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Abstract—This paper presents the design and evaluation 

of Booth's Algorithm, which can be used for real-time 

altitude calculations in drone and UAV systems. Our 

design increases the processing speed and accuracy of 

altitude estimates produced during drone flying by 

utilising the traditional Booth's Algorithm, which is well-

known for effectively multiplying binary numbers. This 

particular design uses 45nm technology using Cadence 

software to construct a control and data channel flow 

and an RTL (Register Transfer Level) to GDSII 

(Graphic Data System II) methodology, which 

guarantees reliable integration into drone system 

hardware architectures. To satisfy the demanding 

requirements of real-time operations for Drones and 

UAVs altitude and distance calculations, the key design 

constraints include maximising computational efficiency, 

minimising latency, minimising overall area needed, and 

optimising power consumption. Drone design 

performance can be evaluated by simulations and real-

world testing, which demonstrate how effectively the 

algorithm manages abrupt changes in altitude under 

various climatic conditions. The results show that high-

performance drone applications could make use of 

Booth's Algorithm, which offers a trade-off between 

accuracy and resource efficiency while adhering to 

industry norms for system-on-chip (SoC) design. 

 
Index Terms—Booth’s algorithm, RTL, GDSII, Booth’s 

Multiplication, Drones, Cadence. 

I. INTRODUCTION  

[1] Multiplication algorithms are important in 

performing multiplication well and within a computer 

system. Depending on the application, complexity, 

accuracy and time , various algorithms exist. There are 

many complex steps behind just multiplying two 

numbers, which may be used to determine important 

coordinates or reach a conclusion in massive 

machines. Selecting the right application specific 

algorithm requires evaluating a number of variables, 

including processing large data files, accuracy, and 

speed. Power-hungry devices like drones depend on 

efficient multiplication algorithms since they cut down 

on computing time and resource use. Self-driving 

drones like UAVs require a lot of power in staying in 

air and consume a lot of power in making the right 

calculations for predicting the coordinates and taking 

the decisions on time, in order to avoid clashes or any 

damage to the drone. 

 

The computer has to do less work as Booth's algorithm 

recognised repeated patterns and discards them. This 

algorithm can be used to determine the right 

coordinates and altitudes. [8] Speed in calculations is 

critical for drones and unmanned aerial vehicles 

(UAVs) due to the real-time nature of their operations. 

These systems must process massive volumes of 

sensor data, such as altitude, location, and 

environmental variables, while also running control 

algorithms for stability, navigation, and obstacle 

avoidance. In applications such as autonomous flight, 

surveillance, or delivery, even minor processing 

delays might result in erroneous replies, impairing 

aircraft performance or, worse, triggering collision. 

Quick and efficient calculations enable us to make 

decisions in milliseconds, in turn assist in adapting to 

changing situations, and optimize flight trajectories, 

which is critical for mission success.  

 

Furthermore, quick computing allows for more 

efficient use of onboard resources, which is especially 

important in drones with limited power and 

computational capabilities. More complicated 

algorithms, such as Schönhage-Strassen and 

Karatsuba, are faster for large numbers but have extra 

overhead, which makes them unsuitable for small 

systems like drones. [1] Algorithms such as Toom-

Cook and FFT, which have complexities approaching 

O(nlogn), are similarly suited for very large inputs but 

are generally unnecessary for small to medium-sized 

tasks where Booth’s algorithm remains practical. 

Based on these facts we have decided to choose 

Booth’s algorithm as the best fit algorithm. 

II. BACKGROUND 

Most of the well-known multiplication algorithms [1] 

like the classical multiplication, Karatsuba-Ofman, 
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Toom-Cook’s, and Schönhage-Strassen, the latter of 

which employs Fast Fourier Transform (FFT) for 

multiplication [2]. The classical multiplication 

algorithm that reduces delay time by using 

multiplexers can be optimized in hardware [3]. 

 

The Karatsuba multiplication algorithm, on the other 

hand, being a recursive binary subdivision method, 

due to its efficiency, has been widely adopted, often as 

part of hybrid algorithms. Karatsuba algorithm can be 

combined with other techniques like the Nikhilam 

sutra [4], Vedic multiplier, and Kogge-Stone 

algorithms [5] to improve the performance and 

efficiency. Advancements in other algorithms along 

with these combinations, have significantly 

contributed to multiplication which is effective and 

efficient, especially in digital systems and 

cryptographic applications, where both speed and 

resource efficiency are crucial.  

 

Booth's algorithm is used in hardware multiplication 

because it can handle signed integers efficiently and 

reduces the number of partial products, which reduces 

the complexity of addition and subtraction 

computations. By combining the multiplier's bits and 

allowing it to skip unnecessary steps when it comes 

across zero sequences, Booth's recoding method 

optimizes the number of operations compared to 

traditional multiplication algorithms. This speeds up 

the whole process and also removes pointless 

calculations, which is particularly useful for operands 

that contain long strings of identical bits. Booth's 

method can be applied to UAVs and Drones as it saves 

time by discarding pointless calculations[2] in time 

critical situations. For hardware-based applications 

like UAVs and Drones where power, area, and latency 

are crucial design restrictions, given the size of the 

device and the time- critical nature of the device. 

Hence because of its quickness and versatility, we 

have chosen Booth's algorithm. 

 

 [3] The authors have built an Innovative Booth’s 

algorithm that can be generalized to N-bit multiplier 

design. In comparison to the original Booth multiplier, 

it speeds up the computation from the time complexity 

and reduces the logic delay. Furthermore, its parallel 

computation characteristic makes it more suitable for 

large number multipliers. But we have chosen 

Traditional Booth’s algorithm as Drones and UAVs 

don’t perform large number multiplication and this 

Innovative Booth’s algorithm also claims to have a 

higher path delay making it almost equivalent to the 

traditional one.  
 

 
Figure 1: Booth Algorithm’s Flow chart 

III. METHODOLOGY 

Booth's algorithm is considered an efficient method 

for the multiplication of binary numbers as it examines  

pairs of bits in the multiplier and performs appropriate 

additions or subtractions to the accumulator. Signed-

digit representation concept is implemented to reduce 

the number of operations required instead of shifting 

and adding the multiplicand repeatedly. This 

approach  significantly improves multiplication 

operations performance, especially for large 

multipliers. The algorithm which uses Right-Shift -

Circular Booth Algorithm is depicted in Figure 1. 

 

Initially, the Accumulator register A and the Q-1 bit 

are first initialized to zero, while the COUNT serves 

as a sequence counter that represents the total number 

of bit set to n = 4. The multiplicand (4 bits) is denoted 

by M and the multiplier (4 bits) is represented by the 

letter Q. If the 2 bits of the multiplier are 10, the 

accumulator undergoes subtraction by the multiplier 

value. If the 2 multiplier bits are 01, then the 

multiplicand is added to the Accumulator (A). No 

change occurs in the Accumulator value if the bit 

values are 00 or 11. Subsequently, arithmetic shift 

operations are performed which shifts the contents of 

A, and a right circular shift is executed which shifts 

the contents of Q alongside the Q-1 bit. 

 

Based on the obtained bits, the controller decides 

whether to add the multiplicand to the accumulator, 

subtract the multiplicand from the accumulator or just 

shift the contents of the accumulator and the 

multiplier. The sequence counter is continually 

decremented by the controller after each iteration until 

the count reaches 0, signifying the completion of the  
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Figure 2: Functional Block Diagram of Booth’s Algorithm 
 

 
Figure 3: FSM of the Algorithm 

 

entire computation. At this point, the product output is 

extracted from register A which culminates the 

multiplication process. Accumulator stores the final 

result of the multiplication. The functional block 

diagram which depicts the RTL design architecture  

approach followed to implement multiplication as 

shown in Figure 2. 

 

The FSM of the design for the control path is as shown 

in Figure 3.  

 

The FSM has three states: START, SHIFT, and 

CHECK.  

• START: This is the initial state where the signals 

in the FSM are reset and initialized. The START 

state sets the START, INIT, SHIFT, 

LOAD_ACC, and DONE signals initially to zero.  

• CHECK: In this state, the FSM checks for the 

least significant 2 bits of the multiplier. Based on 

these bits, it determines whether to  

 

 

Figure 4: Simulation Result of Signed Multiplier Design 

 

Figure 5: Schematic diagram of the design 

subtract the multiplicand to the accumulator or 

add it. The SHIFT signal is set to 0, and the 

LOAD_ACC signal is set to 1 if an addition or 

subtraction is required. For the next iteration, the 

FSM transitions back to the SHIFT state.  

• SHIFT: In this state, the FSM controls the shift 

operation of the multiplier register. The SHIFT 

signal is set to 1, and the LOAD_ACC signal is 

set to 0. The FSM transitions to the RESET state 

when the shift operation is complete. 

 

The FSM also includes the signals T, DONE, and 

ENABLE. T is a clock signal that controls the state 

transitions. DONE signal indicates if the 

multiplication process is completed or not. ENABLE 

controls the overall operation of the FSM. The FSM 

transitions between these states based on the input 

signals and the current state.  

IV.   RESULTS 

Simulation result for the RTL design for a typical case 

of Multiplier=7 and Multiplicand=-4 is as shown in 

Figure 4. It can be seen product -28 is obtained at the 

output after performing right shift and addition for 4 

cycles. The schematic of the entire design is generated 

on Xilinx Vivado and is depicted as shown in Figure 

5. 

 

We performed Code Coverage analysis on Cadence 

and got the below results: 

• Branch = 87.5% 

• Decision = 90.07%  

• Condition = 90% 

• Statement = 90.07% 
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Figure 6: Code Coverage Analysis 

 

Table I: Comparison of Power, Area and Timing reports 

after synthesis and after Nano routing respectively 

 

Process/ 

Characteristic 

After Synthesis After Nano 

routing 

Power 28.24 micro Watts 0.077 Watts 

Area 432.630 429.894 

Timing  3883ps 3750ps 

 

The overall average grade and overall covered is as 

shown in Figure 6. 

 

The ASIC design process basically begins with the 

conceptual stage, where ideas are translated into a 

formal design specification. This stage mainly 

involves two main stages, Design Entry and 

Functional Simulation. In the design entry stage, 

engineers use Hardware Description Languages 

(HDLs) like Verilog or VHDL to create a high-level 

representation of the design required. In our model we 

have used Verilog. This representation, also known as 

Register Transfer Level (RTL), defines the logic in 

terms of registers and the combinational logic between 

them. In the next stage, i.e. functional simulation stage 

we had performed functional simulations to verify that 

the design behaves as intended using a testbench on a 

software called Vivado.  

 

However, we can't draw accurate timing information 

from these simulations as the design isn't mapped to 

physical hardware and the placement and routing is 

not done yet. Once the functional verification is done, 

we have moved onto the synthesis stage. Synthesis is 

an important step that transforms the high-level RTL 

description into a much more concrete representation. 

This stage yields a gate-level netlist, and also provides 

improved estimates and optimization in comparison to 

the previous stage reports produced.  

 
 

Figure 7: Final GDSII after Nanorouting 

The synthesis tool we used in our model was Cadence 

Genus. Legacy Genus converted the RTL description 

into a gate-level netlist, representing the design in 

terms of actual logic gates and flip-flops from a 

standard cell library. Post-synthesis, we got more 

accurate timing, power and area estimates. The 

synthesized netlist is logically equivalent to the RTL 

design but is optimized for performance, area, and 

power based on specified constraints given by us. The 

power is much lesser when compared to the power in 

Nanorouting report as the blocks are not routing and 

running with respect to each other's outputs and 

behaviour. The comparison of power, area and timing  

reports generated before and after nanorouting is 

shown in Table I. The final major stage in ASIC design 

is nanorouting, also known as Place and Route (P&R). 

The tool we used for this stage is Cadence Innovus. 

Innovus takes the synthesized logic cells and places 

them onto the virtual silicon die. Table I showcases the 

changes in power, slack and area after synthesis and 

nanorouting. In nanorouting the interconnections 

between them are routed and can be observed as 

shown in Figure 7. Post-routing, timing analysis 

showcases actual wire delays and parasitic delays and 

its effects, providing the most accurate performance 

estimates. Power analysis also becomes more precise, 

considering the actual routing and placement. It 

reflects various estimates like the leakage power, 

power consumed by each block and the percentage of 

power consumed by each block. This is like 

conducting a final inspection of the building, 

measuring its actual performance against the initial 

specifications. Design Rule Checking (DRC) and 

Layout Versus Schematic (LVS) checks ensure the 

physical layout adheres to manufacturing constraints 

and matches the original netlist. Both of which are 
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performed by the cadence tool. Then finally after 

nanorouting the design is produced and saved.  

V.  CONCLUSION 

Booth's algorithm is proved to be efficient for drone 

applications as the area consumption and cell count is 

comparatively less when compared to other 

multiplication algorithms. Positive slack indicates that 

the design meets all the timing requirements and 

works much faster than other algorithms. The 

algorithm’s ability to perform fast binary 

multiplication with fewer computational steps greatly 

reduces latency, which makes it ideal for drones that 

require swift and precise adjustments to altitude in 

dynamic environments. Power consumption of the 

algorithm uses minimal watts which makes it robust 

and performance efficient.  
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