
© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169055 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 236

A* and Dijkstra’s algorithm simultaneously on NVIDIA

GPU using CUDA C++

Shishir Govinda M1, Thrisha V S2

1Department of Computer Science Engineering, Sir M Visvesvaraya Institute of Technology,

Bengaluru, India.
2Assistant Professor Department of Computer Science Engineering, Sir M Visvesvaraya Institute of

Technology, Bengaluru, India.

Abstract: A* algorithms is the best known path finding

algorithm which is guided by a heuristic function to reach

the goal node. Dijkstra’s path finding algorithm works on

greedy method i.e., it checks all the neighbouring nodes

and is not guided by a heuristic function. In this paper, we

try to achieve a much faster way of computing the path by

combining both A* and Dijkstra’s algorithm, where in we

will be using A* algorithm from the start node and

Dijkstra’s algorithm from the goal node and at the point of

intersection we will have our path. To further increase the

speed of computation we will be making use of Nvidia’s

GPU computation via CUDA C++. We will also see the

computational speed difference between serial CPU

computation and parallel GPU calculation and comparing

the results learned with Amdahl’s Law in Parallel

Computing. We will also look at some of the hindrances

faced while enabling computation with Nvidia GPU using

CUDA C++, which are non-existent with GPU

computation.

Keywords: CUDA, C++, A*, Dijkstra, GPU, CPU, Path

finding.

1. INTRODUCTION

In this paper we will go in depth on how we use the

computational power of GPU’s in order to solve path

finding algorithms such as A* and Dijkstra’s, the two

most widely known path finding algorithms [24]. We

will also discuss the implementation, analysis,

memory usage, performance metrics. For this path

finding method we use the A* algorithm [18] from the

starting node with the Manhattan distance as a

heuristic function and simultaneously using the

Dijkstra algorithm from the goal node until there

exists a common node that is discovered by A* and

Dijkstra [21][15]. This type of searching method were

we use 2 same either same or different algorithms is

often referred to as Bi-directional search[37][22].

This paper will also go in depth in relating and

comparing the results and working of this algorithm

with Amdahl’s Law of Parallel Computing. [34]

which states that in computer design, a system with

improved resources should theoretically achieve a

speedup in task execution latency at a fixed workload.

The law can be stated as:

”The overall performance improvement gained by

optimizing a single part of a system is limited by the

fraction of time that the improved part is actually

used”.[35] [33]

A typical consumer level CPU consists of 2 to 24

cores, and about 2 threads per core. Where as

consumer level Nvidia GPU has thousands of CUDA

Cores, a mid tier Nvidia RTX 4060 has 3072 CUDA

cores and the high end Nvidia RTX 4090Ti has 16384

CUDA Cores. This hardware level advantage allows

GPU’s to perform multiple tasks in parallel. But the

main difference being CUDA cores are a type of

floating point compute units where as CPU cores are

general purpose compute units. A CPU core can

handle all sorts of tasks given to it which require

complex branching and decision making, but a CUDA

core cannot perform such tasks they are designed to

perform massive multitasking floating point

mathematical calculations[30].

TeraFLOPS is the unit of measurement for the number

of floating point operations completed in a second

(TFLOPS - Tera floating point operations per second).

A consumer level Intel Core i7 - 13700HX CPU has a

TFLOPS value of 0.12, where as the Nvidia RTX

4060Ti has a TFLOPS rating of 22, which is

significantly higher [31]. While a direct speed

comparison between the CPU and GPU is not

possible, this measure illustrates how we can leverage

the GPU to expedite mathematical processes in

comparison to a sequential CPU. [29].

Up until a few years ago GPU’s were mainly used for

gaming, which often require intense mathematical

calculations for 3D and 2D image rendering. But now

with the introduction of CUDA from Nvidia their

GPU’s are now also called as GPGPU’s (General

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169055 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 237

Purpose GPU) [26]. This allows us to perform

computations that are much more complex, with the

help of CUDA developer kits provided by Nvidia.

2. MATERIALS AND METHODS

In this work, we will be comparing the same path

finding Bi-directional algorithm [22] that is run on the

same system and same compiler but both on CPU and

GPU, with necessary changes made in order to

support the data structure supported by the CUDA

GPU. The main difference being since CUDA C++

does not directly support the use of C++ STL [32], we

need to employ pointers and linearly arranged 2

dimensional vectors instead of just a 2D array that is

supported by CPU and standard C++. It is imperative

that we take into account the duration required for data

to be transferred from the CPU memory to the GPU

memory following computation, as external direct

allocation to and from the CPU is prohibited[28].

Item Description

CPU Intel Core i7 - 13700 HX

GPU Nvidia RTX 4060

CPU Memory 16 GB 4800 MT/s

GPU Memory 8 GB

Shared Memory 16 GB

Table 1: Hardware Specifications.

Item Description

Operating System Windows 11

Development Environment Visual Studio 2022

C++ version C++ 17

CUDA version CUDA 12.5

Table 2: System Specifications.

The above mentioned Hardware Specifications is the

hardware specification and System Specifications is

the system specification of the computer system used

for development and testing of this particular Bi-

directional path finding Algorithm.

This paper will look at mainly four different

combinations of evaluating the computational speed.

Device Obstacles Directions

CPU 50% Octagonal

CPU 30% Quad

GPU 50% Octagonal

GPU 30% Quad

Table 3: System Specifications.

For the Quad Direction method we use the following

coordinates:

{-1,0}, {1,0}, {0,1}, {0,-1}

For the Octagonal Direction method we use the

following coordinates:

{-1,0}, {1,0}, {0,1}, {0,-1}, {-1,-1}, {1,1}, {-1,1}, {1,-1}

2.1 Bi-directional Algorithm on CPU

The A* algorithm is implemented using unordered

map and priority queue available in the STL of C++

which is guided by Manhattan Distance as a heuristic

function.

The Dijkstra’s algorithm is also implemented using

unordered map and priority queue available in the

STL of C++ but there is no need of a heuristic function

as Dijkstra’s is a greedy algorithm and all the adjacent

nodes are visited.

The combination of A* and Dijkstra as a bidirectional

path finding algorithm happens inside a while loop

where each iteration of the loop A* algorithm from the

start node takes a step and Dijkstra algorithm from the

goal node takes a step and before the start of next

iteration A* map and Dijkstra’s map are checked to

see if a common meet node is available, In case a meet

node is found then the process execution stops and

path is found, and after all the iterations if there is no

meet node then there exists no path between the start

and goal node. The below Bi-directional Algorithm on

CPU describes the framework of our algorithm that is

run on the CPU with the use of unordered maps, and

priority queue.

This algorithm uses 2 priority queues, 2 unordered

maps for storing node from start and goal respectively,

and 2 unordered maps for storing heuristic values of

nodes from start and node respectively. The heuristic

values are guided by Manhattan distance function

which is the most well known heuristic function. For

heuristic in case of Dijkstra it is set as the actual

distance from the goal node.

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169055 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 238

This Bi-directional Algorithm on CPU works on a step

by step basis, where each step moves forward by one

iteration of each A* and Dijkstra algorithms, starting

from A* algorithm. The initial node gets inserted into

the unordered maps, then Dijkstra algorithm proceeds

by one iteration checking if the node from A* is

repeated during the A* search, in the subsequent

iteration the reverse happens if any of the previously

visited nodes from Dijkstra are again visited by the A*

algorithm. This process goes on until a common node

is found, or until all nodes are visited. If a common

node exists then a path is found or else no path exists

[23].

Algorithm 1: Bi-directional path finding on CPU

1: Procedure bi-directional(grid, start, goal):

2: Find the shortest path from start to goal

3: Let Q1 be the priority queues of the start list

4: Let Q2 be the priority queues of the goal list

5: Create a MAP M1 for nodes from start

6: Create a MAP M2 for nodes from goal

7: Create a MAP G1 for heuristic values from start

8: Create a MAP G2 for heuristic values from goal

9: PUSH(Q1, start)

10: while Q1 is not empty and Q2 is not empty do

11: {A* algorithm from the start}

12: currentStart = M1.TOP

13: POP M1

14: if currentStart in G2 then

15: PATHFOUND

16: RETURN

17: end if

18: for d in Directions do

19: if dx,dy is out of bounds then

20: continue

21: end if

22: if G1 of neighbour is better than G1 of this node

then

23: PUSH (Q1, neighbour)

24: UPDATE (M1 of neighbour to currentStart)

25: end if

26: end for

27: {Dijkstra’s algorithm from the goal}

28: currentGoal = M2.TOP

29: POP M2

30: if currentGoal in G1 then

31: PATHFOUND

32: RETURN

33: end if

34: for d in Directions do

35: if dx,dy is out of bounds then

36: continue

37: end if

38: if G2 of neighbour is better than G2 of this node

then

39: PUSH (Q2, neighbour)

40: UPDATE (M2 of neighbour to currentStart)

41: end if

42: end for

43: end while=0

By assigning priority queues, it is ensured that the best

available node is picked and is moved on to further

iterations, and by assigning unordered maps, it is

ensured that only feasible nodes are passed on the next

iteration and only these maps are searched for a

common meet node, if no such node exists then the

map is popped out of memory on to which a new map

will be inserted during the current iteration.

a. Bi-directional Algorithm on GPU

This method makes use of CUDA (Compute Unified

Device Architecture) from Nvidia specifically made

for Nvidia GPU’s[8]. CUDA is a parallel computing

platform and application programming interface.

CUDA allows software developers to use a CUDA-

enabled graphics processing unit (GPU)[19] for

general purpose processing, an approach known as

General Purpose GPU (GP GPU) computing [27].

To implement Bi-directional Algorithm for the

computation on GPU, we have to follow a specific

methods because we cannot directly implement the

C++ STL functions such as queues, maps, vectors and

more, and CUDA Kernel functions do not return any

values, they are void only functions. Hence there is a

need to prepare an algorithm that complies with the

capabilities of CUDA functioning.

The primary step to make an algorithm support CUDA

is to move memory allocated to CPU RAM to the GPU

VRAM, which is a more robust memory device that is

built to support the parallel processing capabilities of

CUDA[7].

The CUDA architecture works on three basic parts -

grids, blocks and threads. Grids contains multiple

blocks and they contain multiple threads. For this

implementation we have used a block size of 256,

which is the standard block size used for most CUDA

algorithms. The computation is done by threads and

these threads utilize shared memory onto which data

is sent through the CPU using CUDA kernel

functions. The CUDA functions used in this algorithm

are cudaMalloc, cudaMemcpy,

cudaDeviceSynchronize, and cudaFree these are the

basic CUDA functions that are used to allocate CPU

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169055 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 239

memory to GPU memory and back again to CPU

memory[3].

CUDA architecture uses three different memories that

have different scopes they are global, host and device

[25].

• Global scope: This refers to the GPU

memory that is accessible to all of the GPU’s threads

and blocks.

• Device: The Device refers to the GPU and it’s

associated memory. The lifetime of this memory is the

CUDA Kernel context.

• Host: Host refers to the CPU and it’s

memory. This is the main memory which is

inaccessible directly by the GPU.

Due to CUDA’s lack of support for 2D arrays or

vectors, there is a need to convert the 2D grid into a

1D array. This array will be passed on to the GPU with

the use of pointer. These are some of the utility

functions that are need for the efficient conversion of

CPU compute able data to GPU compute able data in

the CUDA API framework. This conversion of 2D

array to 1D is done in the following way:

Conversion of 2D array to 1D array:

grid is the 1D array map is the 2D array for i = 0 to

mapSize do

for j = 0 to mapSize do

grid[i ∗ mapSize + j] = map[i][j]

end for

end for=0

Following conversion, the GPU receives the pointer to

the first element of the 1D array as well as the total

number of nodes, or elements, in that specific

array[36].

The method of implementation here: this

implementation makes use of two GPU CUDA

kernels namely Bi-directional Algorithm on GPU and

Bi-directional Algorithm on GPU since CUDA

kernels cannot return values both these kernels are of

return type void. Both these kernels are of the

following block size and grid size, these are the

required parameters while calling a CUDA kernel:

Both these kernels use the same way of selecting a

new node for the next iteration, here tid is the index of

the next node, and nodes is the pointer that is used to

access all nodes sent to GPU as 1D array. tid =

blockIdx.x ∗ blockDim + threadIdx.x currentNode =

nodes[tid]

The below are The algorithms employed in the

implementation of A* kernel and Dijkstra Kernel,

both these kernels use the same data pointers in order

to ensure both these algorithms are computing the

same data simultaneously. Since CUDA can only

handle 1D arrays, unlike the CPU approach that

allowed us to use STL data structures, the data must

be converted and verified to be compute able as a 1D

array. And the pointers to these 1D arrays will be

passed on the GPU with the help of CUDA kernel

functions as mentioned above.

The algorithm must verify that the appropriate

memory architecture was utilized for the particular

kernel functions, because in this specific algorithm

two kernels are working on the same set of pointer

data, and the memory architectures are scope and

lifetime constraint.

In both Bi-directional Algorithm on GPU and Bi-

directional Algorithm on GPU, a new node is picked

based on the tid (thread ID) of that memory block and

a new neighbourNode is calculated to see if it is closer

compared to the currentNode regarding distance to the

goal node, and if it is better then then neighbourNode

will be set as the currentNode and in the Bi-directional

Algorithm on GPU algorithm this is calculated using

the Manhattan heuristic function at each

neighbourNode and in the Bi-directional Algorithm

on GPU all the nodes that surround the currentNode

based on how many directions there are, either 4 or 8

of the surrounding nodes will be calculated to see if

the connect to the node from Bi-directional Algorithm

on GPU and if a common node exists then a path is

found or else there is no path from start to goal nodes.

These two algorithms run concurrently on the GPU

using the same set of pointer data[16].

Algorithm 1 A* Kernel for the GPU

1: Input grid, nodes and data pointers

2: tid = blockIdx.x ∗ blockDim + threadIdx.x

3: if tid is out of bounds then

4: return

5: end if

6: currentNode = nodes[tid]

7: for d in Directions do

8: if dx,dy is out of bounds then

9: continue

10: end if

11: newX = currentNode.x + directions

12: newY = currentNode.y + directions

13: if newX,newy is out of bounds then

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169055 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 240

14: continue

15: end if

16: Initialize: neighbourNode(newX,newY)

17: if neighbourNode is visit able and currentNode is

better than neighbourNode then

18: neighbourNode.heuristic =

heuristic(neighbourNode,numNodes − 1)

19: neighbourNode.parent = currentNode

20: fromStart = currentNode

21: end if

22: end for=0

Algorithm 2 Dijkstra Kernel for the GPU

1: Input grid, nodes and data pointers

2: tid = blockIdx.x ∗ blockDim + threadIdx.x

3: if tid is out of bounds then

4: return

5: end if

6: currentNode = nodes[tid]

7: for d in Directions do

8: if dx,dy is out of bounds then

9: continue

10: end if

11: newX = currentNode.x + directions

12: newY = currentNode.y + directions

13: if newX,newy is out of bounds then

14: continue

15: end if

16: Initialize: neighbourNode(newX,newY)

17: if neighbourNode is visit able and currentNode is

better than neighbourNode then

18: neighbourNode.parent = currentNode

19: fromStart = currentNode

20: end if 21: end for=0

3. RESULTS

The performance metrics recorded for both the control

algorithm run on CPU and the proposed algorithm run

on the GPU using CUDA[1][14], the execution time

are measured from the C++ built in library function

CLOCK() which is available in the time.h header file.

The performance is measured from the time of either

CPU or GPU function call and timer is stopped after

the function call returns a result value which is NULL

for the GPU as CUDA kernels do not return any value

and for CPU functions the Path is returned as a BOOL

meaning either a path is found or not.In short the time

be measured before the function call and after the

function execution is completed, and the time taken

for all the other operations such as memory transfer

from CPU RAM to GPU VRAM and vise-versa are

not measured as they are out of the scope of this paper.

The test is an average of 10 trials per set of nodes, the

sets of nodes are 10.000, 1.000.000, 25.000.000 and

56.250.000 nodes. From the above tables 50% CPU

vs GPU and 30% CPU vs GPU the difference in

performance is obvious as the number of nodes

increase from 10.000 to 56.25 million nodes, the

difference is also evident in the computation with

number of nodes either 4 or 8. The below are the time

taken performance metrics tabulated as below.

Nodes CPU GPU

10000 0.0056 0.0019

1000000 0.0262 0.002

25000000 0.1932 0.0027

56250000 0.23 0.0079

Table 4: 50% Obstacles with Octal Directions

measured in seconds

Nodes CPU GPU

10000 0.0138 0.003

1000000 0.6217 0.0029

25000000 3.5718 0.0077

56250000 18.4276 0.0121

Table 5: 30% Obstacles with Quad Directions

measured in seconds

Figure 1: CPU vs GPU performance measured in seconds

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169055 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 241

4. DISCUSSION

The aforementioned graphs demonstrate how much

better the GPU method performs than the CPU

algorithm, this is more evident when looking at tests

with higher number of nodes [17]. This paper tests

these algorithms up to 56.25 million nodes from

10.000 nodes, both these algorithms take almost the

same amount of time at small number of nodes this is

because the efficiency CUDA parallel programming

makes a significant difference when large number of

operations are needed to be performed, with a small

sample size it takes almost the same time as CPU even

though CPU operates sequentially[13].

At 56.25 million nodes with 30% obstacles and only

quad direction CPU takes about 18 seconds to find the

path, where as the CUDA GPU is able to find the path

in under 0.012 seconds this as increase of 1500x at it’s

peak, this sort of computing performance is borderline

impossible to achieve with sequential CPU

computation. And with 50% obstacles and octal

directions the CPU

Figure 2: CPU vs GPU performance measured in seconds

took about 0.23 seconds and the GPU took about

0.0079 seconds at 56.25 million nodes this is an

increase in performance of around 30X[10].

The performance again is so evident in the set with

30% obstacles because the probability of finding a

better node reduces by half when compared to octal

directions, and since the direct diagonal path is

unavailable with quad directions each step increases

complexity by a varying factor depending on the map

type.

Example start to goal instance

From the above diagram, let GREEN be the start node

and RED be the goal node. With QUAD and OCTAL

distance the path will have to be as below:

Path with Quad directions

Path with Octal directions

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169055 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 242

As the number of nodes that need to be calculated

increases at a much higher range as compared to octal

route finding, it is evident from the preceding

diagrams why quad path finding takes a significantly

longer time. In the above given scenario the QUAD

path had to calculated for 6 nodes excluding the start

and goal nodes where as in the octal path only 1 node

had to be calculated for, with multiple such scenarios

the number of nodes that will have to be calculated for

increases significantly even though the map contains

only 30% of obstacles which is 20% less compared to

the map tested with octal which has 50% obstacles.

And when expanded to multiple millions of nodes the

complexity adds on resulting in slower computation.

But with the aid of CUDA parallel programming it

becomes much faster to compute as the nodes get

distributed among multiple threads of the GPU.

With a small set of nodes the performance is not very

evident because GPU takes around the same amount

of time to parallely process a small set of nodes that

the CPU with it’s intense sequential processing power

takes to process the set of nodes, but as the quantity of

distinct path node operations increases the time taken

by the CPU also increases significantly as parallel

computation is much faster compared to sequential

processing.

5. CONCLUSION

This paper contains the implementation of A* and

Dijkstra’s path finding algorithms simultaneously

from the start node and goal node, this method of

implementing algorithms from two directions is also

called as Bi-directional path finding algorithm.

Testing of the implementation has been done using the

CPU as a control while the main goal was to measure

the performance gains made by implementing the

algorithm parallely on the GPU using Nvidia’s CUDA

methods.

The parallel implementation of the algorithm on GPU

with CUDA has proven to by far superior in terms of

raw computational performance of the path finding

from start node to goal node, with multiple parameters

such as percentage of map that is filled with obstacles

and the number of directions each node can move

forward to. While with a small number of nodes the

performance gains is not visible because the superior

computational power of the CPU is able to calculate

the path for such paths while taking the same time as

the GPU would, but more than a million nodes the

superiority of parallel computation is very significant.

Comparing our results with Amdahl’s Law of Parallel

Computing [33], it is visible that the Amdahl’s

theoretical representation of the computing speed in

parallel processing is similar to the graph of results

available from the testing of our A* and Dijkstra Bi-

directional path finding[9]. The below graph is a

typical representation of Amdahl’s law of parallel

computing[12]. Amdahl’s Law only applies in

situations where the problem size is fixed. As a result,

up until a certain point, adding more processors in

parallel will not result in a greater overall performance

improvement. [6][20]. The following is a formulation

of Amdahl’s Law.[11]:

• Slatency: refers to the potential acceleration of

the task’s execution.

• s: is the acceleration of the task’s portion that

gains from enhanced system resources.

• p: is the percentage of the execution time that

was initially consumed by the component that

benefited from better resources.

Number of processors

Although CUDA C++ programming is complex as

there is no support of C++ STL functions inside the

CUDA kernels and all the that ought to be parsed has

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169055 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 243

to be as a kind of 1D arrays and only pointer of that

1D array can be parsed. Variables allocated in CPU

RAM cannot be directly used to parse to the CUDA

Kernels, It is necessary to use specific CUDA memory

functions to allocate data to the GPU’s VRAM.

Additionally, after the CUDA kernel has executed, the

memory from the CUDA kernel must be parsed back

into CPU RAM memory locations using specific

CUDA functions. The memory allocated on the

CUDA GPU must also be freed because the GPU does

not have garbage collection available.

The algorithm’s CPU implementation is

comparatively much simpler because we can use any

of the current C++ STL [4] [2] functions, which make

it easy to manage data in memory and enable parsing

of the data rather than converting it all to 1D and

parsing the pointers to those 1D arrays. However,

there is an obvious distinction in the processing

capability of the CPU and GPU as the number of

nodes. [5].

This paper was able to successfully show that when

implemented effectively and with proper management

of data it is much faster to compute on the GPU

parallely when compared to the CPU sequentially,

although CUDA has it’s limitations in terms of

availability of standard C++ STL data structures,

passing only pointers, memory transfer from CPU to

GPU, it is possible to develop a system that can

leverage the benefits of parallel programming that

CUDA-enabled GPU’s offer.

REFERENCES

Bibliography

[1] Hojin Choi, SeongJun Choi, and SeogChung

Seo. “Parallel Implementation of Lightweight

Secure Hash Algorithm on CPU and GPU

Environments”. In: Electronics 13.5 (2024), p.

896.

[2] Patrick Diehl, Steven R Brandt, and Hartmut

Kaiser. “C++ Standard Library”. In: Parallel

C++ Efficient and Scalable High-Performance

Parallel Programming Using HPX. Springer,

2024, pp. 17–32.

[3] Pranay R Kommera, Suresh S

Muknahallipatna, and John E McInroy.

“Optimized CUDA Implementation to Improve

the Performance of Bundle Adjustment

Algorithm on GPUs”. In: Journal of Software

Engineering and Applications 17.04 (2024), pp.

172–201.

[4] Ruben Laso, Diego Krupitza, and Sascha

Hunold. “pSTL-Bench: A Micro-Benchmark

Suite for Assessing Scalability of C++ Parallel

STL Implementations”. In: arXiv preprint

arXiv:2402.06384 (2024).

[5] Marcos Nogueira Lobo de Carvalho et al.

“Performance analysis of distributed GPU-

accelerated task-based workflows”. In:

Proceedings 27th International Conference on

Extending Database Technology (EDBT 2024):

Paestum, Italy, March 25-March 28.

OpenProceedings. 2024, pp. 690–703.

[6] Guido Schryen. “Speedup and efficiency of

computational parallelization: A unifying

approach and asymptotic analysis”. In: Journal

of Parallel and Distributed Computing 187

(2024), p. 104835.

[7] Neda Seifi and Abdullah Al-Mamun.

“Optimizing Memory Access Efficiency in

CUDA Kernel via Data Layout Technique”. In:

Journal of Computer and Communications 12.5

(2024), pp. 124–139.

[8] Kohei Yoshida et al. “Analyzing the impact of

CUDA versions on GPU applications”. In:

Parallel Computing 120 (2024), p. 103081.

[9] Kirk W Cameron. “Adventures Beyond

Amdahl’s Law: How Power-Performance

Measurement and Modeling at Scale Drive

Server and Supercomputer Design”. In: Journal

of Computer Science and Technology 38.1

(2023), pp. 80–86.

[10] Marwan Abdelatti, Manbir Sodhi, and Resit

Sendag. “A multi-gpu parallel genetic

algorithm for large-scale vehicle routing

problems”. In: 2022 IEEE High Performance

Extreme Computing Conference (HPEC).

IEEE. 2022, pp. 1–8.

[11] Donald Ene and Vincent Ike Anireh.

“Performance Evaluation of Parallel

Algorithms”. In: CoRR (2022).

[12] Mike Bailey. “Parallel Programming: Speedups

and Amdahl’s law”. In: Oregon State

University (2021).

[13] Qunsong Zeng et al. “Energy-efficient resource

management for federated edge learning with

CPU-GPU heterogeneous computing”. In:

IEEE Transactions on Wireless

Communications 20.12 (2021), pp. 7947–7962.

[14] Mouna Afif, Yahia Said, and Mohamed Atri.

“Computer vision algorithms acceleration

using graphic processors NVIDIA CUDA”. In:

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169055 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 244

Cluster Computing 23.4 (2020), pp. 3335–

3347.

[15] Ade Candra, Mohammad Andri Budiman, and

Kevin Hartanto. “Dijkstra’s and a-star in

finding the shortest path: A tutorial”. In: 2020

International Conference on Data Science,

Artificial Intelligence, and Business Analytics

(DATABIA). IEEE. 2020, pp. 28–32.

[16] Mayez A Al-Mouhamed, Ayaz H Khan, and

Nazeeruddin Mohammad. “A review of CUDA

optimization techniques and tools for

structured grid computing”. In: Computing

102.4 (2020), pp. 977–1003.

[17] Anil Shanbhag, Samuel Madden, and Xiangyao

Yu. “A study of the fundamental performance

characteristics of GPUs and CPUs for database

analytics”. In: Proceedings of the 2020 ACM

SIGMOD international conference on

Management of data. 2020, pp. 1617–1632.

[18] Sumit Sharma, Shashwat Srijan, and Vidhya

JV. “Parallelizing Bidirectional A* Algorithm”.

In: Intelligent Systems and Computer

Technology. IOS Press, 2020, pp. 558–562.

[19] Reyyan Tekin, Houssam-Eddine ZAHAF, and

Giuseppe Lipari. “Programming in NVDIA

GPUs using CUDA”. In: HAL Open Science

(2019).

[20] Ashur Rafiev et al. “Speedup and power

scaling models for heterogeneous many-core

systems”. In: IEEE Transactions on Multi-scale

computing systems 4.3 (2018), pp. 436–449.

[21] D Singh and N Khar. “Modified Dijkstra’s

algorithm for dense graphs on GPU using

CUDA”. In: Indian Journal of Science and

Technology 9.33 (2016), pp. 1–9.

[22] Lalinthip Tangjittaweechai et al. “Fast

bidirectional shortest path on GPU”. In: IEICE

Electronics Express 13.6 (2016), pp.

20160036–20160036.

[23] Amadou Chaibou and Oumarou Sie.

“Improving global performance on GPU for

algorithms with main loop containing a

reduction operation: case of Dijkstra’s

algorithm”. In: Journal of Computer and

Communications 3.8 (2015), pp. 41–54.

[24] Yichao Zhou and Jianyang Zeng. “Massively

parallel A* search on a GPU”. In: Proceedings

of the AAAI conference on artificial

intelligence. Vol. 29. 1. 2015.

[25] Panagiotis D Michailidis and Konstantinos G

Margaritis. “Accelerating kernel density

estimation on the GPU using the CUDA

framework”. In: Applied Mathematical

Sciences 7.30 (2013), pp. 1447–1476.

[26] Jayshree Ghorpade et al. “GPGPU processing

in CUDA architecture”. In: arXiv preprint

arXiv:1202.4347 (2012).

[27] Michael McCool, James Reinders, and Arch

Robison. Structured parallel programming:

patterns for efficient computation. Elsevier,

2012.

[28] Marko J Miˇsi´c, Dorde M Durdevi´c, and Milo

V Tomaˇsevi´c. “Evolution and trends in GPU

computing”. In: 2012 Proceedings of the 35th

International Convention MIPRO. IEEE. 2012,

pp. 289–294.

[29] Randal E Bryant and David Richard

O’Hallaron. Computer systems: a

programmer’s perspective. Prentice Hall, 2011.

[30] Rob Farber. CUDA application design and

development. Elsevier, 2011.

[31] Petr Pospichal et al. “Acceleration of

grammatical evolution using graphics

processing units: computational intelligence on

consumer games and graphics hardware”. In:

Proceedings of the 13th annual conference

companion on Genetic and evolutionary

computation. 2011, pp. 431– 438.

[32] Martin Reddy. API Design for C++. Elsevier,

2011.

[33] Mark D Hill and Michael R Marty. “Amdahl’s

law in the multicore era”. In: Computer 41.7

(2008), pp. 33–38.

[34] Yuan Shi. “Reevaluating Amdahl’s law and

Gustafson’s law”. In: Computer Sciences

Department, Temple University (MS: 38-24)

(1996).

[35] John L Gustafson. “Reevaluating Amdahl’s

law”. In: Communications of the ACM 31.5

(1988), pp. 532–533.

[36] David P Rodgers. “Improvements in

multiprocessor system design”. In: ACM

SIGARCH Computer Architecture News 13.3

(1985), pp. 225–231.

[37] Ira Pohl. Bi-directional and heuristic search in

path problems. Tech. rep. SLAC National

Accelerator Laboratory (SLAC), Menlo Park,

CA (United States), 1969.

