Innovations in Mechanical Engineering: Solar Water Heater with Active tracking

YASH SONOWANE¹, VIRENDRA RAJPUT², UMESH THOMBRE³, SHAUNAK GOSAVI⁴, ANTRA SONI⁵, AKANSHA GHULE6, NITIN BORSE⁷, RAJKUMAR BHAGAT⁸

^{1, 2}Department of Mechanical Engineering, Vishwakarma Institute of Technology, Pune, Maharashtra, INDIA

Abstract— This research explores a groundbreaking innovation in mechanical engineering – a Solar Water Heater (SWH) with Active Tracking. Unlike traditional SWH systems, this design incorporates a dynamic tracking mechanism that adjusts the solar collector in real-time for optimal energy absorption. The study includes a thorough review, design principles, and performance analysis under various conditions. The proposed system shows potential for significant efficiency gains, making it a promising advancement in renewable energy technology.

Index Terms- Concentrator, Active Tracking, Heater, Solar, Water.

I. INTRODUCTION

A solar water heater with active tracking is a type of solar thermal system that uses motors and sensors to track the sun throughout the day, maximizing the amount of sunlight that is collected by the solar panels. This can significantly increase the efficiency of the system compared to a fixed-mounted solar water heater.

There are two main types of active tracking solar water heaters: single- axis trackers and dual-axis trackers. Single-axis trackers typically rotate the solar panels on a east-west axis, following the sun as it moves across the sky from east to west. Dual-axis trackers can also rotate the panels on a north-south axis, which can be especially beneficial in locations with high solar declination angles. [1]

II. CYLINDRICAL CONCENTRATOR THROUGH SOLAR WATER HEATER

Cylindrical concentrator through solar water heater for water heating was executed. The procedure employed includes the design, construction and testing stages. The equipment which is made up of the reflector surface (curved mirror), reflector support, absorber pipe and a stand was fabricated using locally sourced materials. This work presents a reproducible cylindrical concentrator trough solar water heater as a suitable renewable technology for reducing waterheating costs and solar water heating systems with optical concentrating technologies as important entrants for providing needed bulk solar energy [2]. Cylindrical concentrator through power plants are the only types of solar thermal power plant technology with existing commercial operating systems

III. BENEFITS OF ACTIVE TRACKING

Active trackers Most tracking systems out there are active systems – this means that the tracking system is provided with energy to run a motor or other mechanical device that tilts the attached solar panels the right way. In general, active solar trackers are more well-suited for large and complex installations. such as Watt Sun track the sun from east to west using electronic sensors and motor or actuator drives. During partly cloudy conditions, the tracker fixes on the brightest area of the sky, capturing the maximum amount of sunlight available. While trackers are advantageous in that they have little components to fail we have found that in some locations with extreme cold temperatures the trackers are slow to follow the sun in the morning until the liquid heats up.

IV. IMPLEMENTATION

Below are the components used in Solar Water Heater with Active tracking.

COMPONENT	PRICE			
plywood 18 mm thickness sheet	950			
MDF sheet 12 mm	850			
Aluminium 2 mm thickness sheet	500			
copper pipe	300			
3×16 nut bolt	150			
1/8 screw	30			
4 mm thickness studs	600			
Planks	100			
Bush bearing	100			
Foam sheet	550			
glasses or reflector	350			
rubber based adhesive	450			
PVC tube	300			
Reservoir	250			
PVC pipe	250			
belt and pulley	1500			
permanent magnet DC motor	100			
reduction gear box	250			
Jumper Wire	100			
Ribbon wire	100			
motor driver unit	250			
micro controller unit	850			
Battery	500			
solar panel	1100			
voltage regulator ICs	20			
Button	20			
temperature sensors	1125			
LDR sensors insulating tapes	140			
Cable tie	20			

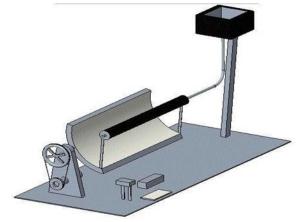


Fig. CAD model

V. TESTING SETUP

- The fabricated solar water heater. The collector is tilted at an angle of 9 with respect to the horizontal plane.
- The ambient temperature, the inlet and outlet temperature from the collector were measured every hour from 8:00 am to 6:00 pm on two different days. It should be noted that incessant rainfalls prolonged test duration.
- The flow rate was determined by using a stopwatch and a calibrated container to obtain the volume of flow per minute.
- The hygrometer shows the humidity of water measure that also.
- This was done repeatedly

VI. OBSERVATIONS

• Observation with Active Tracking Device Observations of Solar Water Heater and Steam Generator Using Cylindrical Concentrator with Active Tracking device and Data Update are tabulated below.

Table: Observation with tracking device

Time	T 1		Т3	T4	Toutlet	Humi
	Ambien	Inlet	Metallic	Tempof	Outlet temp	dity

© October 2024 | IJIRT | Volume 11 Issue 5 | ISSN: 2349-6002

	t	Temp	Base	Receive			
	Temp	Pre-	Reflect or	r plate			
		heated	Temp	pinto		1	
		Wat er			T5 Hot	T6 Stea	
					Wat e r	m	
08:0	32°	33.5°	36.1°	85°	Temp 65º	Nil	54%
08.0	52	55.5	50.1	0.5	0.5	INII	34%
09:0 0	34°	35.6°	39.1°	98°	69.5 °	100	48%
10:0 0	35°	36.5°	41.3°	98.5°	73°	100. 1	43%
11:0 0	37°	38.5°	44.8°	99º	78°	100. 2	39%
12:0 0	38°	39.8°	46.5°	99.5°	83°	100. 3	34%
01:0 0	39º	41.2°	47.9º	100°	86°	100. 4	30%
02:0 0	40°	41.3°	49.0°	102°	93°	100. 6	29%
03:0 0	39º	41.0°	47.4°	100°	87º	100. 4	28%
04:0 0	38°	39.9°	46.2°	98º	80°	100. 3	27%

• Observation Without Active Tracking Device Observations of Solar Water Heater and Steam Generator Using Cylindrical Concentrator Without Active Tracking device and Data Update are tabulated below.

Table: Observation without tracking device

T1	Т2	Т3	Τ4	Toutlet	Hu mi
Ambien	Inlet	Without	Temp of	Outlettemp	dity
t	Tem	Meta	Rece		
	р	llic	ive		
Tem p	Pre-	Base	r plate		
	Ambien t	Ambien Inlet t Tem p	Ambien Inlet Without t Tem Meta p llic	AmbienInletWithoutTemp oftTemMetaRecepIlicive	AmbienInletWithoutTemp ofOutlettemptTemMetaRecepIlicive

		he ated W	Reflector Tem p				
		ater			Т5	Т6	
					Hot	Stea	
					Wate	m	
					r		
					Те		
					mp		
08:0	32°	33.5	36.1°	84°	65°	Nil	54
0		0					%
09:0	34°	35.6	38.1°	95°	68.	10	48
0		0			5°	0	%
10:0	35°	36.5	40.3°	96.	72°	10	43
0		0		5°		0.1	%
11:0	37°	38.6	43.8°	98º	78°	10	39
0		0				0.2	%
12:0	38°	39.8	45°	98.5°	82°	10	34
0		0				0.3	%
01:0	39°	41.2	49°	100°	85°	10	30
0		0				0.4	%
02:0	40°	41.3	48°	102°	92°	10	29
0		0				0.5	%
03:0	38°	39°	46.4°	99°	85°	10	28
0						0.2	%
04:0	36°	37°	44.2°	96°	77º	10	27
0						0	%

© October 2024 | IJIRT | Volume 11 Issue 5 | ISSN: 2349-6002

Prototype

Fig. Model of Solar Water Heater with Active tracking

CONCLUSION

At present, in most of the cases fossil fuel are used to produce superheated steam, but solar energy that renewable energy, can be a great source of heat in this purpose. The use of renewable energy provides our environment clean and comfortable without the cost of electricity. But this concentrator is capable of producing superheated steam from water of ambient temperature.

REFERENCES

 P. Sivakumar, W. Christraj, M.Sridharan, and N. Jayamalathi, "Performance improvement study of solar water heating system," *ARPN Journal of Engineering and AppliedSciences*, vol. 7, no. 1, pp. 45–49, 2012.View at: Publisher Site | Google Scholar

- [2] J. Rekstad, M. Meir, E. Murtnes, and A. Dursun, "A comparison of the energy consumption in two passive houses, one with a solar heating system and one with an air–water heat pump," Energy and Buildings, vol. 96, pp. 149–161, 2015.View at: Publisher Site | Google Scholar
- [3] L. Yuwu, C. Linlin, Y. Dandan et al., "The effect of measurement uncertainty and environment on domestic solar water heating systems' energy efficiency grades," Energy Procedia, vol. 70, pp. 371–378, 2015. View at: Publisher Site | Google Scholar
- [4] O. Langniss and D. Ince, "Solar water heating: a viable industry in developing countries," Refocus, vol. 5, no. 3, pp. 18–21, 2004. View at: Publisher Site | Google Scholar
- [5] J. K. Kaldellis, K. El-Samani, and P. Koronakis, "Feasibility analysis of domestic solar water heating systems in Greece," Renewable Energy, vol. 30, no. 5, pp. 659–682, 2005.View at: Publisher Site | Google Scholar
- [6] A. M. S. Luis and A. R. R. Richardo, "Modeling and identification of solar energy water heating system incorporating nonlinearities," *Solar Energy*, vol. 81, no. 5, pp. 570–580, 2007.View at: Publisher Site | Google Scholar