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Abstract—Modern dialogue systems have made significant 

strides in understanding and responding to user queries. 

Despite these advancements, they still encounter 

challenges when dealing with diverse user intents, 

especially those not covered in their training data. This 

limitation often leads to inaccurate responses and 

misinterpretations, impeding the potential for meaningful 

interaction. Addressing this issue, our project introduces 

an innovative approach by integrating two sophisticated 

techniques: Adaptive Decision Boundary (ADB) for open 

intent detection and Multi-task Pre-training and 

Contrastive Learning with Nearest Neighbors (MTP-

CLNN) for open intent discovery. ADB's key feature is its 

ability to dynamically adjust decision boundaries 

surrounding known intent clusters, thereby effectively 

identifying open intents that fall outside these clusters. To 

further enhance the accuracy of the model, we have 

upgraded the ADB model to Adaptive Decision Boundary 

Learning via Expanding and Shrinking (ADBES). This 

enhancement includes an update to the model's loss 

function, by introducing the concept of shrinking 

boundaries. This modification allows for a more precise 

encapsulation of known intents and a better differentiation 

from emerging or unknown ones. Through the 

combination of ADBES and MTP-CLNN, our pipeline not 

only accurately identifies known intents but also uncovers 

new intent categories, facilitating a more robust and 

adaptable dialogue system capable of evolving with user 

needs. 

 

Keywords—Intent Recognition, Open intent detection, 

Open intent discovery, Banking77, ADB, MTP-CLNN. 

 

I. INTRODUCTION 

 

In the specialized context of banking sector dialogue 

systems, the accurate interpretation of user intents 

stands as a cornerstone for delivering personalized and 

efficient customer service. The task is relatively 

straightforward when dealing with common banking 

inquiries, such as requests for account balance checks 

or loan interest rates. However, the scenario becomes 

significantly more complex with the introduction of 

open intents, which encompass a wide range of user 

queries that do not fit neatly into predefined categories. 

These can range from nuanced questions about the 

intricacies of mortgage refinancing to specific 

concerns about fraud prevention measures or the 

details of conducting international transactions.   

Open Intent Recognition (OIR) is segmented into two 

distinct components: detection and discovery. The 

initial component, open intent detection, is tasked with 

discerning established intent categories and 

pinpointing the presence of any non-standard, open 

intents. While it excels at identifying predefined intent 

classes, it does not extend to discovering specific new 

intent categories. Conversely, the open intent 

discovery component takes this a step further by 

categorizing these detected open intents into finely 

detailed clusters, albeit without the capacity to 

recognize established intent categories. 

 

Figure 1 illustrates that while it is straightforward to 

identify specific user intents such as Top up limits and 

Card Linking, the variety and uncertainty of user needs 

suggest that pre-defined categories might not cover all 

scenarios, underscoring the value of distinguishing 

open intents from known ones to boost service quality. 

Despite significant advancements made using 

sophisticated methodologies across various 

benchmark datasets, challenges persist that impede 

further progress in Open Intent Recognition research 

such as the inability of both components to 

simultaneously recognize known intents and discover 

new, open ones, leaving OIR to largely remain a 

theoretical concept. This highlights the need for a 

framework that integrates both the detection and 

discovery modules, thereby streamlining the OIR 

process and enhancing its practical application. 

 



© September 2024 | IJIRT | Volume 11 Issue 4 | ISSN: 2349-6002 

IJIRT 168142   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY      1324 

 
Fig. 1.  An example for Open Intent Recognition. 

 

We introduce an Open Intent Recognition pipeline to 

identify known intents and discover new, open intents 

within interactive systems. This pipeline commences 

with dataset organization, tailored for both intent 

detection and discovery, followed by the setting of 

hyper-parameters and the establishment of a feature 

extraction framework. Once configured, the system is 

trained on labeled data to distinguish between known 

and open intents. The detection model isolates known 

intents, which then inform the training of the discovery 

model. This model proceeds to sort the open intents 

into specific clusters. Integrating the findings from 

both modules, the approach finalizes with the 

extraction of the top three defining keywords for each 

open-intent cluster, providing clear and actionable 

labels for each identified intent category. 

 

II. LITERATURE 

 

A. Open Intent Detection 

Open intent detection, which seeks to accurately 

categorize known intents while simultaneously 

identifying novel, unknown intents, has garnered 

considerable interest for its utility in enhancing 

dialogue systems and question-answering platforms. 

This evolving field has transitioned from initial 

machine learning approaches, such as SVM, which 

relied on intensive feature engineering (Scholkopf et 

al., 2001; Tax and Duin, 2004; Rifkin and Klautau, 

2004; Jain, Scheirer, and Boult, 2014), to more 

advanced deep learning techniques. These techniques, 

capable of autonomously learning deep semantic 

features from text, have set new benchmarks in the 

domain of open intent classification. Notable 

methodologies include the calibration of softmax 

output confidence by Brychcín and Kral (2017) for 

unknown intent detection, the use of adversarial 

learning by Yu et al. (2017) for generating training 

samples, and the application of generative adversarial 

networks by Ryu et al. (2018) to create and reject out-

of-distribution samples. 

 

In response to the challenges of predefining 

confidence scores for out-of-scope utterances, Lin and 

Xu (2019) introduced DeepUNK, employing a 

margin-based method for classifier training and 

leveraging the local outlier factor for unknown intent 

detection. This was followed by Zhang, Xu, and Lin 

(2021), who proposed a spherical decision boundary 

post-processing method with a pre-trained intent 

encoder. Prem et al. (2021) optimized a deep neural 

network-based intent classifier for unknown intent 

detection through multi-objective optimization, while 

Zhan et al. (2021) developed a discriminative classifier 

trained on pseudo outliers generated via self-

supervision. 

 

Parallelly, methods for open intent detection have been 

bifurcated into threshold-based and geometrical 

feature-based categories. Threshold-based techniques 

like MSP (Hendrycks and Gimpel, 2017), DOC (Shu 

et al., 2017), and OpenMax (Bendale and Boult, 2016) 

rely on probability thresholds to identify low-

confidence samples as open intents after initial training 

on known intent classification tasks. Meanwhile, 

geometrical feature-based methods, such as DeepUnk 

(Lin and Xu, 2019) and ADB (Zhang et al., 2021a), 

utilize metric learning and boundary loss, respectively, 

to detect open intents as anomalies. These methods 

underscore a pivotal shift towards utilizing deep 

learning's capability for better feature discrimination 

and balanced representation learning in open intent 

classification, though challenges in fully exploiting 

these capabilities persist. 

 

B. Open Intent Discovery 

The journey into Open Intent Discovery (OID) has 

begun with foundational studies focusing on the 

application of unsupervised clustering for the 

extraction of features and the categorization of intents. 

Early innovators in the domain, such as Shi et al. 

(2018) with their use of auto-encoders for feature 

extraction, Perkins and Yang (2019) with their 

emphasis on analyzing the context of utterances, and 

Chatterjee and Sengupta (2020) with their efforts to 

enhance density-based models, have laid the 

groundwork for future exploration. Subsequent 

research by Haponchyk et al. (2018; 2021) delved into 

the capabilities and limitations of supervised 

clustering for intent classification, highlighting the 

challenges in accommodating emergent intent types. 

This scenario set the stage for the exploration of semi-

supervised OID methods, as demonstrated by the 

contributions of Forman et al. (2015), Lin et al. (2020), 
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and Zhang et al. (2021c), showcasing the advantage of 

integrating known with unidentified intents to unearth 

open intent classifications. 

 

Progress in semi-supervised OID was furthered by Lin 

et al. (2020) through a strategy that incorporated 

supervised learning on recognizable intents via tasks 

related to sentence similarity, augmented by pseudo 

labeling for the categorization of unlabeled utterances 

to enhance embedding accuracy. In a similar vein, 

Zhang et al. (2021c) crafted a strategy that merged pre-

training on identifiable intents with the application of 

k-means clustering to unlabeled utterances, inspired by 

the Deep Clustering framework (Caron et al., 2018), 

aiming to refine learning processes and ensure the 

alignment of clusters. This approach aligns with 

methodologies that initially sort utterances into 

identifiable and unknown categories to facilitate the 

identification of new intents among the latter, a step 

that significantly hinges on the precision of the 

preliminary classification as depicted by Vedula et al. 

(2020) and Zhang et al. (2021b). 

 

The efficacy of multi-task pre-training and contrastive 

learning for clustering and enhancing representations, 

marking a departure from traditional methods reliant 

on extensive annotated data. Despite the success of 

large-scale pre-trained models, their application is 

challenged by linguistic discrepancies, spurring 

interest in dialogue-specific continual pre-training. 

Innovations by Zhang et al. (2020) and Vulic et al. 

(2021); Zhang et al. (2021e), which utilize task-related 

pre-training with a focus on intent detection, 

exemplify this shift. Drawing inspiration from Zhang 

et al. (2021d), this approach benefits OID by using 

publicly available intent datasets alongside domain-

specific unlabeled data, aligning well with the nature 

of OID tasks that inherently include unlabeled 

utterances. 

 

Moreover, the potential of contrastive learning in both 

computer vision and natural language domains is 

highlighted, showcasing its role in refining sentence 

embeddings through unsupervised techniques. Key 

contributions from Gao et al. (2021), Yan et al. (2021), 

and others underscore the value of contrastive loss in 

achieving an isotropic embedding space, with Kim et 

al. (2021) and Giorgi et al. (2021) further 

demonstrating its utility in improving BERT 

representations and developing universal sentence 

encoders. The effectiveness of self-supervised pre-

training coupled with supervised fine-tuning for few-

shot intent recognition, as well as the integration of 

contrastive loss with clustering goals for enhancing 

short text clustering, reaffirms the advantage of 

fostering semantic cohesion among utterances while 

addressing the pitfalls of false negatives typical in 

contrastive learning schemes. 

 

III. METHODOLOGY 

 

The interconnection between open intent detection and 

discovery modules is pivotal, yet there exists no 

comprehensive framework to seamlessly activate both 

modules for the dual purposes of identifying 

established intents and unearthing novel, open intents. 

Our framework initiates with preprocessing the initial 

dataset, subsequently channeling the labeled data of 

known intents into the open intent detection module 

for model training, as chosen by the user. Given the 

substantial volume of unlabeled data, which likely 

encompasses both known and open intents, the 

framework employs a robustly trained open intent 

detection model to categorize the unlabeled dataset. 

The outcome of this process includes both the 

recognized known intents and the newly identified 

open intents. 

 

 
Fig. 2.  Framework for Open Intent Recognition. 

 

These results, alongside the original labeled dataset, 

are  fed into the open intent discovery module, 

enhancing its training inputs through data 

augmentation.  

User-selected clustering techniques are then applied 

within this module to delineate distinct clusters of 

open intents. Following the completion of training 
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across both modules, the framework is adept at 

conducting open intent recognition on new, unlabeled 

datasets. The open intent detection module initially 

applies its refined model to segregate known intents 

from potential open intents within the data. 

Subsequently, the open intent discovery module steps 

in to categorize these open intents into more nuanced, 

fine-grained clusters. The framework extracts pivotal 

keywords from sentences within each open intent 

cluster, thereby assigning informative, keyword-based 

labels to each group. Through this sophisticated 

framework, we not only pinpoint established intents 

but also reveal and label new, open intents, enriching 

the dataset with valuable insights and classifications. 

 

We implement a method for adaptively learning 

decision boundaries tailored for open intent 

classification through a dynamic process of expansion 

and contraction. This approach begins by determining 

a decision boundary for each recognized intent class, 

defining a central point (ck) and a variable radius (∆k) 

for the boundary around each intent class k. The center 

ck is calculated as the mean vector of all instance 

representations within class k, while the boundary's 

radius ∆k is adjusted through learning to encompass as 

many relevant instances as possible, aiming to 

minimize both the empirical risk of excluding known 

intents and the open space risk of including too many. 

 

To navigate the delicate equilibrium between 

minimizing these risks, we adopt the Adaptive 

Decision Boundary (ADB) technique, which fine-

tunes the radius of the decision boundaries by 

balancing the need to expand the boundary to include 

as many known intent instances as possible against the 

need to contract it to exclude outliers. This balance is 

achieved through a loss function that adjusts the 

boundary radius based on the proximity of each 

instance to the class center, modulated by a variable γ 

that shifts emphasis between expanding and 

contracting the boundary based on whether an instance 

falls inside or outside the current radius. 

 

 
Fig. 3. Working of ADBES model. 

To refine this process further, we implement a strategy 

of boundary adjustment by taking into account 

instances outside the current class (negative instances), 

allowing for a more nuanced determination of the 

decision boundary. This involves either expanding the 

boundary to include more instances that are closely 

aligned with the class intent or contracting it to exclude 

negative instances that are too close. By introducing 

parameters for expansion (e) and contraction (s), we 

dynamically adjust the radius based on the proximity 

of negative instances to the decision center, 

encapsulated in a loss function that incorporates these 

adjustments to fine-tune the decision boundaries. 

 

This enhanced loss function involves distinguishing 

between instances falling outside (positive loss) and 

inside (negative loss) the decision boundary. Instances 

further away from the centroid than the boundary 

radius contribute to the positive loss, encouraging the 

expansion of the boundary to encompass these 

instances. Conversely, instances within the boundary 

radius contribute to the negative loss, which is scaled 

down for instances closer to the centroid, promoting a 

contraction of the boundary to exclude outliers. 

Our loss function intricately merges positive and 

negative loss components to refine decision 

boundaries for open intent classification, achieving a 

delicate balance between the inclusivity of known 

intents and the exclusion of outliers. This adaptive 

mechanism tailors decision boundaries dynamically, 

considering the distribution of both in-class and out-

of-class instances, to enhance the precision and 

effectiveness of classifying open intents. By 

embodying our expanding and shrinking 

methodology, this approach ensures decision 

boundaries are adjusted in a nuanced manner, 

informed by the proximity of instances to class 

centroids. Consequently, it fosters the development of 

decision boundaries that accurately encompass a 

majority of known intent instances while adeptly 

identifying and segregating open intent instances. This 

methodology underscores a vital equilibrium between 

embracing relevant instances for robust intent 

recognition and maintaining specificity by filtering out 

unrelated data, thereby optimizing the classification 

process for both known and emerging open intents. 

 

IV. EXPERIMENTS 

 

A. Dataset 

We conduct experiments on three benchmark datasets: 

BANKING, with 13,083 queries across 77 intents 

(Casanueva et al., 2020); OOS, featuring 150 intents, 
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22,500 in-domain, and 1,200 out-of-domain queries 

(Larson et al., 2019); and a curated version of 

StackOverflow, which has 20 classes and a total of 

20,000 samples from over 3.37 million questions (Xu 

et al., 2015). 

 

 
TABLE I. Statistics of Datasets 

 

B.  Baselines 

Our approach is compared against five  methods in 

open intent classification. These include MSP 

(Hendrycks and Gimpel 2016), which utilizes softmax 

predictions for identifying out-of-distribution 

instances, and DOC (Shu, Xu, and Liu 2017), 

employing deep learning to craft a multi-class 

classification framework while enhancing decision 

boundaries through Gaussian fitting. Additionally, 

OpenMax (Bendale and Boult 2016) integrates meta-

recognition with activation patterns in the penultimate 

layer to mitigate open space risks, whereas DeepUnk 

(Lin and Xu 2019) shifts from softmax to margin loss 

to refine deep feature discrimination, emphasizing the 

separation between classes and cohesion within them. 

Finally, ADB (Zhang, Xu, and Lin 2021) introduces an 

innovative post-processing technique for categorizing 

open intents by establishing a spherical decision 

boundary around each recognized class. 

 

C.  Evaluation Metrics 

Building on the approach by Zhang, Xu, and Lin 

(2021), we employ accuracy and macro F1-score as the 

primary metrics to assess performance in open intent 

classification. All unclassified intents are aggregated 

into a single open class for evaluation purposes. The 

overall accuracy and macro F1-score across all intents 

are calculated and represented as Acc and F1, 

respectively. Furthermore, to thoroughly assess the 

classifiers' effectiveness in distinguishing between 

known and unknown intents, we separately calculate 

the macro F1-scores for both known intents (indicated 

as Known) and unknown intents (indicated as 

Unknown). 

 

D.  Implementation Details 

For the ADBES model, In alignment with the 

methodologies outlined by Shu, Xu, and Liu (2017) 

and Lin and Xu (2019a), our approach involves 

designating a subset of classes as unknown (open) for 

the duration of the training phase, reintroducing them 

only during the testing phase. We partition all datasets 

into three distinct sets: training, validation, and testing. 

Within the training set, we vary the proportion of 

known classes to include 25%, 50%, and 75%, 

respectively, treating the remainder as a singular open 

class that is excluded from training. Both the identified 

known classes and the aggregated open class are then 

incorporated into the testing phase. We calculate the 

mean performance across ten experimental iterations 

for each specified ratio of known classes. For our 

model's architecture, we utilize the BERT (bert-

uncased, featuring a 12-layer transformer) framework 

as implemented in PyTorch, as per Wolf et al. (2019), 

adhering closely to the recommended optimization 

hyperparameters. To enhance training efficiency and 

performance outcomes, we opt to freeze the 

parameters across all but the final transformer layer of 

BERT. The model is trained with a batch size of 128 

and a learning rate of 2e-5. For optimizing the 

boundary loss (Lb), we employ the Adam optimization 

algorithm (Kingma and Ba, 2014) with a specific 

learning rate of 0.05 to fine-tune the boundary 

parameters. 

For the MTP-CLNN model, We base our model on the 

bert-base-uncased pre-trained model provided by Wolf 

et al. (2019), utilizing the [CLS] token as the 

representation output by BERT. For Multi-Task 

Processing (MTP), the model is initially trained to 

convergence using an external dataset. In the domain 

of contrastive learning, we transform the 768-

dimensional BERT embeddings into 128-dimensional 

vectors using a two-layer Multi-Layer Perceptron 

(MLP) and adjust the softmax temperature to 0.07. For 

the identification of nearest neighbors, we employ the 

inner product strategy as recommended by Johnson et 

al. (2017). The size of the neighborhood (K) is set to 

50 for the BANKING dataset, based on the empirical 

observation that the ideal K value is approximately 

half the average training set size per class. This 

neighborhood configuration is refreshed every five 

epochs. Regarding data augmentation, we set a random 

token replacement probability at 0.25. The AdamW 

optimizer, again referenced from Wolf et al. (2019), is 

used for model optimization. In the initial stage, the 

learning rate is 5e-5, while in the second stage, it is 

adjusted to 1e-5 for the BANKING. All experiments 

were executed on a V100 GPU. 

 

V. RESULTS 

 

A. Visualization 

Figure 4 visualizes the distribution of intent center 

clusters, distinguishing between known and open 
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classes. These visualizations underscore the MTP-

CLNN model's capacity to differentiate intents, which 

is pivotal for enhancing intent recognition accuracy. 

 

Fig. 4. Visualization of Intent center distribution. 

 

The Open Intent Recognition pipeline is depicted in 

Figure 5 below. It processes a user query, identifying 

known intents. Queries classified as open intents are 

then directed to the MTP-CLNN model for open intent 

discovery. 

 

 
Fig. 5. Open Intent Recognition pipeline. 

 

B. Result Analysis 

Table II displays the macro F1 scores for Open Intent 

Detection, comparing overall intent classes ("ALL"), 

unknown (open) intent classes ("Unknown"), and 

known classes ("Known"). Our method notably 

surpasses baseline methods, demonstrating its 

effectiveness. Particularly, it outperforms the ADB 

method in the BANKING dataset by margins of 

1.24%, 2.12%, and 1.38% for 25%, 50%, and 75% 

known class proportions, respectively. This 

improvement is observed not just for unknown classes 

but also for known classes, suggesting our method's 

capability to define precise and appropriate decision 

boundaries for different intent classes. 

 

 
TABLE II. The results of open intent 

classification by varying the proportions (25%, 50% 

and 75%) of known classes. 

 

The ADBES method establishes more precise decision 

boundaries for open intent classification, showing 

significant effectiveness, particularly with a 25% 

known class proportion. Its capacity to discern open 

intents notably surpasses that of the ADB method. 

 

The development of IntelliBank, a Service Bot 

designed for Open Intent Recognition in banking 

conversations, represents a significant application of 

our findings. By integrating Adaptive Decision 

Boundary Learning with Expanding and Shrinking for 

precise Open Intent Detection, alongside Multi-task 

Pre-training and Contrastive Learning with Nearest 

Neighbors for Open Intent Discovery, IntelliBank 

substantially improves intent recognition accuracy. It 

effectively discerns user queries and, upon detecting 

open intents, suggests relevant keywords. This 

facilitates efficient query resolution by bank staff, 

optimizing operations and enhancing customer 

service. The results indicate that IntelliBank's 

application of the ADBES method and MTP-CLNN 

model contributes significantly to its performance, 

underscoring the practical value of our research in real-

world settings. 

 

Notably, our model also demonstrates its efficacy on 

other datasets like OOS and StackOverflow. It 

successfully predicts known intents and identifies 

open intents, confirming its adaptability and 

effectiveness across different domains. 
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VI.        CONCLUSION 

 

Our research introduces a significant advancement in 

intent recognition technology, particularly in banking 

contexts, through the development of a sophisticated 

intent recognition pipeline. Central to our approach is 

the Adaptive Decision Boundary (ADB) method, 

enhanced by a novel adjustment to its loss function that 

incorporates expanding and shrinking boundaries to 

accurately exclude out-of-class examples. This 

refinement has led to a notable increase in accuracy of 

approximately 2% across 25%, 50%, and 75% known 

class ratios. The Multi-task Pre-training and 

Contrastive Learning with Nearest Neighbors (MTP-

CLNN) model further complements this by utilizing a 

dual-stage strategy. Initially, it leverages both external 

and internal data for comprehensive representation 

learning. Subsequently, it employs contrastive 

learning to harness self-supervisory signals, 

significantly bolstering the performance of New Intent 

Detection (NID) under both unsupervised and semi-

supervised conditions. 

 

Moreover, our contribution includes the development 

of an open intent recognition pipeline that combines 

the ADBES and MTP-CLNN model’s strengths. This 

pipeline effectively identifies known intents and 

uncovers new ones, showcasing significant 

effectiveness on the BANKING77 dataset. 

Additionally, the model's versatility has been further 

validated on other datasets such as OOS and 

StackOverflow, highlighting its widespread 

applicability and strong performance in various 

contexts. 

 

Future directions for this research include exploring 

the scalability of the ADBES method across various 

domains, enhancing the MTP-CLNN model for real-

time processing in dynamic environments, and 

integrating advanced NLP technologies for automated 

response generation. 
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