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Abstract: A* algorithms is the best known path finding 

algorithm which is guided by a heuristic function to reach 

the goal node. Dijkstra’s path finding algorithm works on 

greedy method i.e., it checks all the neighbouring nodes 

and is not guided by a heuristic function. In this paper, we 

try to achieve a much faster way of computing the path by 

combining both A* and Dijkstra’s algorithm, where in we 

will be using A* algorithm from the start node and 

Dijkstra’s algorithm from the goal node and at the point of 

intersection we will have our path. To further increase the 

speed of computation we will be making use of Nvidia’s 

GPU computation via CUDA C++. We will also see the 

computational speed difference between serial CPU 

computation and parallel GPU calculation and comparing 

the results learned with Amdahl’s Law in Parallel 

Computing. We will also look at some of the hindrances 

faced while enabling computation with Nvidia GPU using 

CUDA C++, which are non-existent with GPU 

computation. 
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1. INTRODUCTION 

In this paper we will go in depth on how we use the 

computational power of GPU’s in order to solve path 

finding algorithms such as A* and Dijkstra’s, the two 

most widely known path finding algorithms [24]. We 

will also discuss the implementation, analysis, 

memory usage, performance metrics. For this path 

finding method we use the A* algorithm [18] from the 

starting node with the Manhattan distance as a 

heuristic function and simultaneously using the 

Dijkstra algorithm from the goal node until there 

exists a common node that is discovered by A* and 

Dijkstra [21][15]. This type of searching method were 

we use 2 same either same or different algorithms is 

often referred to as Bi-directional search[37][22]. 

 

This paper will also go in depth in relating and 

comparing the results and working of this algorithm 

with Amdahl’s Law of Parallel Computing. [34] 

which states that in computer design, a system with 

improved resources should theoretically achieve a 

speedup in task execution latency at a fixed workload. 

 

The law can be stated as: 

”The overall performance improvement gained by 

optimizing a single part of a system is limited by the 

fraction of time that the improved part is actually 

used”.[35] [33] 

 

A typical consumer level CPU consists of 2 to 24 

cores, and about 2 threads per core. Where as 

consumer level Nvidia GPU has thousands of CUDA 

Cores, a mid tier Nvidia RTX 4060 has 3072 CUDA 

cores and the high end Nvidia RTX 4090Ti has 16384 

CUDA Cores. This hardware level advantage allows 

GPU’s to perform multiple tasks in parallel. But the 

main difference being CUDA cores are a type of 

floating point compute units where as CPU cores are 

general purpose compute units. A CPU core can 

handle all sorts of tasks given to it which require 

complex branching and decision making, but a CUDA 

core cannot perform such tasks they are designed to 

perform massive multitasking floating point 

mathematical calculations[30]. 

 

TeraFLOPS is the unit of measurement for the number 

of floating point operations completed in a second 

(TFLOPS - Tera floating point operations per second). 

A consumer level Intel Core i7 - 13700HX CPU has a 

TFLOPS value of 0.12, where as the Nvidia RTX 

4060Ti has a TFLOPS rating of 22, which is 

significantly higher [31]. While a direct speed 

comparison between the CPU and GPU is not 

possible, this measure illustrates how we can leverage 

the GPU to expedite mathematical processes in 

comparison to a sequential CPU. [29]. 

 

Up until a few years ago GPU’s were mainly used for 

gaming, which often require intense mathematical 

calculations for 3D and 2D image rendering. But now 

with the introduction of CUDA from Nvidia their 

GPU’s are now also called as GPGPU’s (General 



© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002 

IJIRT 169055   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY    237 

Purpose GPU) [26]. This allows us to perform 

computations that are much more complex, with the 

help of CUDA developer kits provided by Nvidia. 

 

2. MATERIALS AND METHODS 

In this work, we will be comparing the same path 

finding Bi-directional algorithm [22] that is run on the 

same system and same compiler but both on CPU and 

GPU, with necessary changes made in order to 

support the data structure supported by the CUDA 

GPU. The main difference being since CUDA C++ 

does not directly support the use of C++ STL [32], we 

need to employ pointers and linearly arranged 2 

dimensional vectors instead of just a 2D array that is 

supported by CPU and standard C++. It is imperative 

that we take into account the duration required for data 

to be transferred from the CPU memory to the GPU 

memory following computation, as external direct 

allocation to and from the CPU is prohibited[28]. 

 

Item Description 

CPU Intel Core i7 - 13700 HX 

GPU Nvidia RTX 4060 

CPU Memory 16 GB 4800 MT/s 

GPU Memory 8 GB 

Shared Memory 16 GB 

Table 1: Hardware Specifications. 

 

Item Description 

Operating System Windows 11 

Development Environment Visual Studio 2022 

C++ version C++ 17 

CUDA version CUDA 12.5 

Table 2: System Specifications. 

The above mentioned Hardware Specifications is the 

hardware specification and System Specifications is 

the system specification of the computer system used 

for development and testing of this particular Bi-

directional path finding Algorithm. 

This paper will look at mainly four different 

combinations of evaluating the computational speed. 

 

Device Obstacles Directions 

CPU 50% Octagonal 

CPU 30% Quad 

GPU 50% Octagonal 

GPU 30% Quad 

Table 3: System Specifications. 

For the Quad Direction method we use the following 

coordinates: 

 
{-1,0}, {1,0}, {0,1}, {0,-1} 

 

For the Octagonal Direction method we use the 

following coordinates: 

   

   

   

{-1,0}, {1,0}, {0,1}, {0,-1}, {-1,-1}, {1,1}, {-1,1}, {1,-1} 

 

2.1 Bi-directional Algorithm on CPU 

The A* algorithm is implemented using unordered 

map and priority queue available in the STL of C++ 

which is guided by Manhattan Distance as a heuristic 

function. 

 

The Dijkstra’s algorithm is also implemented using 

unordered map and priority queue available in the 

STL of C++ but there is no need of a heuristic function 

as Dijkstra’s is a greedy algorithm and all the adjacent 

nodes are visited. 

 

The combination of A* and Dijkstra as a bidirectional 

path finding algorithm happens inside a while loop 

where each iteration of the loop A* algorithm from the 

start node takes a step and Dijkstra algorithm from the 

goal node takes a step and before the start of next 

iteration A* map and Dijkstra’s map are checked to 

see if a common meet node is available, In case a meet 

node is found then the process execution stops and 

path is found, and after all the iterations if there is no 

meet node then there exists no path between the start 

and goal node. The below Bi-directional Algorithm on 

CPU describes the framework of our algorithm that is 

run on the CPU with the use of unordered maps, and 

priority queue. 
 

This algorithm uses 2 priority queues, 2 unordered 

maps for storing node from start and goal respectively, 

and 2 unordered maps for storing heuristic values of 

nodes from start and node respectively. The heuristic 

values are guided by Manhattan distance function 

which is the most well known heuristic function. For 

heuristic in case of Dijkstra it is set as the actual 

distance from the goal node. 
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This Bi-directional Algorithm on CPU works on a step 

by step basis, where each step moves forward by one 

iteration of each A* and Dijkstra algorithms, starting 

from A* algorithm. The initial node gets inserted into 

the unordered maps, then Dijkstra algorithm proceeds 

by one iteration checking if the node from A* is 

repeated during the A* search, in the subsequent 

iteration the reverse happens if any of the previously 

visited nodes from Dijkstra are again visited by the A* 

algorithm. This process goes on until a common node 

is found, or until all nodes are visited. If a common 

node exists then a path is found or else no path exists 

[23]. 

 

Algorithm 1: Bi-directional path finding on CPU 

 

1: Procedure bi-directional(grid, start, goal): 

2: Find the shortest path from start to goal 

3: Let Q1 be the priority queues of the start list 

4: Let Q2 be the priority queues of the goal list 

5: Create a MAP M1 for nodes from start 

6: Create a MAP M2 for nodes from goal 

7: Create a MAP G1 for heuristic values from start 

8: Create a MAP G2 for heuristic values from goal 

9: PUSH(Q1, start) 

10: while Q1 is not empty and Q2 is not empty do 

11: {A* algorithm from the start} 

12: currentStart = M1.TOP 

13: POP M1 

14: if currentStart in G2 then 

15: PATHFOUND 

16: RETURN 

17: end if 

18: for d in Directions do 

19: if dx,dy is out of bounds then 

20: continue 

21: end if 

22: if G1 of neighbour is better than G1 of this node 

then 

23: PUSH (Q1, neighbour) 

24: UPDATE (M1 of neighbour to currentStart) 

25: end if 

26: end for 

27: {Dijkstra’s algorithm from the goal} 

28: currentGoal = M2.TOP 

29: POP M2 

30: if currentGoal in G1 then 

31: PATHFOUND 

32: RETURN 

33: end if 

34: for d in Directions do 

35: if dx,dy is out of bounds then 

36: continue 

37: end if 

38: if G2 of neighbour is better than G2 of this node 

then 

39: PUSH (Q2, neighbour) 

40: UPDATE (M2 of neighbour to currentStart) 

41: end if 

42: end for 

43: end while=0 

 

By assigning priority queues, it is ensured that the best 

available node is picked and is moved on to further 

iterations, and by assigning unordered maps, it is 

ensured that only feasible nodes are passed on the next 

iteration and only these maps are searched for a 

common meet node, if no such node exists then the 

map is popped out of memory on to which a new map 

will be inserted during the current iteration. 

 

a. Bi-directional Algorithm on GPU 

This method makes use of CUDA (Compute Unified 

Device Architecture) from Nvidia specifically made 

for Nvidia GPU’s[8]. CUDA is a parallel computing 

platform and application programming interface. 

CUDA allows software developers to use a CUDA-

enabled graphics processing unit (GPU)[19] for 

general purpose processing, an approach known as 

General Purpose GPU (GP GPU) computing [27]. 

To implement Bi-directional Algorithm for the 

computation on GPU, we have to follow a specific 

methods because we cannot directly implement the 

C++ STL functions such as queues, maps, vectors and 

more, and CUDA Kernel functions do not return any 

values, they are void only functions. Hence there is a 

need to prepare an algorithm that complies with the 

capabilities of CUDA functioning. 

The primary step to make an algorithm support CUDA 

is to move memory allocated to CPU RAM to the GPU 

VRAM, which is a more robust memory device that is 

built to support the parallel processing capabilities of 

CUDA[7]. 

The CUDA architecture works on three basic parts - 

grids, blocks and threads. Grids contains multiple 

blocks and they contain multiple threads. For this 

implementation we have used a block size of 256, 

which is the standard block size used for most CUDA 

algorithms. The computation is done by threads and 

these threads utilize shared memory onto which data 

is sent through the CPU using CUDA kernel 

functions. The CUDA functions used in this algorithm 

are cudaMalloc, cudaMemcpy, 

cudaDeviceSynchronize, and cudaFree these are the 

basic CUDA functions that are used to allocate CPU 
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memory to GPU memory and back again to CPU 

memory[3]. 

CUDA architecture uses three different memories that 

have different scopes they are global, host and device 

[25]. 

• Global scope: This refers to the GPU 

memory that is accessible to all of the GPU’s threads 

and blocks. 

• Device: The Device refers to the GPU and it’s 

associated memory. The lifetime of this memory is the 

CUDA Kernel context. 

• Host: Host refers to the CPU and it’s 

memory. This is the main memory which is 

inaccessible directly by the GPU. 

Due to CUDA’s lack of support for 2D arrays or 

vectors, there is a need to convert the 2D grid into a 

1D array. This array will be passed on to the GPU with 

the use of pointer. These are some of the utility 

functions that are need for the efficient conversion of 

CPU compute able data to GPU compute able data in 

the CUDA API framework. This conversion of 2D 

array to 1D is done in the following way: 

Conversion of 2D array to 1D array: 

grid is the 1D array map is the 2D array for i = 0 to 

mapSize do 

for j = 0 to mapSize do 

grid[i ∗ mapSize + j] = map[i][j] 

end for 

end for=0 

Following conversion, the GPU receives the pointer to 

the first element of the 1D array as well as the total 

number of nodes, or elements, in that specific 

array[36]. 

The method of implementation here: this 

implementation makes use of two GPU CUDA 

kernels namely Bi-directional Algorithm on GPU and 

Bi-directional Algorithm on GPU since CUDA 

kernels cannot return values both these kernels are of 

return type void. Both these kernels are of the 

following block size and grid size, these are the 

required parameters while calling a CUDA kernel: 

 

Both these kernels use the same way of selecting a 

new node for the next iteration, here tid is the index of 

the next node, and nodes is the pointer that is used to 

access all nodes sent to GPU as 1D array. tid = 

blockIdx.x ∗ blockDim + threadIdx.x currentNode = 

nodes[tid] 

The below are The algorithms employed in the 

implementation of A* kernel and Dijkstra Kernel, 

both these kernels use the same data pointers in order 

to ensure both these algorithms are computing the 

same data simultaneously. Since CUDA can only 

handle 1D arrays, unlike the CPU approach that 

allowed us to use STL data structures, the data must 

be converted and verified to be compute able as a 1D 

array. And the pointers to these 1D arrays will be 

passed on the GPU with the help of CUDA kernel 

functions as mentioned above. 

The algorithm must verify that the appropriate 

memory architecture was utilized for the particular 

kernel functions, because in this specific algorithm 

two kernels are working on the same set of pointer 

data, and the memory architectures are scope and 

lifetime constraint. 

 

In both Bi-directional Algorithm on GPU and Bi-

directional Algorithm on GPU, a new node is picked 

based on the tid (thread ID) of that memory block and 

a new neighbourNode is calculated to see if it is closer 

compared to the currentNode regarding distance to the 

goal node, and if it is better then then neighbourNode 

will be set as the currentNode and in the Bi-directional 

Algorithm on GPU algorithm this is calculated using 

the Manhattan heuristic function at each 

neighbourNode and in the Bi-directional Algorithm 

on GPU all the nodes that surround the currentNode 

based on how many directions there are, either 4 or 8 

of the surrounding nodes will be calculated to see if 

the connect to the node from Bi-directional Algorithm 

on GPU and if a common node exists then a path is 

found or else there is no path from start to goal nodes. 

These two algorithms run concurrently on the GPU 

using the same set of pointer data[16]. 

Algorithm 1 A* Kernel for the GPU 

1: Input grid, nodes and data pointers 

2: tid = blockIdx.x ∗ blockDim + threadIdx.x 

3: if tid is out of bounds then 

4: return 

5: end if 

6: currentNode = nodes[tid] 

7: for d in Directions do 

8: if dx,dy is out of bounds then 

9: continue 

10: end if 

11: newX = currentNode.x + directions 

12: newY = currentNode.y + directions 

13: if newX,newy is out of bounds then 
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14: continue 

15: end if 

16: Initialize: neighbourNode(newX,newY ) 

17: if neighbourNode is visit able and currentNode is 

better than neighbourNode then 

18: neighbourNode.heuristic = 

heuristic(neighbourNode,numNodes − 1) 

19: neighbourNode.parent = currentNode 

20: fromStart = currentNode 

21: end if 

22: end for=0 

 

Algorithm 2 Dijkstra Kernel for the GPU 

1: Input grid, nodes and data pointers 

2: tid = blockIdx.x ∗ blockDim + threadIdx.x 

3: if tid is out of bounds then 

4: return 

5: end if 

6: currentNode = nodes[tid] 

7: for d in Directions do 

8: if dx,dy is out of bounds then 

9: continue 

10: end if 

11: newX = currentNode.x + directions 

12: newY = currentNode.y + directions 

13: if newX,newy is out of bounds then 

14: continue 

15: end if 

16: Initialize: neighbourNode(newX,newY ) 

17: if neighbourNode is visit able and currentNode is 

better than neighbourNode then 

18: neighbourNode.parent = currentNode 

19: fromStart = currentNode 

20: end if 21: end for=0 

 
3. RESULTS 

The performance metrics recorded for both the control 

algorithm run on CPU and the proposed algorithm run 

on the GPU using CUDA[1][14], the execution time 

are measured from the C++ built in library function 

CLOCK() which is available in the time.h header file. 

The performance is measured from the time of either 

CPU or GPU function call and timer is stopped after 

the function call returns a result value which is NULL 

for the GPU as CUDA kernels do not return any value 

and for CPU functions the Path is returned as a BOOL 

meaning either a path is found or not.In short the time 

be measured before the function call and after the 

function execution is completed, and the time taken 

for all the other operations such as memory transfer 

from CPU RAM to GPU VRAM and vise-versa are 

not measured as they are out of the scope of this paper. 

The test is an average of 10 trials per set of nodes, the 

sets of nodes are 10.000, 1.000.000, 25.000.000 and 

56.250.000 nodes. From the above tables 50% CPU 

vs GPU and 30% CPU vs GPU the difference in 

performance is obvious as the number of nodes 

increase from 10.000 to 56.25 million nodes, the 

difference is also evident in the computation with 

number of nodes either 4 or 8. The below are the time 

taken performance metrics tabulated as below. 

 

Nodes CPU GPU 

10000 0.0056 0.0019 

1000000 0.0262 0.002 

25000000 0.1932 0.0027 

56250000 0.23 0.0079 

Table 4: 50% Obstacles with Octal Directions 

measured in seconds 

Nodes CPU GPU 

10000 0.0138 0.003 

1000000 0.6217 0.0029 

25000000 3.5718 0.0077 

56250000 18.4276 0.0121 

Table 5: 30% Obstacles with Quad Directions 

measured in seconds 

 
Figure 1: CPU vs GPU performance measured in seconds 
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4. DISCUSSION 

The aforementioned graphs demonstrate how much 

better the GPU method performs than the CPU 

algorithm, this is more evident when looking at tests 

with higher number of nodes [17]. This paper tests 

these algorithms up to 56.25 million nodes from 

10.000 nodes, both these algorithms take almost the 

same amount of time at small number of nodes this is 

because the efficiency CUDA parallel programming 

makes a significant difference when large number of 

operations are needed to be performed, with a small 

sample size it takes almost the same time as CPU even 

though CPU operates sequentially[13]. 

At 56.25 million nodes with 30% obstacles and only 

quad direction CPU takes about 18 seconds to find the 

path, where as the CUDA GPU is able to find the path 

in under 0.012 seconds this as increase of 1500x at it’s 

peak, this sort of computing performance is borderline 

impossible to achieve with sequential CPU 

computation. And with 50% obstacles and octal 

directions the CPU 

 
Figure 2: CPU vs GPU performance measured in seconds 

 

took about 0.23 seconds and the GPU took about 

0.0079 seconds at 56.25 million nodes this is an 

increase in performance of around 30X[10]. 

 

The performance again is so evident in the set with 

30% obstacles because the probability of finding a 

better node reduces by half when compared to octal 

directions, and since the direct diagonal path is 

unavailable with quad directions each step increases 

complexity by a varying factor depending on the map 

type. 

 
Example start to goal instance 

From the above diagram, let GREEN be the start node 

and RED be the goal node. With QUAD and OCTAL 

distance the path will have to be as below: 

 
Path with Quad directions 

 

 
Path with Octal directions 
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As the number of nodes that need to be calculated 

increases at a much higher range as compared to octal 

route finding, it is evident from the preceding 

diagrams why quad path finding takes a significantly 

longer time. In the above given scenario the QUAD 

path had to calculated for 6 nodes excluding the start 

and goal nodes where as in the octal path only 1 node 

had to be calculated for, with multiple such scenarios 

the number of nodes that will have to be calculated for 

increases significantly even though the map contains 

only 30% of obstacles which is 20% less compared to 

the map tested with octal which has 50% obstacles. 

And when expanded to multiple millions of nodes the 

complexity adds on resulting in slower computation. 

But with the aid of CUDA parallel programming it 

becomes much faster to compute as the nodes get 

distributed among multiple threads of the GPU. 

With a small set of nodes the performance is not very 

evident because GPU takes around the same amount 

of time to parallely process a small set of nodes that 

the CPU with it’s intense sequential processing power 

takes to process the set of nodes, but as the quantity of 

distinct path node operations increases the time taken 

by the CPU also increases significantly as parallel 

computation is much faster compared to sequential 

processing. 

 

5. CONCLUSION 

This paper contains the implementation of A* and 

Dijkstra’s path finding algorithms simultaneously 

from the start node and goal node, this method of 

implementing algorithms from two directions is also 

called as Bi-directional path finding algorithm. 

Testing of the implementation has been done using the 

CPU as a control while the main goal was to measure 

the performance gains made by implementing the 

algorithm parallely on the GPU using Nvidia’s CUDA 

methods. 

The parallel implementation of the algorithm on GPU 

with CUDA has proven to by far superior in terms of 

raw computational performance of the path finding 

from start node to goal node, with multiple parameters 

such as percentage of map that is filled with obstacles 

and the number of directions each node can move 

forward to. While with a small number of nodes the 

performance gains is not visible because the superior 

computational power of the CPU is able to calculate 

the path for such paths while taking the same time as 

the GPU would, but more than a million nodes the 

superiority of parallel computation is very significant. 

Comparing our results with Amdahl’s Law of Parallel 

Computing [33], it is visible that the Amdahl’s 

theoretical representation of the computing speed in 

parallel processing is similar to the graph of results 

available from the testing of our A* and Dijkstra Bi-

directional path finding[9]. The below graph is a 

typical representation of Amdahl’s law of parallel 

computing[12]. Amdahl’s Law only applies in 

situations where the problem size is fixed. As a result, 

up until a certain point, adding more processors in 

parallel will not result in a greater overall performance 

improvement. [6][20]. The following is a formulation 

of Amdahl’s Law.[11]: 

 

 

 

• Slatency: refers to the potential acceleration of 

the task’s execution. 

• s: is the acceleration of the task’s portion that 

gains from enhanced system resources. 

• p: is the percentage of the execution time that 

was initially consumed by the component that 

benefited from better resources. 

 

Number of processors 

Although CUDA C++ programming is complex as 

there is no support of C++ STL functions inside the 

CUDA kernels and all the that ought to be parsed has 
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to be as a kind of 1D arrays and only pointer of that 

1D array can be parsed. Variables allocated in CPU 

RAM cannot be directly used to parse to the CUDA 

Kernels, It is necessary to use specific CUDA memory 

functions to allocate data to the GPU’s VRAM. 

Additionally, after the CUDA kernel has executed, the 

memory from the CUDA kernel must be parsed back 

into CPU RAM memory locations using specific 

CUDA functions. The memory allocated on the 

CUDA GPU must also be freed because the GPU does 

not have garbage collection available. 

 

The algorithm’s CPU implementation is 

comparatively much simpler because we can use any 

of the current C++ STL [4] [2] functions, which make 

it easy to manage data in memory and enable parsing 

of the data rather than converting it all to 1D and 

parsing the pointers to those 1D arrays. However, 

there is an obvious distinction in the processing 

capability of the CPU and GPU as the number of 

nodes. [5]. 

 

This paper was able to successfully show that when 

implemented effectively and with proper management 

of data it is much faster to compute on the GPU 

parallely when compared to the CPU sequentially, 

although CUDA has it’s limitations in terms of 

availability of standard C++ STL data structures, 

passing only pointers, memory transfer from CPU to 

GPU, it is possible to develop a system that can 

leverage the benefits of parallel programming that 

CUDA-enabled GPU’s offer. 
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