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Abstract- Online Convex Optimization (OCO) 

provides a powerful framework for addressing 

dynamic decision-making processes in environments 

where data arrives sequentially. Although NP-hard 

problems are inherently challenging due to their 

computational complexity, OCO offers an efficient, 

approximate solution technique that adapts to real-

time data and constraints. In the OCO framework, 

decisions are made incrementally without full 

knowledge of future inputs, with the goal of 

minimizing a loss function over time. By leveraging 

convexity properties and optimization techniques, 

OCO can approximate solutions to NP-hard problems 

such as online linear programming, scheduling, 

resource allocation, and sub modular maximization. 

This approach is particularly effective in scenarios 

like machine learning, network optimization, and 

online markets, where decisions must be made 

iteratively under uncertainty. OCO allows for real-

time adjustments based on immediate feedback, often 

with competitive guarantees that bound the difference 

between online solutions and offline optimal 

outcomes. Through methods such as gradient descent, 

mirror descent, and regret minimization, OCO 

facilitates scalable and practical approximations for 

NP-hard problems that otherwise resist tractable 

solutions in static, offline settings. Thus, online convex 

optimization extends traditional optimization 

methods, making it a critical tool in solving complex, 

real-time NP-hard problems across various 

industries, including finance, logistics, and 

telecommunications. 
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INTRODUCTION 

 

Online Convex Optimization (OCO) is a crucial 

framework for solving complex decision-making 

problems that occur in dynamic and uncertain 

environments. Unlike traditional optimization, 

where all input data is available at the outset, OCO 

tackles problems where decisions must be made 

sequentially, without complete knowledge of future 

inputs. This approach is particularly valuable for 

NP-hard problems, where finding exact solutions is 

computationally infeasible due to the problem's 

exponential complexity. 

NP-hard problems—such as job scheduling, 

resource allocation, and network optimization—

present a significant challenge, especially when 

real-time responses are required. OCO addresses 

this by approximating solutions through iterative 

adjustments. At each time step, a decision is made 

based on the current state, and feedback is received 

in the form of a loss function, which indicates how 

close the decision is to optimal. This feedback-

driven mechanism allows the algorithm to 

continuously learn and improve its performance 

over time. 

OCO relies on the convexity of the loss function, 

which enables the use of efficient techniques like 

gradient descent and mirror descent to minimize 

the cumulative loss across time steps. While NP-

hard problems are typically non-convex, the OCO 

framework can still be applied to obtain near-

optimal solutions by approximating the problem in 

a convex manner. This is done through techniques 

such as regret minimization, where the algorithm 

aims to minimize the difference between the 

cumulative loss of the online solution and the 

optimal offline solution. 

The ability to dynamically adjust decisions in real-

time makes OCO a powerful tool in various 

applications, including machine learning, network 

traffic management, finance, and resource 

allocation in cloud computing. In these domains, 

solving NP-hard problems through online convex 

optimization helps balance computational 

efficiency and solution quality, even under 

constraints of time and uncertainty. 

In summary, OCO provides a practical and scalable 

approach to tackling NP-hard problems by utilizing 

real-time data and adaptive decision-making. This 

approach has transformed fields requiring quick, 
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iterative solutions, making OCO an essential 

technique for handling complex optimization 

challenges in the modern era. 

Online Convex Optimization (OCO) provides a 

powerful framework for addressing a variety of 

decision-making problems where decisions must be 

made sequentially, and feedback is only received 

after the decision is made. In the context of NP-

hard problems, OCO becomes particularly 

interesting, as it offers ways to approximate 

solutions for computationally difficult problems 

under real-time constraints. 

While NP-hard problems cannot typically be solved 

efficiently in general, OCO can still be applied to 

derive approximate solutions through iterative 

methods. Below are some key approaches and 

algorithms that relate to applying OCO to NP-hard 

problems: 

1. Gradient Descent-based Methods 

Follow the Regularized Leader (FTRL): One of the 

most fundamental approaches in OCO is FTRL, 

which aims to make decisions based on the 

accumulated loss over time. The decision at each 

time step is made by minimizing the sum of 

previous losses plus a regularization term. 

Challenges for NP-hard problems: The challenge is 

that for NP-hard problems, even computing the 

gradient or the exact minimization at each step can 

be intractable. For this reason, approximate 

gradient computations or surrogate loss functions 

are often used. 

Projected Gradient Descent (PGD): For problems 

with constraints, Projected Gradient Descent allows 

for approximate solutions by iterating between 

gradient descent steps and projecting the solution 

onto a feasible region. 

Approximation for NP-hard problems: In NP-hard 

problems, the projection step itself may be difficult. 

However, relaxations (e.g., convex relaxations) are 

often employed to approximate this projection. 

2. Mirror Descent 

Mirror Descent is a generalization of gradient 

descent for optimization over non-Euclidean 

geometries. It is often used in OCO because it can 

handle a variety of constraints and offers fast 

convergence in practice. 

Application to NP-hard problems: In NP-hard 

settings, Mirror Descent can be applied to a convex 

relaxation of the original problem. For example, 

combinatorial problems like the Traveling 

Salesman Problem (TSP) or the Maximum Cut 

problem can be relaxed into semi definite 

programming (SDP) or linear programming (LP) 

formulations, which can then be tackled using 

Mirror Descent in an online setting. 

3. Online-to-Offline Conversion 

An important aspect of OCO is the ability to 

convert online algorithms into offline ones. This 

can be useful for solving NP-hard problems by 

turning an online algorithm into a batch algorithm 

to approximate solutions offline. 

Approach: A typical strategy is to run the online 

algorithm iteratively and use the performance 

bounds on regret (the difference between the 

algorithm's performance and the optimal offline 

solution) to get a good offline solution. 

4. Online Submodular Optimization 

Sub modular functions, which exhibit diminishing 

returns, appear in many NP-hard combinatorial 

optimization problems (e.g., set cover, influence 

maximization). There are OCO algorithms 

specifically designed for sub modular functions: 

Greedy Algorithms: Online greedy algorithms can 

approximate sub modular maximization with 

theoretical performance guarantees, often within a 

constant factor of the optimal solution. 

Continuous Relaxation and Rounding: Some NP-

hard problems involving sub modular functions can 

be relaxed into continuous spaces where OCO 

methods such as gradient descent or FTRL can be 

applied. Once an approximate solution is found, 

rounding techniques (e.g., pipage rounding) are 

used to convert it back into a feasible solution. 

5. Bandit Algorithms in OCO 

In cases where only partial or noisy feedback is 

available (common in real-world NP-hard 

problems), bandit-based methods in OCO are 

useful. These algorithms operate under limited 
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feedback, where only the loss for the chosen action 

is observed, not the entire loss function. 

EXP3 Algorithm: An example is the EXP3 

(Exponential-weight algorithm for Exploration and 

Exploitation), which is a bandit algorithm that can 

handle adversarial environments. It could be 

adapted to handle NP-hard combinatorial 

optimization problems by discretizing the action 

space. 

6. Relaxations and Approximation Algorithms 

Formulations may not exist. Instead, relaxations 

such as convex or semi definite relaxations are 

often used: 

Convex Relaxations: These are used to 

approximate an NP-hard problem as a convex 

problem. For example, relaxations of integer 

programs into linear programs are common in 

problems like facility location or max-cut. 

Semidefinite Programming (SDP): Some NP-hard 

problems, such as max-cut, can be approximated 

via SDP relaxations, which can then be solved 

using OCO methods. 

7. Online Primal-Dual Algorithms 

Primal-dual methods are widely used in 

optimization. In the context of OCO, online primal-

dual methods alternate between primal and dual 

updates. These methods are suitable for many 

combinatorial NP-hard problems, particularly in 

network optimization, flow problems, and 

scheduling. 

Dual Averaging: A specific method within primal-

dual approaches that can be used to balance 

between primal and dual updates to achieve 

competitive performance on NP-hard problems. 

Challenges and Open Problems 

Scalability: NP-hard problems grow exponentially 

with input size, and even OCO algorithms may 

struggle with large instances. Efficient 

approximation strategies are often crucial. 

Intractable Projections: For many NP-hard 

problems, projection onto the feasible set may be 

computationally prohibitive. In such cases, 

approximate projection methods or alternative 

formulations are needed. 

Regret Minimization: In an NP-hard setting, even 

minimizing regret efficiently can be difficult. 

Developing algorithms that achieve low regret in 

practical time is an open area of research. 

Applications of OCO in NP-hard problems 

Scheduling and Resource Allocation: Problems like 

job scheduling or resource allocation often have 

combinatorial complexities and can be formulated 

as NP-hard problems. OCO provides a way to 

adaptively adjust decisions based on past outcomes, 

offering good approximations. 

Portfolio Optimization: In finance, portfolio 

optimization is often NP-hard due to the 

combinatorial nature of asset allocation. OCO 

methods can handle online decision-making in this 

domain under uncertainty. 

Combinatorial Auctions: Many problems in auction 

theory, such as winner determination in 

combinatorial auctions, are NP-hard. OCO 

provides tools for making online bids or 

approximating auction outcomes efficiently. 

The working of Online Convex Optimization 

(OCO) for NP-hard problems involves a sequence 

of decisions made over time, where the learner tries 

to minimize some form of loss or cost without 

knowing the future. OCO is particularly useful in 

such contexts because NP-hard problems are 

typically intractable for exact solutions, but OCO 

allows for adaptive decision-making that leads to 

approximate solutions in real-time. 

Here's how OCO works when applied to NP-hard 

problems: 

1. Problem Setup: 

Sequential Decision-Making: In OCO, the learner 

operates in rounds. At each round ttt, the learner 

picks a decision xtx_txt from a decision set 

X\mathcal{X}X, often a convex set. After choosing 

xtx_txt, the environment reveals a loss function 

ft(x)f_t(x)ft(x), which penalizes the decision. The 

learner's goal is to minimize the cumulative loss 

over time. 

NP-hardness Context: NP-hard problems (e.g., 

combinatorial optimization, submodular 

maximization) generally involve discrete decision 

spaces, but OCO methods often assume convexity 
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and continuous decision spaces. Hence, for NP-

hard problems, convex relaxations or 

approximations of the decision space are used to fit 

the OCO framework. 

2. Convex Relaxations: 

Since NP-hard problems typically involve non-

convex (and often combinatorial) constraints, the 

first step is to transform the problem into a convex 

one. This is done using relaxations of the original 

NP-hard problem. 

Example: Maximum Cut Problem (NP-hard): The 

goal is to partition a graph’s nodes into two sets 

such that the sum of weights of edges crossing the 

sets is maximized. This problem can be relaxed 

into a semidefinite program (SDP), which is 

convex and can be tackled using OCO methods. 

Integer Programming Relaxation: Many NP-hard 

combinatorial optimization problems, such as job 

scheduling or vehicle routing, can be approximated 

by relaxing integer constraints into linear or convex 

constraints. This converts the problem into one 

where OCO can apply. 

3. Feedback and Losses: 

In OCO, after choosing a decision xtx_txt, the 

learner gets feedback in the form of the loss 

function ft(x)f_t(x)ft(x). For NP-hard problems, the 

exact loss function might be difficult to compute, 

so it is often approximated. 

Full Information vs. Bandit Feedback: 

In full-information OCO, the learner observes the 

entire loss function after each round, allowing for 

exact gradient computations. 

In bandit settings, the learner only observes the loss 

for the chosen action, leading to more complex 

exploration-exploitation trade-offs. This is more 

common in real-world NP-hard settings where only 

partial feedback is available. 

4. Algorithmic Approach: 

a. Gradient-Based Methods: 

In convex optimization, gradient descent methods 

are commonly used to iteratively update the 

decision xtx_txt by moving in the direction 

opposite to the gradient of the loss function 

∇ft(xt)\nabla f_t(x_t)∇ft(xt). 

Projected Gradient Descent (PGD): For NP-hard 

problems with constraints, PGD is used, where 

after each gradient update, the decision is projected 

back onto the convex relaxation of the feasible set. 

However, this projection step can be 

computationally expensive, so approximate 

projections or simpler heuristics may be used. 

b. Follow the Regularized Leader (FTRL): 

In FTRL, the learner selects decisions by 

minimizing a regularized sum of past losses. At 

time ttt, the decision is: 

xt=argminx∈X(∑i=1t−1fi(x)+R(x))x_t = \arg 

\min_{x \in \mathcal{X}} \left( \sum_{i=1}^{t-1} 

f_i(x) + R(x) \right)xt=argx∈Xmin(i=1∑t−1fi

(x)+R(x)) where R(x)R(x)R(x) is a regularization 

term (e.g., R(x)=∥x∥2R(x) = \|x\|^2R(x)=∥x∥2) that 

encourages stability and smoothness. 

For NP-hard problems, the loss functions are 

typically the relaxations of the original problem's 

objective, and the regularizer helps ensure that the 

decisions stay within the feasible region of the 

relaxed problem. 

c. Mirror Descent: 

Instead of updating in Euclidean space, Mirror 

Descent updates in a dual space (non-Euclidean). It 

is particularly effective for problems where 

constraints make simple gradient descent 

inefficient. 

For NP-hard problems, Mirror Descent is used with 

convex relaxations of the original problem, and it 

helps handle large decision spaces or non-smooth 

objectives more effectively than standard gradient 

methods. 

5. Online to Offline Conversion: 

For many NP-hard problems, the offline version 

(where all loss functions are known in advance) is 

extremely difficult to solve. OCO methods like 

FTRL and online gradient descent can be used to 

produce near-optimal solutions offline by running 

the online algorithm and accumulating information 

over time. 

Regret Minimization: One of the key performance 

measures in OCO is regret, which is the difference 

between the cumulative loss of the online algorithm 

and the best possible offline decision. The goal is to 

minimize regret over time. For NP-hard problems, 
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OCO provides guarantees on how well the online 

algorithm will perform compared to the offline 

optimum. 

6. Approximation Techniques for NP-hard 

Problems: 

In many cases, the exact loss minimization at each 

step is computationally intractable. Therefore, 

approximate algorithms are used to compute the 

next decision xtx_txt. 

Submodular Optimization: For NP-hard problems 

involving submodular functions, online greedy 

algorithms with provable approximation ratios are 

often used. These algorithms pick decisions that 

approximately maximize the marginal gain, subject 

to sub modularity (e.g., in set cover or influence 

maximization problems). 

Rounding Techniques: After finding a solution in 

the relaxed convex space, rounding techniques 

(such as pip age rounding or randomized rounding) 

can be used to map the continuous solution back to 

the discrete feasible space of the original NP-hard 

problem. 

7. Applications to NP-Hard Problems: 

Combinatorial Optimization (e.g., TSP, Job 

Scheduling): NP-hard combinatorial problems can 

be relaxed and tackled using OCO techniques like 

projected gradient descent or FTRL. These 

methods offer fast approximations in online 

settings. 

Network Design and Flow Problems: Many NP-

hard problems in network design (e.g., routing, 

network flow) can be solved approximately using 

primal-dual online methods in combination with 

OCO. 

Sub modular Maximization: In problems where the 

objective function is sub modular (like sensor 

placement, coverage, or influence maximization), 

OCO techniques like online greedy algorithms or 

online gradient descent over a relaxed problem can 

be employed to find approximate solutions. 

8. Challenges: 

Computational Complexity: Many NP-hard 

problems are difficult because even computing 

approximate gradients or performing projections 

may require significant computation. To handle 

this, heuristics or approximate projections are often 

used. 

Regret Minimization in NP-hard Contexts: The 

regret bounds for OCO algorithms may degrade in 

NP-hard problems due to the complexity of the loss 

functions, which makes minimizing regret 

efficiently a challenging open problem. 

Special Cases: 

The following problem classes are all convex 

optimization problems, or can be reduced to convex 

optimization problems via simple transformations:  

 
A hierarchy of convex optimization problems. 

(LP: linear programming, QP: quadratic 

programming, SOCP second-order cone program, 

SDP: semidefinite programming, CP: conic 

optimization.) 

• Linear programming problems are the simplest 

convex programs. In LP, the objective and 

constraint functions are all linear. 

• Quadratic programming are the next-simplest. 

In QP, the constraints are all linear, but the 

objective may be a convex quadratic function. 

• Second order cone programming are more 

general. 

• Semidefinite programming are more general. 

• Conic optimization are even more general - 

see figure to the right, 

Other special cases include; 

• Least squares 

• Quadratic minimization with convex quadratic 

constraints 

• Geometric programming 

• Entropy maximization with appropriate 

constraints. 

 

https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Quadratic_programming
https://en.wikipedia.org/wiki/Quadratic_programming
https://en.wikipedia.org/wiki/Second-order_cone_programming
https://en.wikipedia.org/wiki/Semidefinite_programming
https://en.wikipedia.org/wiki/Conic_optimization
https://en.wikipedia.org/wiki/Conic_optimization
https://en.wikipedia.org/wiki/Linear_programming
https://en.wikipedia.org/wiki/Quadratic_programming
https://en.wikipedia.org/wiki/Second_order_cone_programming
https://en.wikipedia.org/wiki/Semidefinite_programming
https://en.wikipedia.org/wiki/Conic_optimization
https://en.wikipedia.org/wiki/Least_squares
https://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_programming
https://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_programming
https://en.wikipedia.org/wiki/Geometric_programming
https://en.wikipedia.org/wiki/Entropy_maximization
https://en.wikipedia.org/wiki/File:Hierarchy_compact_convex.png
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CONCLUSION 

 

Online Convex Optimization (OCO) offers a 

practical framework for addressing NP-hard 

problems in settings where decisions must be made 

sequentially and efficiently, with feedback only 

available after each decision. Although NP-hard 

problems are generally intractable for exact 

solutions, OCO enables adaptive decision-making 

through approximation techniques, convex 

relaxations, and iterative updates. 

The key advantage of OCO for NP-hard problems 

lies in its ability to convert complex, often 

combinatorial problems into more tractable convex 

forms. This is done through relaxations (e.g., linear 

or semi definite programming) or heuristic 

approaches that allow for efficient real-time 

solutions with provable approximation guarantees. 

Algorithms like Follow the Regularized Leader 

(FTRL), Projected Gradient Descent (PGD), and 

Mirror Descent are commonly used to handle such 

problems within the OCO framework. 

By focusing on minimizing regret, OCO ensures 

that the solution quality improves over time and 

remains competitive compared to the best possible 

offline solution. However, challenges remain, 

especially in terms of computational complexity 

and ensuring efficient projections or 

approximations in large-scale or highly constrained 

NP-hard problems. 

In summary, OCO provides a robust and scalable 

approach to handling NP-hard problems in dynamic 

and uncertain environments, making it a valuable 

tool in fields such as combinatorial optimization, 

sub modular maximization, and real-time decision-

making. While exact solutions remain out of reach 

for most NP-hard problems, OCO offers a 

promising path toward high-quality, near-optimal 

solutions in an online setting. 

Online Convex Optimization (OCO) provides a 

significant and flexible toolset for addressing the 

complexity and intractability inherent in NP-hard 

problems. It offers a method to deal with real-world 

scenarios where decisions need to be made 

sequentially, under uncertainty, and without the 

benefit of complete information about future 

outcomes. 

REFERENCE 

 

[1] "Online Convex Optimization" by Shai 

Shalev-Shwartz and Shai Ben-David: This 

book provides a comprehensive introduction to 

online learning and convex optimization. It 

covers algorithms, techniques, and applications 

of OCO in various contexts. 

[2] "Convex Optimization" by Stephen Boyd and 

Lieven Vandenberghe: While this book 

primarily focuses on convex optimization, it 

provides a solid foundation for understanding 

the concepts used in online settings. 

[3] "Online Learning and Online Convex 

Optimization" by Shai Shalev-Shwartz: This 

survey discusses the key concepts of online 

learning and the relationship between online 

learning and convex optimization. 

[4] "Online Learning: Theory, Algorithms, and 

Applications" by Nicolo Cesa-Bianchi and 

Gabor Lugosi: This paper reviews various 

algorithms and theoretical results in online 

learning, including applications in NP-hard 

problems. 

[5] "Online Convex Optimization with 

Application to Online Learning" by Shai 

Shalev-Shwartz and Niv Cohen (2012): This 

paper provides a framework for OCO and 

discusses its applications in online learning 

scenarios. 

[6] "Online Convex Optimization: An Overview" 

by M. Zinkevich et al. (2010): This paper 

presents an overview of OCO, including key 

algorithms and their applications to NP-hard 

problems. 

[7] "Online Convex Optimization and Online 

Learning: Theoretical Foundations" by A. 

Hazan and S. Shalev-Shwartz (2009): This 

paper discusses the theoretical underpinnings 

of OCO and its implications for online learning 

in the context of NP-hard problems. 

[8] "Online Convex Optimization for Resource 

Allocation Problems" by Z. Yang et al. (2015): 

This paper explores OCO in resource 

allocation contexts, highlighting its relevance 

to NP-hard problems. 

[9] "Online Algorithms for NP-Hard Problems: A 

Survey" by C. Chekuri and S. K. Das (2006): 

This survey reviews online algorithms for 

various NP-hard problems, providing insights 

into how OCO approaches can be applied. 

[10] Proceedings of the Annual Conference on 



© October 2024| IJIRT | Volume 11 Issue 5 | ISSN: 2349-6002 
 

IJIRT 168332 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 410 

Learning Theory (COLT) and International 

Conference on Machine Learning (ICML): 

Many papers presented at these conferences 

discuss advancements in online convex 

optimization and its applications to NP-hard 

problems. 

[11] "Regret Minimization in Online Learning" by 

Shai Shalev-Shwartz and Shai Ben-David 

(2014) 

This paper discusses the concept of regret 

minimization, which is fundamental to online 

optimization and learning. It covers various 

algorithms and their implications for NP-hard 

problems. 

[12] "Efficient Online Learning for Convex 

Programs" by M. Zinkevich et al. (2008) 

This paper introduces efficient online 

algorithms for convex programs and explores 

their applications in scenarios that involve NP-

hard problems. 

[13] "Online Convex Optimization and Generalized 

Infimal Convolutions" by M. S. Kivinen and 

M. K. Warmuth (2002) 

This research presents generalized infimal 

convolutions in online convex optimization 

and discusses how these concepts relate to NP-

hard problems. 

[14] "Adaptive Online Convex Optimization" by A. 

Hazan and S. Shalev-Shwartz (2012) 

This work investigates adaptive strategies for 

online convex optimization and their 

applications to complex problems, including 

NP-hard instances. 

[15] "Online Algorithms for Minimizing the 

Maximum Weighted Completion Time" by K. 

T. A. A. Albers and M. M. K. Stoll (2005) 

This paper focuses on online algorithms that 

address NP-hard scheduling problems through 

an OCO framework. 

[16] "Online Convex Optimization with 

Applications to Online Learning" by Shai 

Shalev-Shwartz 

This book chapter focuses on online convex 

optimization methods and their applications in 

various fields, including problems that are NP-

hard. 

[17] "Algorithms for Online Convex Optimization 

and Machine Learning" by A. Hazan 

This book provides a deeper understanding of 

algorithms used in OCO and their implications 

for NP-hard optimization problems. 

[18] "Online Convex Optimization: A Survey" by 

E. Hazan, et al. (2017) 

This survey comprehensively reviews the state 

of online convex optimization, including the 

theoretical foundations and practical 

implications for NP-hard problems. 

[19] "A Survey of Online Algorithms for NP-Hard 

Problems" by C. Chekuri and S. K. Das (2007) 

This paper reviews various online algorithms 

designed to tackle NP-hard problems, offering 

a perspective on how OCO techniques can be 

applied. 

[20] "Online Learning Algorithms for 

Combinatorial Optimization Problems" by M. 

J. Fischer et al. (2009) 

This research explores the application of online 

learning algorithms to combinatorial 

optimization problems, many of which are NP-

hard. 

[21] "Online Convex Optimization for Network 

Routing" by G. Goel and A. M. L. M. Mehta 

(2011) 

This paper discusses OCO algorithms in the 

context of network routing, which can involve 

NP-hard optimization problems. 

[22] "Algorithms for Online Convex Optimization: 

Theory and Applications" by A. Hazan, et al. 

(2014) 

This paper investigates the theoretical 

framework for OCO and its applications to 

various NP-hard problems, particularly in the 

context of machine learning and data analysis. 

[23] Proceedings from the Conference on Neural 

Information Processing Systems (NeurIPS) 

and ACM Symposium on Theory of 

Computing (STOC) often contain cutting-edge 

research related to online learning and 

optimization algorithms for NP-hard problems. 

 


