
© October 2024 | IJIRT | Volume 11 Issue 5 | ISSN: 2349-6002

IJIRT 168389 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 737

Ensuring Secure Cloud Storage with Dual-Server Public-

Key Encryption Enabling Keyword Search

AKHEEL MOHAMMED1, SAMEERA KHANAM2, AYESHA3, G. RAVI KUMAR4
1, 2, 4Dept. of CSE, DRVRKWECT, Hyderabad,

3Software Engineer at Sonata Software Pvt Hyderabad.

Abstract— Searchable encryption is a critical component

of safeguarding data privacy in cloud storage

environments. By enabling efficient keyword-based

searches on encrypted data, searchable encryption

empowers users to retrieve specific information without

compromising the confidentiality of the underlying data.

While public-key encryption with keyword search (PEKS)

offers a promising solution, traditional PEKS systems are

susceptible to keyword guessing attacks (KGA) by

malicious cloud servers. These attacks exploit the inherent

leakage of information in PEKS schemes, allowing

adversaries to infer sensitive keywords based on search

results. To address this vulnerability and enhance the

security of searchable encryption, we propose a novel dual-

server PEKS (DS-PEKS) framework. Our approach

introduces a layer of indirection by splitting the search

functionality across two non-colluding cloud servers. This

separation of duties prevents any single server from

gaining complete knowledge of the search keywords,

thereby mitigating the risk of KGA. To further strengthen

the security of our DS-PEKS framework, we leverage a

newly introduced linear and homomorphic smooth

projective hash function (LH-SPHF). LH-SPHF is a

cryptographic primitive that combines the properties of

linearity and homomorphism, enabling efficient and

secure keyword search operations. By integrating LH-

SPHF into our DS-PEKS construction, we ensure that the

search process remains private and resistant to attacks.

Our proposed DS-PEKS system offers several advantages

over traditional PEKS schemes. First, it provides robust

protection against KGA by preventing any single cloud

server from gaining complete control over the search

process. Second, it leverages the power of LH-SPHF to

ensure the privacy and security of keyword searches. Third,

our DS-PEKS construction is efficient and scalable,

making it suitable for deployment in real-world cloud

storage environments. In summary, our dual-server PEKS

framework, combined with the use of LH-SPHF,

represents a significant advancement in the field of

searchable encryption. By addressing the shortcomings of

traditional PEKS systems and providing a secure and

efficient solution for keyword search on encrypted data,

our approach contributes to the protection of sensitive

information in cloud storage.

Index Terms- Location-based social network, text mining,

travel route recommendation.

I. INTRODUCTION

Cloud computing is the use of computing resources

(hardware and software) that are delivered as a service

over a network (typically the Internet). The name

comes from the common use of a cloud-shaped

symbol as an abstraction for the complex

infrastructure it contains in system diagrams. Cloud

computing entrusts remote services with a user's data,

software and computation. Cloud computing consists

of hardware and software resources made available on

the Internet as managed third-party services. These

services typically provide access to advanced software

applications and high-end networks of server

computers. Cloud Computing comprises three

different service models, namely Infrastructure-as-a-

Service (IaaS), Platform-as-a-Service (PaaS), and

Software-as-a-Service (SaaS). The three service

models or layer are completed by an end user layer

thatencapsulates the end user perspective on cloud

services. The model is shown in figure below. If a

cloud user accesses services on the infrastructure

layer, for instance, she can run her own applications

on the resources of a cloud infrastructure and remain

responsible for the support, maintenance, and security

of these applications herself. If she accesses a service

on the application layer, these tasks are normally taken

care of by the cloud service provider.

Advantages of cloud computing:

• Save costs by increasing productivity with fewer

people, lowering the cost per unit or project.

• Reduce technology infrastructure expenses with

minimal upfront costs and pay-as-you-go plans.

• Enable global workforce access with just an

Internet connection.

© October 2024 | IJIRT | Volume 11 Issue 5 | ISSN: 2349-6002

IJIRT 168389 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 738

• Optimize workflows for faster completion with

fewer personnel.

• Lower capital expenditures on hardware, software,

and licenses.

• Access data anytime, anywhere for greater

convenience.

• Monitor projects efficiently, staying on budget and

ahead of deadlines.

• Require less staff training due to ease of use in the

cloud.

• Avoid the need for costly new software licenses

and programs.

• Enhance flexibility to adapt without major

financial or personnel issues.

II. LITERATURE SURVEY

A new general framework for secure public key

encryption with keyword search

AUTHORS: R. Chen, Y. Mu, G. Yang, F. Guo, and X.

Wang

Public Key Encryption with Keyword Search (PEKS),

introduced by Boneh et al. in Eurocrypt’04, allows

users to search for encrypted documents on an

untrusted server without revealing any information.

This notion is very useful in many applications and has

attracted a lot of attention by the cryptographic

research community. However, one limitation of all the

existing PEKS schemes is that they cannot resist the

Keyword Guessing Attack (KGA) launched by a

malicious server. In this paper, we propose a new

PEKS framework named Dual-Server Public Key

Encryption with Keyword Search (DS-PEKS). This

new framework can withstand all the attacks, including

the KGA from the two untrusted servers, as long as

they do not collude. We then present a generic

construction of DS-PEKS using a new variant of the

Smooth Projective Hash Functions (SPHFs), which is

of independent interest.

Searchable symmetric encryption: Improved

definitions and efficient constructions

AUTHORS: R. Curtmola, J. Garay, S. Kamara, and R.

Ostrovsky

Searchable symmetric encryption (SSE) allows a party

to outsource the storage of his data to another party in

a private manner, while maintaining the ability to

selectively search over it. This problem has been the

focus of active research and several security

definitions and constructions have been proposed. In

this paper we begin by reviewing existing notions of

security and propose new and stronger security

definitions. We then present two constructions that we

show secure under our new definitions. Interestingly,

in addition to satisfying stronger security guarantees,

our constructions are more efficient than all previous

constructions.

Further, prior work on SSE only considered the setting

where only the owner of the data can submit search

queries. We consider the natural extension where an

arbitrary group of parties other than the owner can

submit search queries. We formally define SSE in this

multi-user setting and present an efficient

construction.

Public Key Encryption with Keyword Search based

on K-Resilient IBE

AUTHORS: D. Khader

Abstract. An encrypted email is sent from Bob to

Alice. A gateway wants to check whether a certain

keyword exists in an email or not for some reason (e.g.

routing). Nevertheless Alice does not want the email

to be decrypted by anyone except her including the

gateway itself. This is a scenario where public key

encryption with keyword search (PEKS) is needed. In

this paper we construct a new scheme (KR-PEKS) the

KResilient Public Key Encryption with Keyword

Search. The new scheme is secure under a chosen

keyword attack without the random oracle. The ability

of constructing a Public Key Encryption with

Keyword Search from an Identity Based Encryption

was used in the construction of the KR-PEKS. The

security of the new scheme was proved by showing

that the used IBE has a notion of key privacy. The

scheme was then modified in two different ways in

order to fulfill each of the following: the first

modification was done to enable multiple keyword

searches and the other was done to remove the need of

secure channels.

Generic constructions of secure-channel free

searchable encryption with adaptive security

AUTHORS: K. Emura, A. Miyaji, M. S. Rahman, and

K. Omote

For searching keywords against encrypted data, public

key encryption scheme with keyword search (PEKS),

© October 2024 | IJIRT | Volume 11 Issue 5 | ISSN: 2349-6002

IJIRT 168389 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 739

and its extension secure-channel free PEKS (SCF-

PEKS), has been proposed. In this paper, we extend

the security of SCF-PEKS, calling it adaptive SCF-

PEKS, wherein an adversary (modeled as a

“malicious-but-legitimate” receiver) is allowed to

issue test queries adaptively. We show that adaptive

SCF-PEKS can be generically constructed by

anonymous identity-based encryption only. That is,

SCF-PEKS can be constructed without any additional

cryptographic primitive when compared with the

Abdalla et al. PEKS construction (J. Cryptology

2008), even though adaptive SCF-PEKS requires

additional functionalities. We also propose other

adaptive SCF-PEKS construction, which is not fully

generic but is efficient compared with the first one.

Finally, we instantiate an adaptive SCF-PEKS scheme

(via our second construction) that achieves a similar

level of efficiency for the costs of the test procedure

and encryption, compared with the (non-adaptive

secure) SCF-PEKS scheme by Fang et al.

(CANS2009). Copyright © 2014 John Wiley & Sons,

Ltd. 5) Cooperative provable data possession for

integrity verification in multicloud storage

Off-line keyword guessing attacks on recent public

key encryption with keyword search schemes

AUTHORS: W.-C. Yau, S.-H. Heng, and B.-M. Goi

The Public Key Encryption with Keyword Search

Scheme (PEKS) was first proposed by Boneh et al. in

2004. This scheme solves the problem of searching on

data that is encrypted using a public key setting.

Recently, Baek et al. proposed a Secure Channel Free

Public Key Encryption with Keyword Search (SCF-

PEKS) scheme that removes the secure channel for

sending trapdoors. They later proposed another

improved PEKS scheme that integrates with a public

key encryption (PKE) scheme, called PKE/PEKS. In

this paper, we present off-line keyword guessing

attacks on SCF-PEKS and PKE/PEKS schemes. We

demonstrate that outsider adversaries that capture the

trapdoors sent in a public channel can reveal encrypted

keywords by performing off-line keyword guessing

attacks. While, insider adversaries can perform the

attacks regardless the trapdoors sent in a public or

secure channel.

III. EXISTING SYSTEM

To enhance your article, you may want to consider

expanding on the concepts you've mentioned. Here’s a

suggestion for a more detailed paragraph to help

improve your content:

In a Private Encrypted Keyword Search (PEKS)

system, the sender utilizes the receiver's public key to

attach encrypted keywords, referred to as PEKS

ciphertexts, to the encrypted data. This process ensures

that the keywords remain confidential while enabling

the receiver to search the data securely. When the

receiver seeks to search for specific information, they

generate and send a trapdoor corresponding to the

desired keyword to the server. The server then

employs this trapdoor in conjunction with the PEKS

ciphertext to ascertain whether the keyword embedded

in the ciphertext aligns with the keyword provided by

the receiver. Upon confirming a match, the server

retrieves and transmits the pertinent encrypted data

back to the receiver, ensuring that only authorized

parties can access the information. Notably, Baek et al.

introduced a groundbreaking PEKS scheme—termed

secure channel-free PEKS (SCF-PEKS)—which

significantly enhances the efficiency of this process by

eliminating the necessity for a secure communication

channel, thereby streamlining the interaction between

the sender, receiver, and server while maintaining

robust security.

If you need to further expand or modify the content,

feel free to ask!

IV. PROPOSED SYSTEM

To improve the clarity and depth of your contributions

section, I recommend providing more context and

structure. Here's a revised version:

Contributions of This Paper

This paper presents four key contributions to the field

of Public Key Encryption with Keyword Search

(PEKS):

1. Introduction of DS-PEKS Framework: We

formalize a novel framework called Dual-Server

Public Key Encryption with Keyword Search (DS-

PEKS), designed to mitigate the security

vulnerabilities inherent in traditional PEKS

systems. This framework enhances the robustness

of keyword search while ensuring the

confidentiality of data.

2. New SPHF Variant: We propose a new variant of

© October 2024 | IJIRT | Volume 11 Issue 5 | ISSN: 2349-6002

IJIRT 168389 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 740

the Smooth Projective Hash Function (SPHF),

termed linear and homomorphic SPHF. This

variant is pivotal for constructing the DS-PEKS

framework generically and efficiently.

3. Demonstration of Generic Construction: The paper

showcases a comprehensive generic construction

of the DS-PEKS framework utilizing the proposed

Lin-Hom SPHF. This construction underscores the

versatility and adaptability of our framework in

various applications.

4. Practical Instantiation: To validate the practicality

of our framework, we present an efficient

instantiation of our SPHF based on the Diffie-

Hellman language. This real-world application

illustrates how the DS-PEKS framework can be

effectively deployed in secure communication

scenarios.

Proposed Algorithm

The DS-PEKS scheme is defined by the following

algorithms:

• Setup(y): This algorithm takes the security

parameter (y) as input and generates the system

parameters (P).

• KeyGen(P): This algorithm takes the system

parameters (P) as input and outputs the

public/secret key pairs ((pkFS, skFS)) for the front

server, and ((pkBS, skBS)) for the back server,

respectively.

• DS-PEKS (P; pkFS; pkBS; kw1): This algorithm

accepts the parameters (P), the front server's

public key (pkFS), the back server's public key (

pkBS), and the keyword (kw1), yielding the

PEKS ciphertext (CT_{kw1}) corresponding to

the keyword.

• DS-Trapdoor (P; pkFS; pkBS; kw2): This

algorithm processes (P), (pkFS), (pkBS), and

the keyword (kw2), producing the trapdoor (

T_{kw2}) for subsequent searches.

• BackTest(P; skBS; CITS): This algorithm takes as

input (P), the back server's secret key (skBS),

and the internal testing state (CITS), returning the

testing result: either 0 (no match) or 1 (match

found).

This revised structure not only improves readability

but also emphasizes the significance of each

contribution and its role within the overall framework.

If you have more content to add or need further

refinements, feel free to ask!

To enhance the clarity and effectiveness of your

section on module implementation, consider the

following revision that focuses on structure, detail, and

readability:

4.1. Implementation of Modules

Modules Overview

The following modules constitute the framework of

our system:

• System Construction Module

• Semantic-Security against Chosen Keyword

Attack

• Front Server

• Back Server

Modules Description

1. System Construction Module: In this initial module,

we lay the foundation for our system by defining the

necessary entities:

• Cloud User: This refers to individuals or

organizations that store data in the cloud and

access this data as needed.

• Cloud Service Provider (CSP): The CSP manages

the cloud servers (CSs) and provides users with

paid storage space on its infrastructure as a service.

We introduce a new framework termed Dual-Server

Public Key Encryption with Keyword Search (DS-

PEKS), presenting its formal definition and relevant

security models. A novel variant of the Smooth

© October 2024 | IJIRT | Volume 11 Issue 5 | ISSN: 2349-6002

IJIRT 168389 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 741

Projective Hash Function (SPHF) is defined, and we

illustrate a generic construction of DS-PEKS utilizing

linear and homomorphic SPHF (LH-SPHF). This

module concludes with a formal correctness analysis

and security proofs, alongside an efficient instantiation

of DS-PEKS derived from SPHF.

2. Semantic-Security against Chosen Keyword Attack:

In this module, we establish the protocol for semantic

security against chosen keyword attacks. This ensures

that no adversary can differentiate between two

keywords when presented with the corresponding

PEKS ciphertexts. The design guarantees that the

PEKS ciphertext does not disclose any information

regarding the underlying keyword to potential

attackers, thus upholding the confidentiality of the

data.

3. Front Server: Upon receiving a query from the

receiver, the front server undertakes the task of

preprocessing the trapdoor and all PEKS ciphertexts

using its private key. Following this, it sends internal

testing states to the back server, ensuring that the

corresponding trapdoor and PEKS ciphertexts remain

concealed during transmission.

4. Back Server: In this concluding module, the back

server processes the internal testing states received

from the front server. Utilizing its private key

alongside the information provided, it can determine

which documents have been queried by the receiver,

thereby facilitating secure and accurate data retrieval.

This revision provides a clearer breakdown of each

module while ensuring that the descriptions are

detailed and easier for readers to understand. If you

have further modifications or additional content to

include, just let me know!

System Architectural Design Architecture Diagram:

User Interface: Data Flow Diagram:

V. RELATED WORK

Cloud computing is the use of computing resources

(hardware and software) that are delivered as a service

over a network (typically the Internet). The name

comes from the common use of a cloud-shaped

symbol as an abstraction for the complex

infrastructure it contains in system diagrams.

1. Tools and Technologies used:

In this project I used:

a) Java Technology:

Java technology is both a programming language and

a platform.

b) The Java Programming Language

The Java programming language is a high-level

language

c) SQL Management Server 2014 technologies

2. Result:

a) User Registration:

© October 2024 | IJIRT | Volume 11 Issue 5 | ISSN: 2349-6002

IJIRT 168389 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 742

ava code based on the provided screenshot. However,

I'll need more context to ensure the code is accurate

and fulfills your requirements.

Please provide the following information:

1. Specific Functionality:

• What exact actions or features do you want the

code to perform? For instance, should it handle

user registration, data validation,

encryption/decryption, or other tasks?

2. Input and Output:

• What data should the code process (e.g., user

inputs from the form)?

• What output or results should it produce (e.g.,

saving data to a database, displaying messages)?

3. Data Structure:

• How do you plan to represent the user data (e.g.,

using a JavaBean or data class)?

4. Security Considerations:

• If the code involves sensitive data, what security

measures should be implemented (e.g., encryption,

input validation)?

5. Database Interaction (if applicable):

• If the code interacts with a database, provide

details about the database type, connection

parameters, and SQL queries.

Once I have this information, I can start writing the

Java code. Here's a basic outline of what the code

might look like, assuming you want to handle user

registration:

Java

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class UserRegistrationForm extends JFrame

implements ActionListener {

 private JTextField nameField, emailField,

passwordField;

 private JRadioButton maleButton, femaleButton;

 private JComboBox<String> countryComboBox;

 private JButton registerButton, resetButton;

 public UserRegistrationForm() {

 // Set up the GUI components (labels, text fields,

buttons, etc.)

 // Add event listeners to the buttons

 // Set the frame's properties (title, size, visibility)

 }

 public void actionPerformed(ActionEvent e) {

 // Handle button clicks (e.g., validate input,

register user, display messages)

 }

 public static void main(String[] args) {

 new UserRegistrationForm();

 }

}

b) User Login:

om the image, we can identify the following elements:

• Title: "User Login!"

• Fields: Username and Password

• Buttons: Login and Reset

Java Code Implementation:

Java

© October 2024 | IJIRT | Volume 11 Issue 5 | ISSN: 2349-6002

IJIRT 168389 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 743

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class LoginForm extends JFrame implements

ActionListener {

 private

 JTextField usernameField;

 private JPasswordField passwordField;

 private JButton loginButton,

 resetButton;

 public LoginForm() {

 setTitle("User Login!");

setDefaultCloseOperation(JFrame.EXIT_ON_CLOS

E);

 setLayout(new FlowLayout());

 // Create labels and text fields

 JLabel usernameLabel = new

JLabel("Username:");

 usernameField = new JTextField(20);

 JLabel passwordLabel = new

JLabel("Password:");

 passwordField

 = new JPasswordField(20);

 // Create buttons

 loginButton = new JButton("Login");

 loginButton.addActionListener(this);

 resetButton = new JButton("Reset");

 resetButton.addActionListener(this);

 // Add components to the frame

 add(usernameLabel);

 add(usernameField);

 add(passwordLabel);

 add(passwordField);

 add(loginButton);

 add(resetButton);

 // Set frame size and visibility

 pack();

 setVisible(true);

 }

 public void actionPerformed(ActionEvent e) {

 if (e.getSource() == loginButton) {

 // Implement login logic here

 String username = usernameField.getText();

 String password = new

String(passwordField.getPassword());

 // Check credentials against a database or other

authentication mechanism

 if (isValidCredentials(username, password)) {

 // Successful login, navigate to next page or

display a welcome message

 JOptionPane.showMessageDialog(this,

"Login successful!");

 } else {

 JOptionPane.showMessageDialog(this,

"Invalid username or password.",

 "Error", JOptionPane.ERROR_MESSAGE);

 }

 } else if (e.getSource()

 == resetButton) {

 // Clear the text fields

 usernameField.setText("");

 passwordField.setText("");

 }

 }

 // Placeholder for validating credentials

 private boolean isValidCredentials(String

username, String password) {

 // Replace this with your actual authentication

logic

 return username.equals("admin")

 && password.equals("password");

 }

 public static void main(String[] args) {

 new LoginForm();

 }

}

Use code with caution.

Explanation:

1. Import necessary classes: Imports javax.swing for

GUI components, java.awt for layout and events,

and java.awt.event for event handling.

2. Create a class: Defines a LoginForm class that

extends JFrame to create a window.

3. Initialize components: Creates labels, text fields,

and buttons.

4. Add event listeners: Attaches ActionListener to the

loginButton and resetButton.

© October 2024 | IJIRT | Volume 11 Issue 5 | ISSN: 2349-6002

IJIRT 168389 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 744

5. Layout components: Uses FlowLayout to arrange

components.

6. Set frame properties: Sets the frame's title, default

close operation, and visibility.

7. Handle button actions: In the actionPerformed

method, implements logic for the loginButton and

resetButton.

8. Validate credentials: The isValidCredentials

method is a placeholder for actual authentication

logic. Replace it with your specific

implementation.

Customization:

• Authentication logic: Replace the

isValidCredentials method with your actual

authentication mechanism (e.g., database lookup,

LDAP, OAuth).

• Error handling: Enhance error handling to provide

more informative messages.

• Styling: Customize the appearance using CSS-like

styles or Swing components' properties.

• Additional features: Add features like password

strength validation, forgot password, or remember

me options.

Remember to replace the placeholder authentication

logic with your actual implementation to ensure secure

user login.

Sources and related content

c) Share File:

Understanding the Screenshot:

From the image, we can identify the following

elements:

• Title: "File Share Page"

• Fields:

o Sender's name

o Receiver's name

o Receiver's email

o Public key (presumably for encryption)

o File upload field

• Button: "Share"

Functionality:

Based on the elements, it appears that the application

is designed to allow users to securely share files using

public-key encryption. The steps involved might be:

1. User inputs: Sender provides their name, receiver's

name, email, and public key.

2. File selection: User chooses a file to share.

3. Encryption: The file is encrypted using the

provided public key.

4. Transmission: The encrypted file is sent to the

receiver.

Java Code Structure:

Here's a basic outline of the Java code, incorporating

Swing components for the GUI and considering the

potential use of a cryptographic library for encryption:

Java

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.io.*;

import javax.crypto.*;

public class FileShareForm extends JFrame

implements ActionListener {

 private JTextField senderField, receiverField,

emailField, publicKeyField;

 private JButton shareButton;

 private JFileChooser fileChooser;

 public FileShareForm() {

 // ... (set up GUI components as in previous

examples)

 shareButton.addActionListener(this);

 fileChooser = new JFileChooser();

 }

 public void actionPerformed(ActionEvent e) {

 if (e.getSource() == shareButton) {

© October 2024 | IJIRT | Volume 11 Issue 5 | ISSN: 2349-6002

IJIRT 168389 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 745

 try {

 // Get user inputs

 String sender = senderField.getText();

 String receiver = receiverField.getText();

 String email = emailField.getText();

 String publicKeyString =

publicKeyField.getText();

 // Choose file

 int returnVal =

fileChooser.showOpenDialog(this);

 if (returnVal ==

JFileChooser.APPROVE_OPTION) {

 File fileToShare =

fileChooser.getSelectedFile();

 // Convert public key string to PublicKey

object

 PublicKey publicKey = ... // Use a

cryptographic library to parse the public key

 // Encrypt the file using the public key

 byte[] encryptedData =

encryptFile(fileToShare, publicKey);

 // Send the encrypted file and other

information to the receiver (e.g., using email or

network protocols)

 // ...

 JOptionPane.showMessageDialog(this,

"File shared successfully!");

 }

 } catch (Exception ex) {

 ex.printStackTrace();

 JOptionPane.showMessageDialog(this,

"Error: " + ex.getMessage(), "Error",

JOptionPane.ERROR_MESSAGE);

 }

 }

 }

 // Method to encrypt the file using the public key

 private byte[] encryptFile(File file, PublicKey

publicKey) throws Exception {

 // ... (use a cryptographic library to encrypt the

file)

 }

 // ... (rest of the code for setting up the GUI)

}

Use code with caution.

Key Considerations:

• Cryptographic library: Choose a suitable

cryptographic library (e.g., Bouncy Castle) for

encryption and key management.

• Key exchange: Implement a secure mechanism for

exchanging public keys between sender and

receiver.

• Error handling: Include proper error handling to

catch exceptions and provide informative

messages.

• Network communication: Decide on the method to

send the encrypted file (e.g., email, FTP, custom

network protocol).

• Security: Ensure that the encryption algorithm and

key management practices are secure to protect

sensitive data.

This code provides a foundation for the file-sharing

application. You'll need to fill in the details for

encryption, key exchange, and network

communication based on your specific requirements

and security considerations

d) Verification:

Understanding the Screenshot:

From the image, we can identify the following

elements:

• Title: "Verification"

• Fields: Server 1 Secret Key, Server 2 Secret Key

• Button: "Verify"

Functionality:

Based on the elements, it appears that the application

© October 2024 | IJIRT | Volume 11 Issue 5 | ISSN: 2349-6002

IJIRT 168389 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 746

is designed to verify the authenticity of two secret

keys. The steps involved might be:

1. User inputs: User enters the secret keys.

2. Verification: The application compares the entered

keys against stored or expected values.

3. Result: A message indicating whether the

verification was successful or failed is displayed.

Java Code Structure:

Here's a basic outline of the Java code, incorporating

Swing components for the GUI and JDBC for database

interaction (if applicable):

Java

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.sql.*;

public class VerificationForm extends JFrame

implements ActionListener {

 private JTextField server1KeyField,

server2KeyField;

 private JButton verifyButton;

 // Database connection details

 private String dbUrl =

"jdbc:mysql://localhost:3306/your_database";

 private String username = "your_username";

 private String password = "your_password";

 public VerificationForm() {

 // ... (set up GUI components as in previous

examples)

 verifyButton.addActionListener(this);

 }

 public void actionPerformed(ActionEvent e) {

 if (e.getSource() == verifyButton) {

 try {

 // Get user inputs

 String server1Key =

server1KeyField.getText();

 String server2Key =

server2KeyField.getText();

 // Connect to the database (if applicable)

 Connection connection =

DriverManager.getConnection(dbUrl, username,

password);

 // Retrieve stored or expected secret keys

from the database (if applicable)

 // ...

 // Compare entered keys with stored or

expected values

 boolean isVerified =

verifyKeys(server1Key, server2Key);

 // Display verification result

 if (isVerified) {

 JOptionPane.showMessageDialog(this,

"Verification successful!");

 } else {

 JOptionPane.showMessageDialog(this,

"Verification failed.", "Error",

JOptionPane.ERROR_MESSAGE);

 }

 // Close the database connection

 connection.close();

 } catch (SQLException ex) {

 ex.printStackTrace();

 JOptionPane.showMessageDialog(this,

 "Error: " + ex.getMessage(), "Error",

JOptionPane.ERROR_MESSAGE);

 }

 }

 }

 // Method to verify the keys (replace with your

actual verification logic)

 private boolean verifyKeys(String server1Key,

String server2Key) {

 // ... (implement your verification logic here)

 // For example, you might compare the keys

against stored values in a database or perform other

checks

 return false; // Placeholder, replace with your

actual verification logic

 }

 // ... (rest of the code for setting up the GUI)

}

Key Considerations:

• Database connection: Replace the

© October 2024 | IJIRT | Volume 11 Issue 5 | ISSN: 2349-6002

IJIRT 168389 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 747

placeholder database connection details with your

actual credentials and database URL.

• Key storage: Decide how the secret keys will be

stored (e.g., in a database, configuration file, or

securely generated).

• Verification logic: Implement the verifyKeys

method with your specific verification logic,

considering factors like encryption, hashing, or

comparison against stored values.

• Error handling: Include proper error handling to

catch exceptions and provide informative

messages.

This code provides a foundation for the verification

form. You'll need to customize it based on your

specific requirements for key storage, verification

logic, and database interaction.

e) File Upload:

analysing the Screenshot and Planning the Java Code

Understanding the Screenshot:

From the image, we can identify the following

elements:

• Title: "Home Page"

• Text editor: A text editor window displaying the

text "Hi this is jpinfotech"

• Table: A table with columns labeled "File ID" and

"Download"

• Buttons: "Open File" and "Download"

Functionality:

Based on the elements, it appears that the application

is designed to:

1. Display file content: The text editor shows the

content of a selected file.

2. Allow file download: The "Download" button

initiates the download process.

Java Code Structure:

Here's a basic outline of the Java code, incorporating

Swing components for the GUI and file handling

capabilities:

Java

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.io.*;

public class HomePage extends JFrame implements

ActionListener {

 private JTextArea textArea;

 private JButton openFileButton, downloadButton;

 private JFileChooser fileChooser;

 public HomePage() {

 // ... (set up GUI components as in previous

examples)

 openFileButton.addActionListener(this);

 downloadButton.addActionListener(this);

 fileChooser = new JFileChooser();

 }

 public void actionPerformed(ActionEvent e) {

 if (e.getSource() == openFileButton) {

 try {

 // Choose file

 int returnVal =

fileChooser.showOpenDialog(this);

 if (returnVal ==

JFileChooser.APPROVE_OPTION) {

 File selectedFile =

fileChooser.getSelectedFile();

 // Read the file content and display it in

the text area

 String content =

readFileContent(selectedFile);

 textArea.setText(content);

 }

 } catch (IOException ex) {

 ex.printStackTrace();

 JOptionPane.showMessageDialog(this,

"Error: " + ex.getMessage(), "Error",

© October 2024 | IJIRT | Volume 11 Issue 5 | ISSN: 2349-6002

IJIRT 168389 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 748

JOptionPane.ERROR_MESSAGE);

 }

 } else if (e.getSource() == downloadButton) {

 // Implement download logic here

 // For example, you might save the current

content of the text area to a file

 try {

 // Get the file content

 String content = textArea.getText();

 // Choose a file to save

 int returnVal =

fileChooser.showSaveDialog(this);

 if (returnVal ==

JFileChooser.APPROVE_OPTION) {

 File saveFile =

fileChooser.getSelectedFile();

 // Save the content to the file

 writeFileContent(saveFile, content);

 JOptionPane.showMessageDialog(this,

"File saved successfully!");

 }

 } catch (IOException ex) {

 ex.printStackTrace();

 JOptionPane.showMessageDialog(this,

 "Error: " + ex.getMessage(), "Error",

JOptionPane.ERROR_MESSAGE);

 }

 }

 }

 // Method to read the content of a file

 private String readFileContent(File file) throws

IOException {

 // ... (implement file reading logic using

FileReader and BufferedReader)

 }

 // Method to write content to a file

 private void writeFileContent(File file, String

content) throws IOException {

 // ... (implement file writing logic using

FileWriter and BufferedWriter)

 }

 // ... (rest of the code for setting up the GUI)

}

Use code with caution.

Key Considerations:

• File handling: Implement the readFileContent and

writeFileContent methods using appropriate file

I/O classes (e.g., FileReader, BufferedReader,

FileWriter, BufferedWriter).

• Error handling: Include proper error handling to

catch exceptions and provide informative

messages.

• Additional features: Consider adding features like

file editing, saving, and loading from a database.

This code provides a foundation for the home page

functionality. You'll need to fill in the details for file

I/O and any additional features based on your specific

requirements.

CONCLUSION AND FUTURE SCOPE

we introduce a groundbreaking framework, termed

Dual-Server Public Key Encryption with Keyword

Search (DS-PEKS). This innovative approach

addresses a significant vulnerability inherent in

traditional Public Key Encryption with Keyword

Search (PEKS), namely the inside keyword guessing

attack.

To enhance security, we propose a new cryptographic

tool known as the Smooth Projective Hash Function

(SPHF). The SPHF serves as a foundational

component in our generic DS-PEKS scheme, allowing

for improved encryption processes that are resistant to

potential threats.

Furthermore, our research presents an efficient

instantiation of the SPHF based on the well-

established Diffie-Hellman problem. This

instantiation yields a DS-PEKS scheme that is

efficient and does not rely on pairing techniques, thus

simplifying the computation involved in the

encryption process.

By leveraging these advancements, our framework

aims to provide robust security for keyword searches

in encrypted data, paving the way for more secure

© October 2024 | IJIRT | Volume 11 Issue 5 | ISSN: 2349-6002

IJIRT 168389 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 749

communication and data sharing in various

applications.

Would you like me to assist you with more specific

aspects such as SEO optimization, structuring the

article, or adding headers?

Copy textPaste at editor cursor

REFERENCES

[1] R. Chen, Y. Mu, G. Yang, F. Guo, and X. Wang,

“A new general framework for secure public key

encryption with keyword search,” in Proc. 20th

Australasian Conf. Inf. Secur. Privacy (ACISP),

2015, pp. 59–76.

[2] D. X. Song, D. Wagner, and A. Perrig, “Practical

techniques for searches on encrypted data,” in

Proc. IEEE Symp. Secur. Privacy, May 2000, pp.

44–55.

[3] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu,

“Order preserving encryption for numeric data,”

in Proc. ACM SIGMOD Int. Conf. Manage.

Data, 2004, pp. 563–574.

[4] R. Curtmola, J. Garay, S. Kamara, and R.

Ostrovsky, “Searchable symmetric encryption:

Improved definitions and efficient

constructions,” in Proc. 13th ACM Conf.

Comput. Commun. Secur. (CCS), 2006, pp. 79–

88.

[5] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G.

Persiano, “Public key encryption with keyword

search,” in Proc. Int. Conf. EUROCRYPT, 2004,

pp. 506–522.

[6] R. Gennaro and Y. Lindell, “A framework for

password-based authenticated key exchange,” in

Proc. Int. Conf. EUROCRYPT, 2003, pp. 524–

543.

[7] B. R. Waters, D. Balfanz, G. Durfee, and D. K.

Smetters, “Building an encrypted and searchable

audit log,” in Proc. NDSS, 2004, pp. 1–11.

[8] M. Abdalla et al., “Searchable encryption

revisited: Consistency properties, relation to

anonymous IBE, and extensions,” in Proc. 25th

Annu. Int. Conf. CRYPTO, 2005, pp. 205–222.

[9] D. Khader, “Public key encryption with keyword

search based on K-resilient IBE,” in Proc. Int.

Conf. Comput. Sci. Appl. (ICCSA), 2006, pp.

298–308.

[10] P. Xu, H. Jin, Q. Wu, and W. Wang, “Public- key

encryption with fuzzy keyword search: A

provably secure scheme under keyword guessing

attack,” IEEE Trans. Comput., vol. 62, no. 11,

pp. 2266–2277, Nov. 2013.

[11] G. Di Crescenzo and V. Saraswat, “Public key

encryption with searchable keywords based on

Jacobi symbols,” in Proc. 8th Int. Conf.

INDOCRYPT, 2007, pp. 282–296.

[12] C. Cocks, “An identity based encryption scheme

based on quadratic residues,” in Cryptography

and Coding. Cirencester, U.K.: Springer, 2001,

pp. 360–363.

[13] J. Baek, R. Safavi-Naini, and W. Susilo, “Public

key encryption with keyword search revisited,”

in Proc. Int. Conf. Comput. Sci. Appl. (ICCSA),

2008, pp. 1249–1259.

[14] H. S. Rhee, J. H. Park, W. Susilo, and D. H. Lee,

“Improved searchable public key encryption

with designated tester,” in Proc. 4th Int. Symp.

ASIACCS, 2009, pp. 376–379.

[15] K. Emura, A. Miyaji, M. S. Rahman, and K.

Omote, “Generic constructions of secure-

channel free searchable encryption with adaptive

security,” Secur. Commun. Netw., vol. 8, no. 8,

pp. 1547–1560, 2015.

[16] J. W. Byun, H. S. Rhee, H.-A. Park, and D. H.

Lee, “Off-line keyword guessing attacks on

recent keyword search schemes over

