
© October 2024 | IJIRT | Volume 11 Issue 5 | ISSN: 2349-6002

IJIRT 168854 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2064

Design and Evaluation of Booth’s Algorithm for Drone

Applications

Asavari Arun Hangal1, Divya Shree Tala2, Dr. Jeeru Dinesh Reddy3, Dr. Maligi Anantha Sunil 4
1,2Student, BMS College of Engineering

3,4Assistant Professor, BMS College of Engineering

Abstract—This paper presents the design and evaluation

of Booth's Algorithm, which can be used for real-time

altitude calculations in drone and UAV systems. Our

design increases the processing speed and accuracy of

altitude estimates produced during drone flying by

utilising the traditional Booth's Algorithm, which is well-

known for effectively multiplying binary numbers. This

particular design uses 45nm technology using Cadence

software to construct a control and data channel flow

and an RTL (Register Transfer Level) to GDSII

(Graphic Data System II) methodology, which

guarantees reliable integration into drone system

hardware architectures. To satisfy the demanding

requirements of real-time operations for Drones and

UAVs altitude and distance calculations, the key design

constraints include maximising computational efficiency,

minimising latency, minimising overall area needed, and

optimising power consumption. Drone design

performance can be evaluated by simulations and real-

world testing, which demonstrate how effectively the

algorithm manages abrupt changes in altitude under

various climatic conditions. The results show that high-

performance drone applications could make use of

Booth's Algorithm, which offers a trade-off between

accuracy and resource efficiency while adhering to

industry norms for system-on-chip (SoC) design.

Index Terms—Booth’s algorithm, RTL, GDSII, Booth’s

Multiplication, Drones, Cadence.

I. INTRODUCTION

[1] Multiplication algorithms are important in

performing multiplication well and within a computer

system. Depending on the application, complexity,

accuracy and time , various algorithms exist. There are

many complex steps behind just multiplying two

numbers, which may be used to determine important

coordinates or reach a conclusion in massive

machines. Selecting the right application specific

algorithm requires evaluating a number of variables,

including processing large data files, accuracy, and

speed. Power-hungry devices like drones depend on

efficient multiplication algorithms since they cut down

on computing time and resource use. Self-driving

drones like UAVs require a lot of power in staying in

air and consume a lot of power in making the right

calculations for predicting the coordinates and taking

the decisions on time, in order to avoid clashes or any

damage to the drone.

The computer has to do less work as Booth's algorithm

recognised repeated patterns and discards them. This

algorithm can be used to determine the right

coordinates and altitudes. [8] Speed in calculations is

critical for drones and unmanned aerial vehicles

(UAVs) due to the real-time nature of their operations.

These systems must process massive volumes of

sensor data, such as altitude, location, and

environmental variables, while also running control

algorithms for stability, navigation, and obstacle

avoidance. In applications such as autonomous flight,

surveillance, or delivery, even minor processing

delays might result in erroneous replies, impairing

aircraft performance or, worse, triggering collision.

Quick and efficient calculations enable us to make

decisions in milliseconds, in turn assist in adapting to

changing situations, and optimize flight trajectories,

which is critical for mission success.

Furthermore, quick computing allows for more

efficient use of onboard resources, which is especially

important in drones with limited power and

computational capabilities. More complicated

algorithms, such as Schönhage-Strassen and

Karatsuba, are faster for large numbers but have extra

overhead, which makes them unsuitable for small

systems like drones. [1] Algorithms such as Toom-

Cook and FFT, which have complexities approaching

O(nlogn), are similarly suited for very large inputs but

are generally unnecessary for small to medium-sized

tasks where Booth’s algorithm remains practical.

Based on these facts we have decided to choose

Booth’s algorithm as the best fit algorithm.

II. BACKGROUND

Most of the well-known multiplication algorithms [1]

like the classical multiplication, Karatsuba-Ofman,

© October 2024 | IJIRT | Volume 11 Issue 5 | ISSN: 2349-6002

IJIRT 168854 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2065

Toom-Cook’s, and Schönhage-Strassen, the latter of

which employs Fast Fourier Transform (FFT) for

multiplication [2]. The classical multiplication

algorithm that reduces delay time by using

multiplexers can be optimized in hardware [3].

The Karatsuba multiplication algorithm, on the other

hand, being a recursive binary subdivision method,

due to its efficiency, has been widely adopted, often as

part of hybrid algorithms. Karatsuba algorithm can be

combined with other techniques like the Nikhilam

sutra [4], Vedic multiplier, and Kogge-Stone

algorithms [5] to improve the performance and

efficiency. Advancements in other algorithms along

with these combinations, have significantly

contributed to multiplication which is effective and

efficient, especially in digital systems and

cryptographic applications, where both speed and

resource efficiency are crucial.

Booth's algorithm is used in hardware multiplication

because it can handle signed integers efficiently and

reduces the number of partial products, which reduces

the complexity of addition and subtraction

computations. By combining the multiplier's bits and

allowing it to skip unnecessary steps when it comes

across zero sequences, Booth's recoding method

optimizes the number of operations compared to

traditional multiplication algorithms. This speeds up

the whole process and also removes pointless

calculations, which is particularly useful for operands

that contain long strings of identical bits. Booth's

method can be applied to UAVs and Drones as it saves

time by discarding pointless calculations[2] in time

critical situations. For hardware-based applications

like UAVs and Drones where power, area, and latency

are crucial design restrictions, given the size of the

device and the time- critical nature of the device.

Hence because of its quickness and versatility, we

have chosen Booth's algorithm.

 [3] The authors have built an Innovative Booth’s

algorithm that can be generalized to N-bit multiplier

design. In comparison to the original Booth multiplier,

it speeds up the computation from the time complexity

and reduces the logic delay. Furthermore, its parallel

computation characteristic makes it more suitable for

large number multipliers. But we have chosen

Traditional Booth’s algorithm as Drones and UAVs

don’t perform large number multiplication and this

Innovative Booth’s algorithm also claims to have a

higher path delay making it almost equivalent to the

traditional one.

Figure 1: Booth Algorithm’s Flow chart

III. METHODOLOGY

Booth's algorithm is considered an efficient method

for the multiplication of binary numbers as it examines

pairs of bits in the multiplier and performs appropriate

additions or subtractions to the accumulator. Signed-

digit representation concept is implemented to reduce

the number of operations required instead of shifting

and adding the multiplicand repeatedly. This

approach significantly improves multiplication

operations performance, especially for large

multipliers. The algorithm which uses Right-Shift -

Circular Booth Algorithm is depicted in Figure 1.

Initially, the Accumulator register A and the Q-1 bit

are first initialized to zero, while the COUNT serves

as a sequence counter that represents the total number

of bit set to n = 4. The multiplicand (4 bits) is denoted

by M and the multiplier (4 bits) is represented by the

letter Q. If the 2 bits of the multiplier are 10, the

accumulator undergoes subtraction by the multiplier

value. If the 2 multiplier bits are 01, then the

multiplicand is added to the Accumulator (A). No

change occurs in the Accumulator value if the bit

values are 00 or 11. Subsequently, arithmetic shift

operations are performed which shifts the contents of

A, and a right circular shift is executed which shifts

the contents of Q alongside the Q-1 bit.

Based on the obtained bits, the controller decides

whether to add the multiplicand to the accumulator,

subtract the multiplicand from the accumulator or just

shift the contents of the accumulator and the

multiplier. The sequence counter is continually

decremented by the controller after each iteration until

the count reaches 0, signifying the completion of the

© October 2024 | IJIRT | Volume 11 Issue 5 | ISSN: 2349-6002

IJIRT 168854 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2066

Figure 2: Functional Block Diagram of Booth’s Algorithm

Figure 3: FSM of the Algorithm

entire computation. At this point, the product output is

extracted from register A which culminates the

multiplication process. Accumulator stores the final

result of the multiplication. The functional block

diagram which depicts the RTL design architecture

approach followed to implement multiplication as

shown in Figure 2.

The FSM of the design for the control path is as shown

in Figure 3.

The FSM has three states: START, SHIFT, and

CHECK.

• START: This is the initial state where the signals

in the FSM are reset and initialized. The START

state sets the START, INIT, SHIFT,

LOAD_ACC, and DONE signals initially to zero.

• CHECK: In this state, the FSM checks for the

least significant 2 bits of the multiplier. Based on

these bits, it determines whether to

Figure 4: Simulation Result of Signed Multiplier Design

Figure 5: Schematic diagram of the design

subtract the multiplicand to the accumulator or

add it. The SHIFT signal is set to 0, and the

LOAD_ACC signal is set to 1 if an addition or

subtraction is required. For the next iteration, the

FSM transitions back to the SHIFT state.

• SHIFT: In this state, the FSM controls the shift

operation of the multiplier register. The SHIFT

signal is set to 1, and the LOAD_ACC signal is

set to 0. The FSM transitions to the RESET state

when the shift operation is complete.

The FSM also includes the signals T, DONE, and

ENABLE. T is a clock signal that controls the state

transitions. DONE signal indicates if the

multiplication process is completed or not. ENABLE

controls the overall operation of the FSM. The FSM

transitions between these states based on the input

signals and the current state.

IV. RESULTS

Simulation result for the RTL design for a typical case

of Multiplier=7 and Multiplicand=-4 is as shown in

Figure 4. It can be seen product -28 is obtained at the

output after performing right shift and addition for 4

cycles. The schematic of the entire design is generated

on Xilinx Vivado and is depicted as shown in Figure

5.

We performed Code Coverage analysis on Cadence

and got the below results:

• Branch = 87.5%

• Decision = 90.07%

• Condition = 90%

• Statement = 90.07%

© October 2024 | IJIRT | Volume 11 Issue 5 | ISSN: 2349-6002

IJIRT 168854 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2067

Figure 6: Code Coverage Analysis

Table I: Comparison of Power, Area and Timing reports

after synthesis and after Nano routing respectively

Process/

Characteristic

After Synthesis After Nano

routing

Power 28.24 micro Watts 0.077 Watts

Area 432.630 429.894

Timing 3883ps 3750ps

The overall average grade and overall covered is as

shown in Figure 6.

The ASIC design process basically begins with the

conceptual stage, where ideas are translated into a

formal design specification. This stage mainly

involves two main stages, Design Entry and

Functional Simulation. In the design entry stage,

engineers use Hardware Description Languages

(HDLs) like Verilog or VHDL to create a high-level

representation of the design required. In our model we

have used Verilog. This representation, also known as

Register Transfer Level (RTL), defines the logic in

terms of registers and the combinational logic between

them. In the next stage, i.e. functional simulation stage

we had performed functional simulations to verify that

the design behaves as intended using a testbench on a

software called Vivado.

However, we can't draw accurate timing information

from these simulations as the design isn't mapped to

physical hardware and the placement and routing is

not done yet. Once the functional verification is done,

we have moved onto the synthesis stage. Synthesis is

an important step that transforms the high-level RTL

description into a much more concrete representation.

This stage yields a gate-level netlist, and also provides

improved estimates and optimization in comparison to

the previous stage reports produced.

Figure 7: Final GDSII after Nanorouting

The synthesis tool we used in our model was Cadence

Genus. Legacy Genus converted the RTL description

into a gate-level netlist, representing the design in

terms of actual logic gates and flip-flops from a

standard cell library. Post-synthesis, we got more

accurate timing, power and area estimates. The

synthesized netlist is logically equivalent to the RTL

design but is optimized for performance, area, and

power based on specified constraints given by us. The

power is much lesser when compared to the power in

Nanorouting report as the blocks are not routing and

running with respect to each other's outputs and

behaviour. The comparison of power, area and timing

reports generated before and after nanorouting is

shown in Table I. The final major stage in ASIC design

is nanorouting, also known as Place and Route (P&R).

The tool we used for this stage is Cadence Innovus.

Innovus takes the synthesized logic cells and places

them onto the virtual silicon die. Table I showcases the

changes in power, slack and area after synthesis and

nanorouting. In nanorouting the interconnections

between them are routed and can be observed as

shown in Figure 7. Post-routing, timing analysis

showcases actual wire delays and parasitic delays and

its effects, providing the most accurate performance

estimates. Power analysis also becomes more precise,

considering the actual routing and placement. It

reflects various estimates like the leakage power,

power consumed by each block and the percentage of

power consumed by each block. This is like

conducting a final inspection of the building,

measuring its actual performance against the initial

specifications. Design Rule Checking (DRC) and

Layout Versus Schematic (LVS) checks ensure the

physical layout adheres to manufacturing constraints

and matches the original netlist. Both of which are

© October 2024 | IJIRT | Volume 11 Issue 5 | ISSN: 2349-6002

IJIRT 168854 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2068

performed by the cadence tool. Then finally after

nanorouting the design is produced and saved.

V. CONCLUSION

Booth's algorithm is proved to be efficient for drone

applications as the area consumption and cell count is

comparatively less when compared to other

multiplication algorithms. Positive slack indicates that

the design meets all the timing requirements and

works much faster than other algorithms. The

algorithm’s ability to perform fast binary

multiplication with fewer computational steps greatly

reduces latency, which makes it ideal for drones that

require swift and precise adjustments to altitude in

dynamic environments. Power consumption of the

algorithm uses minimal watts which makes it robust

and performance efficient.

 REFERENCES

[1] Wibowo, F. W. (2018). Comparison of

Multiplication Algorithms Based on FPGA.

2018 2nd Borneo International Conference on

Applied Mathematics and Engineering

(BICAME).

doi:10.1109/bicame45512.2018.1570505372

[2] S. Jahani, A. Samsudin and K. G. Subramanian,

“Efficient big integer multiplication and

squaring algorithms for cryptographic

applications,” Journal of Applied Mathematics,

vol. 2014, article ID 107109, 9 pages, 2014.

http://dx.doi.org/10.1155/2014/107109

[3] Dhanabalan and T. Selvi, “FPGA

implementation of 8-bit multiplier with reduced

delay time,” International Journal of Computer

and Communication Engineering, vol. 2, no. 6,

pp. 665-668, November 2013.

http://dx.doi.org/10.7763/IJCCE.2013.V2.270

[4] M. N. Angeline and S. Valarmathy,

“Implementation of n-bit binary multiplication

using n-1 bit multiplication based on nikhilam

sutra and karatsuba principles using

complement method,” Circuits and Systems,

vol. 7, pp. 2332-2338, 2016.

http://dx.doi.org/10.4236/cs.2016.79203

[5] M. C. Sudeep, B. M. Sharath and M. Vucha,

“Design and FPGA implementation of high

speed vedic multiplier,” International Journal of

Computer Applications, vol. 90, no. 16, pp. 6-9,

March 2014

[6] D. Govekar and A. Amonkar, "Design and

implementation of high speed modified booth

multiplier using hybrid adder," 2017

International Conference on Computing

Methodologies and Communication (ICCMC),

Erode, India, 2017, pp. 138-143, doi:

10.1109/ICCMC.2017.8282661

[7] Chengdong Liang, Lijuan Su, Jinzhao Wu, &

Juxia Xiong. (2016). An innovative Booth

algorithm. 2016 IEEE Advanced Information

Management, Communicates, Electronic and

Automation Control Conference (IMCEC).

doi:10.1109/imcec.2016.7867510

[8] Tariq, A. S., Amin, R., Mondal, M. N. I., &

Hossain, M. A. (2016). Faster implementation

of Booth’s algorithm using FPGA. 2016 2nd

International Conference on Electrical,

Computer & Telecommunication Engineering

(ICECTE). doi:10.1109/icecte.2016.7879580

