YDA0

CJKNS7SELCX&field1=0*/

 url = "http://api.thingspeak.com/update?api_key=";

 url = url + API;

 url = url + "&field";

 url = url + FieldNo;

 url = url + "=";

 url = url + data;

 http.begin(client, url);

 Serial.println("waiting for response..");

 httpcode = http.GET();

 if(httpcode>0)

 {

 if(FieldNo=="1")

 {

 Serial.print(data);

 Serial.println(" - temperature data sent

successfully!!");

 }

 if(FieldNo=="2")

 {

 Serial.print(data);

 Serial.println(" - humidity data sent

successfully!!");

 }

 }

 else

 {

 Serial.println("Error in sending");

 }

 http.end();

}

void connectToWiFi(void)

{

 WiFi.mode(WIFI_STA);

 WiFi.begin(ssid, passwrd);

 Serial.print("connect to wifi");

 if(WiFi.status()!=WL_CONNECTED)

 {

 Serial.print('.');

 delay(250);

 }

 Serial.println("connected!!");

 Serial.print("IP address: ");

 Serial.println(WiFi.localIP());

 Serial.print("mac address: ");

 Serial.println(WiFi.macAddress());

}

APPENDIX II

Fig1. Block diagram of device

© September 2024| IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002

IJIRT 168129 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1392

Fig2. Actual connections for device

APPENDIX III

Fig3. Data sent from Node MCU

Fig4. Temperature data received on thingspeak

portal

Fig5. Humidity data received on thingspeak portal

REFERENCES

[1] Y. Kanetkar, Let Us C, 16thed.BPB publications,

India,2018.

[2] N. Rai, Arduino Projects for Engineers,

1sted.BPB Publications, India, 2023, ch.18.

[3] Y. Kanetkar, Shrirang Korde, 21 IoT

Experiments, 1sted.BPB Publications, India,

2023, ch.14.

[4] https://www.arduino.cc/education

[5] https://docs.arduino.cc/learn/starting-guide

[6] https://www.arduino.cc/en/software

[7] https://www.espressif.com/en/products/socs

[8]https://www.espressif.com/sites/default/files/docu

mentation/esp8266-technical_reference_en.pdf

[9] https://docs.espressif.com/projects/esp8266-rtos-

sdk/en/latest/get-started/index.html

[10]https://www.arduino.cc/reference/en/libraries/dht

-sensor-library/

[11] https://github.com/ekstrand/ESP8266wifi

[12]https://github.com/esp8266/Arduino/blob/master/

libraries/ESP8266WiFi/src/WiFiClient.h

[13]https://github.com/esp8266/Arduino/blob/master/

libraries/ESP8266HTTPClient/src/ESP8266HTTPCli

ent.h

[14]https://www.tme.eu/Document/7a4fd48d400b8c4

c8309ef1e2b13cdd4/MR003-005-1.pdf

https://www.arduino.cc/en/software
https://www.espressif.com/en/products/socs
https://www.espressif.com/sites/default/files/documentation/esp8266-technical_reference_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp8266-technical_reference_en.pdf
https://docs.espressif.com/projects/esp8266-rtos-sdk/en/latest/get-started/index.html
https://docs.espressif.com/projects/esp8266-rtos-sdk/en/latest/get-started/index.html
https://www.arduino.cc/reference/en/libraries/dht-sensor-library/
https://www.arduino.cc/reference/en/libraries/dht-sensor-library/
https://github.com/ekstrand/ESP8266wifi
https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/src/WiFiClient.h
https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/src/WiFiClient.h
https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266HTTPClient/src/ESP8266HTTPClient.h
https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266HTTPClient/src/ESP8266HTTPClient.h
https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266HTTPClient/src/ESP8266HTTPClient.h
https://www.tme.eu/Document/7a4fd48d400b8c4c8309ef1e2b13cdd4/MR003-005-1.pdf
https://www.tme.eu/Document/7a4fd48d400b8c4c8309ef1e2b13cdd4/MR003-005-1.pdf

