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Abstract: This work introduces a quasi-static PIC code 

tailored for simulating nonlinear beam-driven PWFAs, 

leveraging the quasi-static approximation to reduce 

computational overhead by removing stringent time 

step constraints inherent in explicit PIC methods. The 

methodology involves constructing numerical plasma 

macro-particle distributions, calculating charge and 

current densities, and integrating electromagnetic field 

components through Poisson-like equations solved via 

fast Poisson solvers. An iterative predictor-corrector 

scheme based on the Adams-Bashforth-Moulton 

method ensures precise advancement of plasma 

particles. The beam particles are advanced using a 

relativistic Lorentz force equation to accommodate 

high-velocity dynamics. Preliminary simulations 

demonstrate the code's effectiveness in representing 

highly localized and focused beam densities, which are 

suitable for strong wakefield generation. Charge and 

current density distributions exhibit uniformity with 

localized perturbations, aligning with theoretical 

expectations for wakefield excitation. These results 

validate the code's capability to accurately capture the 

complex dynamics of beam-plasma interactions with 

enhanced computational efficiency. This progress 

report highlights the developed quasi-static PIC code as 

a robust tool for advancing PWFA research. By 

significantly reducing computational demands without 

compromising simulation accuracy, the code facilitates 

more extensive investigations into plasma-based 

acceleration mechanisms. Future work will focus on 

comprehensive validation against experimental data, 

optimizing computational performance, and 

integrating additional physical phenomena to further 

enhance the simulation framework. 

 

I INTRODUCTION 

The potential of plasma accelerators to generate 

ultrahigh accelerating gradients and facilitate 

substantial energy transfer has been extensively 

documented (Litos et al., 2016; Gangtak et al., 2016; 

Massimo et al., 2013; Haruna and Anchaver, 2013; 

Diederichs et al., 2022; Gangtak et al., 2017). Despite 

their advantages over conventional particle colliders, 

realizing plasma-based accelerators remains 

challenging, as highlighted by Diederichs et al. 

(2022), who emphasize that "significant advances are 

still required to make plasma-accelerator-driven 

applications feasible." 

Accurate prediction of beam-plasma dynamics 

requires computationally expensive full 

electromagnetic particle-in-cell (PIC) codes (Petri et 

al., 2017). However, exploring and improving plasma 

accelerators necessitates efficient computational 

tools (Zgadzaj et al., 2020). Pukhov (2015) 

demonstrated that quasi-static codes, utilizing quasi-

static approximation techniques, require fewer 

computational resources than explicit PIC codes and 

Lorentz boosted codes, due to the elimination of the 

time step restriction imposed by the Courant-

Friedrich-Lewy condition. This finding supports the 

adoption of quasi-static approximation techniques in 

this work. 

The evolving landscape of plasma wakefield 

acceleration (PWFA) research demands innovative 

numerical approaches to address emerging 

challenges and explore new opportunities (US Dept. 

of Energy, 2016; UK Roadmap for PWFA Research, 

2019). This work presents the development of a 

quasi-static PIC code for simulating nonlinear beam-

driven PWFA. The code is designed to capture 

complex beam-plasma interactions, enabling precise 

and efficient simulation of PWFA. 

This document outlines the code development 

process, including numerical methods, algorithms, 

and beam-plasma configurations used. The goal is to 

promote innovative numerical tools tailored for 

PWFA research. 

II METHOD OF SOLUTION 

A Numerical Plasma Macro-Particle Distribution 

The plasma distribution function can be expressed as 

a collection of finite-sized macro particles (Lapenta, 

2015), of the form 
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𝑓(𝑥, 𝑝, 𝑡) = ∑ 𝑆𝑟 (𝑟 − 𝑟𝜑(𝑡)) 𝑆𝑝 (𝑝 − 𝑝𝜑(𝑡))𝑁
𝑛  

    (1)   

But we are interested in the quasi-static 

approximation PIC model, therefore the new set of 

coordinates (𝑥, 𝑦, 𝑠 = 𝑧, 𝜉 = 𝑡) will replace the set of 

coordinates (𝑥, 𝑦, 𝑧, 𝑡) used in explicit PIC code. 

Where 𝜉 = 𝑐𝑡 − 𝑧 is the embedded time parameter 

and 𝑠 = 𝑧, represents the propagation distance 

travelled in plasma by the drive beam. So that 

equation (1) will then become 

𝑓(𝑥, 𝑝, 𝜉) = ∑ 𝑆𝑟 (𝑟 − 𝑟𝜑(𝜉)) 𝑆𝑝 (𝑝 − 𝑝𝜑(𝜉))𝑁
𝑛

     (2) 

For computational convenience, we will use the first 

order shape function 

 𝑆 (𝑥 − 𝑥𝜑(𝜉)) = 𝑆𝑖(𝑥) =

{
1 −

|𝑥−𝑥𝜑|

Δ𝑥
, |𝑥 − 𝑥𝜑| ≤

∆𝑥

2

0, |𝑥 − 𝑥𝜑|  >
∆𝑥

2

  (3) 

also  

  𝑆𝑗(𝑦) =

{
1 −

|𝑦−𝑦𝜑|

Δ𝑦
,    |𝑦 − 𝑦𝜑| ≤

∆𝑦

2

0,   |𝑦 − 𝑦𝜑|  >
∆𝑦

2

  (4) 

  𝑆𝑘(𝑧) =

{
1 −

|𝑧−𝑧𝜑|

Δ𝑧
,    |𝑧 − 𝑧𝜑| ≤

∆𝑧

2

0,    |𝑧 − 𝑧𝜑|  >
∆𝑧

2

  (5) 

The macro particle shape function 𝑆 (𝑟 − 𝑟𝜑(𝜉)) is 

related to the macro particle weighting function 𝑤𝑖  by 

setting 𝑟 = 𝑟𝑖 (i.e. 𝑟(𝑥, 𝑦, 𝑧) = 𝑟𝑖(𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘)), where 

𝑟𝑖 represents the grid coordinate of the macro 

particles. Therefore, it can be implied that 

𝑆 (𝑟𝑖 − 𝑟𝜑(𝜉)) = 𝑤𝑖 (𝑟𝑖 − 𝑟𝜑(𝜉)) (6)        in that the 

plasma macro-particle interpolation onto the grid 

points (i.e. assignment of macro particles to grid 

points) can be possible through the use of the macro 

particle weighting function  

 𝑤𝑖(𝑥𝜑) =
𝑥𝑖+1−𝑥𝜑

Δ𝑥
   (7)   

and 

 𝑤𝑖+1(𝑥𝜑) =
𝑥𝜑−𝑥𝑖

Δ𝑥
  (8) 

where 𝑥𝜑 represents the macro particles positions or 

coordinates, 𝑥𝑖 and 𝑥𝑖+1 are the grid coordinates or 

quantities. From equation (7) and (8), the macro 

particles distribution on the grid can be established. 

Also 

 𝑤𝑗(𝑦𝜑) =
𝑦𝑗+1−𝑦𝜑

Δ𝑦
  (9) 

and 

 𝑤𝑗+1(𝑦𝜑) =
𝑦𝜑−𝑦𝑗

Δ𝑦
  (10) 

          as well as 

 𝑤𝑘(𝑧𝜑) =
𝑧𝑘+1−𝑧𝜑

Δ𝑧
  (11) 

 𝑤𝑘+1(𝑧𝜑) =
𝑧𝜑−𝑧𝑘

Δ𝑧
  (12) 

where 𝑥𝑖+1 = ∆𝑥 − 𝑥𝑖, 𝑦𝑗+1 = ∆𝑦 − 𝑦𝑗 , and 𝑧𝑘+1 =

∆𝑧 − 𝑧𝑘.  

A 3D version of the shape function can then be 

expressed as     

𝑆 (𝑟 − 𝑟𝜑(𝜉)) = 𝑆𝑖(𝑥𝜑)𝑆𝑗(𝑦𝜑)𝑆𝑘(𝑧𝜑) (13) 

Similarly, the weighting function will be 

 𝑤𝑖,𝑗,𝑘 (𝑟𝑖,𝑗,𝑘 − 𝑟𝜑(𝜉)) =

𝑤𝑖(𝑥𝜑)𝑤𝑗(𝑦𝜑)𝑤𝑘(𝑧𝜑)  (14)  

Next, the number of macro-particles representing the 

plasma particle species is distributed on the grid 

according to 

𝑁 = ∑ 𝑤𝑖,𝑗,𝑘 (𝑟𝑖,𝑗,𝑘 − 𝑟𝜑(𝜉)) = 𝑁𝑠
𝑁𝑠
𝑛=1 (15)              and 

the number density of the macro particles 

representing the plasma particle species density on 

the grid follows the model (Wojciech, 2017) 

𝑛𝑝𝑠
= ∑ 𝑤𝑖,𝑗,𝑘 (𝑟𝑖,𝑗,𝑘 − 𝑟𝜑(𝜉)) = 𝑁𝑠

𝑁𝑠
𝑛=1             (16)                       

where ∑ 𝑤𝑖,𝑗,𝑘 (𝑟𝑖,𝑗,𝑘 − 𝑟𝜑(𝜉)) = 1. Therefore, the 

macro particles that will be assigned to the grid points 

using 𝑤𝑖(𝑥𝜑), 𝑤𝑗(𝑦𝜑), 𝑤𝑘(𝑧𝜑) and 𝑤𝑖+1(𝑥𝜑), 

𝑤𝑗+1(𝑦𝜑), 𝑤𝑘+1(𝑧𝜑) can be expressed as 

𝑁 (𝑟𝑖,𝑗,𝑘, 𝑟𝜑(𝜉)) = 𝑁𝑠 [
𝑥𝑖+1−𝑥𝜑

Δ𝑥
,

𝑦𝑗+1−𝑦𝜑

Δ𝑦
,

𝑧𝑘+1−𝑧𝜑

Δ𝑧
]

  (17)  and 
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𝑁 (𝑟𝑖+1,𝑗+1,𝑘+1, 𝑟𝜑(𝜉)) = 𝑁𝑠 [
𝑥𝜑−𝑥𝑖

Δ𝑥
,

𝑦𝜑−𝑦𝑗

Δ𝑦
,

𝑧𝜑−𝑧𝑘

Δ𝑧
]

  (18) 

In the same way, the macro particle number density, 

representing plasma particle species density can also 

be written in the form of equation (17) and (18). 

B Plasma Charge and Current Density 

Now, the plasma charge density, viewed as charge per 

unit volume can be expressed as 

𝜌(𝑟, 𝜉) =
1

Δ𝑉
∑ 𝑞𝑇𝛾𝑝𝑆𝑟 (𝑟 − 𝑟𝜑(𝜉))

𝑁𝑠

𝜑=1

 

or it can be expressed using the macro particle 

weighting or interpolation function as 

𝜌(𝑟, 𝜉) =
1

Δ𝑉
∑ 𝑞𝑇𝛾𝑝

𝑁𝑠
𝜑=1 𝑤𝑖𝑗𝑘 (𝑟𝑖𝑗𝑘 − 𝑟𝜑(𝜉)) 

     (19) 

 Therefore, the charge density interpolated or 

assigned to the grid points (𝑖, 𝑗, 𝑘) can then be 

𝜌𝑠𝑖𝑗𝑘
(𝑟, 𝜉) =

𝑄𝑠𝑖𝑗𝑘
(𝜉)

𝑉𝑖,𝑗,𝑘

1

𝑉𝑖𝑗𝑘
∑ 𝑞𝑇𝛾𝑝𝜑

𝑁𝑠
𝜑=1 𝑤𝑖𝑗𝑘 (𝑟𝑖𝑗𝑘 −

𝑟𝜑(𝜉))      

 (20) 

Where 𝑞𝑇𝑖𝑗𝑘
= ∑

𝑞𝜑𝑖𝑗𝑘
𝑚𝑐2

𝑚𝑐2+𝑞𝜑𝑖𝑗𝑘
𝜓𝑖𝑗𝑘

𝑁𝑠
𝜑=1  is the cumulative 

charge species in a cell and 𝛾𝑝𝜑is the Lorentz factor 

associated with the particle and is presented as 

𝛾𝑝𝜑 =
1+

𝑝𝑟
2

𝑚2𝑐2 +(1+ 
𝑞𝜑𝜓

𝑚𝑐2 )
2

2(1+ 
𝑞𝜑𝜓

𝑚𝑐2 )
 or 

𝛾𝑝𝜑 =
1+

𝑢𝑟
2

𝑐2  +(1+ 
𝑞𝜑𝜓

𝑚𝑐2 )
2

2(1+ 
𝑞𝜑𝜓

𝑚𝑐2 )
   (21) 

where 𝑢 = 𝛾𝑣 has been used.  

The plasma macro particle current density scheme 

can also be represented as 

𝐽𝑝(𝑟, 𝜉) =
1

Δ𝑉
∑ 𝑞𝑇𝑢𝜑𝑆𝑟 (𝑟 − 𝑟𝜑(𝜉))

𝑁𝑠
𝜑=1 (22) 

It can also be assigned or interpolated to grid points 

through the use of the weighting function as 

𝐽𝑝𝑖𝑗𝑘
(𝑟, 𝜉) =

1

𝑉𝑖𝑗𝑘
∑ 𝑞𝑇𝑢𝜑𝑤 (𝑟𝑖𝑗𝑘 − 𝑟𝜑(𝜉))

𝑁𝑠
𝜑=1

     (23) 

C Charge Density, Current Density and 

Electromagnetic Field Components Relation to 

their Source term 

Using quasi-static approximation, the charge and 

current density sources will be 

 ∇𝑟
2𝜙 = −4𝜋𝜌(𝑥, 𝑦, 𝜉, 𝑠) (24) 

 ∇𝑟
2𝐴 = −

4𝜋

𝑐
𝐽(𝑥, 𝑦, 𝜉, 𝑠) (25) 

Equation (25) can be rewritten in term of the 

longitudinal and transverse current density as 

 ∇𝑟
2𝐴𝑧 = −

4𝜋

𝑐
𝐽𝑧(𝑥, 𝑦, 𝜉, 𝑠) (26) 

 ∇𝑟
2𝐴𝑟 = −

4𝜋

𝑐
𝐽𝑟(𝑥, 𝑦, 𝜉, 𝑠) (27) 

Next, we will transform equation (26) and (27) to suit 

our electromagnetic field source terms. To achieve 

this, we start by taking the derivative of equation (27) 

as 

 ∇𝑟
2 𝜕𝐴𝑟

𝜕𝜉
= −

4𝜋

𝑐

𝜕𝐽𝑟

𝜕𝜉
  (28) 

At this stage, the Lorentz gauge - ∇𝑟 ∙ 𝐴𝑟 = −
𝜕𝜓

𝜕𝜉
 can 

be solved to obtain 

𝐴𝑟 = −𝑟
𝜕𝜓

𝜕𝜉
   (29) 

From equation (29) we can also have 

 
𝜕𝐴𝑟

𝜕𝜉
= −𝑟

𝜕2𝜓

𝜕𝜉2 = −𝑟
𝜕𝐸𝑧

𝜕𝜉
 (30) 

By substituting equation (30) into (28), we get 

∇𝑟
2 𝜕𝐸𝑧

𝜕𝜉
= −

4𝜋

𝑟𝑐

𝜕𝐽𝑟

𝜕𝜉
  (31) 

Also, we will quantify the vector potential 𝐴𝑧 using 

the relation 

 𝐴𝑧(𝜉, 𝑟) = 𝜆(𝜉) ln 𝑟  (32) 

within the blowout region where 𝑟 ≤ 𝑟𝑏 . Since ln 𝑟 is 

the same as 𝑒−𝑟 (i.e. ln 𝑟 = 𝑒−𝑟), then equation (32) 

can be written as 
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 𝐴𝑧(𝜉, 𝑟) = 𝜆(𝜉)𝑒−𝑟  (33) 

And by differentiating equation (33), we get 

 
𝜕𝐴𝑧

𝜕𝑟
= −𝜆(𝜉)𝑒−𝑟  (34) 

From equation (26), we can have 

 ∇𝑟
2 𝜕𝐴𝑧

𝜕𝑟
= −

4𝜋

𝑐

𝜕𝐽𝑧

𝜕𝑟
  (35) 

By plugging equation (34) into (35), we can have 

 ∇𝑟
2𝜆(𝜉) + 𝜆(𝜉) =

4𝜋𝑒𝑟

𝑐

𝜕𝐽𝑧

𝜕𝑟
 (36) 

Also, from equation (29) and (33), we can express 

equation (26) and (27) as  

 ∇𝑟
2 𝜕𝜓

𝜕𝜉
=

4𝜋

𝑟𝑐
𝐽𝑟(𝑥, 𝑦, 𝜉, 𝑠) (37) 

or  

 ∇𝑟
2𝐸𝑧 =

4𝜋

𝑟𝑐
𝐽𝑟(𝑥, 𝑦, 𝜉, 𝑠) (38) 

and 

∇𝑟
2𝜆(𝜉) + 𝜆(𝜉) = −

4𝜋

𝑐
𝑒𝑟𝐽𝑧(𝑥, 𝑦, 𝜉, 𝑠)(39) 

Using equation (37), we can have 

𝜕

𝜕𝜉
∇𝑟

2𝜓 =
4𝜋

𝑐
𝐽𝑟(𝑥, 𝑦, 𝜉, 𝑠) (40) 

From the relation ∇𝑟
2𝜓 = −(𝜌 − 𝐽𝑧), we can cast 

equation (40) as 

𝜕

𝜕𝜉
(𝜌 − 𝐽𝑧) = −𝐽𝑟(𝑥, 𝑦, 𝜉, 𝑠)        (41) 

Using the continuity equation form in quasi static 

approximation model, we can have 

 
𝜕

𝜕𝜉
(𝜌 − 𝐽𝑧) = −∇𝑟 ∙ 𝐽𝑟(𝑥, 𝑦, 𝜉, 𝑠) (42) 

Comparing equation (41) and (42), we get 

𝐽𝑟(𝑥, 𝑦, 𝜉, 𝑠) = ∇𝑟 ∙ 𝐽𝑟(𝑥, 𝑦, 𝜉, 𝑠) (43) 

Substituting equation (43) into (38), we get 

 ∇𝑟
2𝐸𝑧 =

4𝜋

𝑟𝑐
∇𝑟 ∙ 𝐽𝑟(𝑥, 𝑦, 𝜉, 𝑠) (44) 

So far, it evident that we need to specify 
𝜕𝐽𝑧

𝜕𝑟
  and 

𝜕𝐽𝑟

𝜕𝜉
. 

To achieve this, the current density will be rewritten 

as 

𝐽𝑟(𝜉, 𝑟) =
1

∆𝑉
∑

𝑞𝜑𝑚𝑐2𝑢𝑟𝜑

𝑚𝑐2+𝑞𝜑𝜓

𝑁
𝜑=1 𝑆𝑟 (𝑟 − 𝑟𝜑(𝜉)) 

     (45) 

𝐽𝑧(𝜉, 𝑟) =
1

∆𝑉
∑

𝑞𝜑𝑚𝑐2𝑢𝑧𝜑

𝑚𝑐2+𝑞𝜑𝜓

𝑁
𝜑=1 𝑆𝑟 (𝑟 − 𝑟𝜑(𝜉)) 

     (46) 

By differentiating equation (384) with respect to 𝜉, 

we get 

 
𝜕

𝜕𝜉
𝐽𝑟(𝜉, 𝑟) =

1

∆𝑉
 

{∑ 𝑞𝑇
𝜕𝑢𝑟𝜑

𝜕𝜉

𝑁
𝜑=1 𝑆𝑟 (𝑟 − 𝑟𝜑(𝜉)) −

∑
𝑞𝑇

2𝑢𝑟𝜑

𝑚𝑐2

𝜕𝜓

𝜕𝜉

𝑁
𝜑=1 𝑆𝑟 (𝑟 − 𝑟𝜑(𝜉)) −

∑ 𝑞𝑇𝑢𝑟𝜑
𝜕𝑟𝜑(𝜉)

𝜕𝜉

𝑁
𝜑=1 𝑆𝑟 (𝑟 − 𝑟𝜑(𝜉))}   or  

𝜕

𝜕𝜉
𝐽𝑟(𝜉, 𝑟) =

1

∆𝑉
∑ 𝑞𝑇

𝑁
𝜑=1 𝑆𝑟 (𝑟 − 𝑟𝜑(𝜉)) {

𝜕𝑢𝑟𝜑

𝜕𝜉
−

𝑞𝑇𝑢𝑟𝜑

𝑚𝑐2

𝜕𝜓

𝜕𝜉
− 𝑢𝑟𝜑

𝜕𝑟𝜑(𝜉)

𝜕𝜉
}   

   (47) 

Similarly, differentiating equation (45) w. r. t. r, we 

get 

𝜕

𝜕𝑟
𝐽𝑧(𝜉, 𝑟) =

1

∆𝑉
∑

𝑞𝜑𝑚𝑐2𝑢𝑧𝜑

𝑚𝑐2+𝑞𝜑𝜓

𝑁
𝜑=1 𝑆𝑟 (𝑟 − 𝑟𝜑(𝜉)) =

1

∆𝑉
∑ 𝑞𝑇𝑢𝑧𝜑

𝑁
𝜑=1 𝑆𝑟 (𝑟 − 𝑟𝜑(𝜉))(48) 

𝜕

𝜕𝑟
𝐽𝑟(𝜉, 𝑟) =

1

∆𝑉
∑ 𝑞𝑇𝑢𝑟𝜑

𝑁
𝜑=1 𝑆𝑟 (𝑟 − 𝑟𝜑(𝜉)) 

     (49) 

One can observe that 
𝜕

𝜕𝑟
𝐽𝑧(𝜉, 𝑟) = 𝐽𝑧(𝜉, 𝑟). Using 

Maxwell’s equations expressed in terms of the 

variable 𝜉, 

  ∇ ∙ 𝐸 = 4𝜋𝜌  (50) 

  ∇ ∙ 𝐵 = 0  (51) 

  
𝜕𝐵

𝜕𝜉
= ∇ × 𝐸  (52) 

 ∇ × 𝐵 = −
𝜕𝐸

𝜕𝜉
+

4𝜋

𝑐
𝐽  (53) 
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we can show how the radial electric field and 

magnetic field component relates with charge and 

current densities. Therefore, by taking the curl of 

equation (53), will lead to 

∇(∇ ∙ 𝐵) − ∇𝑟
2𝐵 = −

𝜕

𝜕𝜉
∇𝑟 × 𝐸𝑟 +

4𝜋

𝑐
∇𝑟 × 𝐽𝑧 

     (54) 

Clearly, 
𝜕

𝜕𝜉
∇𝑟 × 𝐸𝑟 = 0 and using equation (51), (54) 

will reduce to the form 

 ∇𝑟
2𝐵 = −

4𝜋

𝑐
∇𝑟 × 𝐽𝑧 or 

 ∇𝑟
2𝐵 = −

4𝜋

𝑐
(

𝜕

𝜕𝑥
𝐽𝑧 −

𝜕

𝜕𝑦
𝐽𝑧)   (55) 

We can rewrite equation (55) as  

∇𝑟
2𝐵 = −

4𝜋

𝑐
[

𝜕

𝜕𝑥
(𝐽𝑧 −

𝜕𝐸𝑧

𝜕𝜉
) −

𝜕

𝜕𝑦
(𝐽𝑧 −

𝜕𝐸𝑧

𝜕𝜉
)] 

     (56)  

since 
𝜕

𝜕𝑥
(

𝜕𝐸𝑧

𝜕𝜉
) = 0. Equation (56) can be separated as 

 ∇𝑥
2𝐵 = −

4𝜋

𝑐

𝜕

𝜕𝑥
(𝐽𝑧 −

𝜕𝐸𝑧

𝜕𝜉
) (57) 

 ∇𝑦
2𝐵 =

4𝜋

𝑐

𝜕

𝜕𝑦
(𝐽𝑧 −

𝜕𝐸𝑧

𝜕𝜉
) (58) 

By taking the curl of equation (52), will lead to 

𝜕

𝜕𝜉
∇ × 𝐵 = ∇𝑟(∇𝑟 ∙ 𝐸𝑟) − ∇𝑟

2𝐸𝑟  (59) 

Using equations (50) and (53), equation (59) will 

become 

 ∇𝑟
2𝐸𝑟 =

4𝜋

𝑐
(𝑐∇𝑟𝜌 −

𝜕𝐽𝑟

𝜕𝜉
) (60) because 𝐸𝑟  

is independent of 𝜉 and therefore 
𝜕2𝐸𝑟

𝜕𝜉2 = 0. It can also 

be observed that equations (31), (36), (44), (57), (58) 

and (60) are Poisson-like equations that can be solved 

using fast Poisson solvers. Aside these field 

equations, we also need the wakefield potential 𝜓. 

Lastly, substitute equation (47) into (60) and (31) to 

arrive at 

∇𝑟
2𝐸𝑟 = 4𝜋∇𝑟𝜌 −

4𝜋

𝑐∆𝑉
∑ 𝑞𝑇𝑆𝑟 (𝑟 −𝑁

𝜑=1

𝑟𝜑(𝜉)) {
𝜕𝑢𝑟𝜑

𝜕𝜉
−

𝑞𝑇

𝑚𝑐2 𝑢𝑟𝜑

𝜕𝜓

𝜕𝜉
− 𝑞𝑇𝑢𝑟𝜑

2 } (61) 

∇𝑟
2 𝜕𝐸𝑧

𝜕𝜉
=

4𝜋

𝑟𝑐∆𝑉
∑ 𝑞𝑇𝑆𝑟 (𝑟 − 𝑟𝜑(𝜉)) {

𝜕𝑢𝑟𝜑

𝜕𝜉
−𝑁

𝜑=1

𝑞𝑇

𝑚𝑐2 𝑢𝑟𝜑

𝜕𝜓

𝜕𝜉
− 𝑞𝑇𝑢𝑟𝜑

2 } (62) 

D The Quasi Static PIC Algorithm 

The flow chart below illustrates the quasi-static 

particle-in-cell algorithm implemented, where the 

initialized beam particles distribution, plasma 

particles distribution, charge and current density 

distributions representation are presented. 

 
Figure 1: flow chart of the basic quasi static algorithm 
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Now, the computation of these electromagnetic field 

components at grid points using numerical schemes 

can be demonstrated. As such, the flow chart below 

illustrates the iterative predictor-corrector scheme 

required for fields and particles deposition 

implemented. First, the macro-particles position and 

velocity are prediction, which is then followed charge 

and current density deposition as grid points, next is 

computation of electromagnetic field components 

where the macro-particles positions and velocity will 

be updated at new positions, so the charge and current 

density will be corrected and new electromagnetic 

field components will be recomputed until the 

specified condition is attained. 

 

 

 
Figure 2: flow chart of the predictor corrector scheme for updating particle positions and fields 

E Plasma Equation of Motion 

The radial equation of motion of the form below is 

required to advance plasma particles 

 
𝑑𝑃𝑟

𝑑𝜉
=

𝑞𝑚𝑐2𝛾𝑝

𝑚𝑐2+𝑞𝜓

𝜕𝜓

𝜕𝑟
− 𝐵𝜃   or 

 
𝑑𝑃𝑟

𝑑𝜉
= 𝑞𝑇𝛾𝑝

𝜕𝜓

𝜕𝑟
− 𝐵𝜃   (63) 

equation (63), can be re-expressed as 

 
𝑑𝑃𝑟

𝑑𝜉
= −𝑞𝑇𝛾𝑝𝐸𝑟 + 𝐵𝜃(𝑞𝑇𝛾𝑝 − 1)(64) 

For computational ease, the non-relativistic Boris 

pusher will be used to describe how plasma particles 

are advanced. Therefore, we recast equation (64) as 

 
𝑑𝑢𝑟

𝑑𝜉
= −

𝑞𝑇𝛾𝑝

𝑚
𝐸𝑟 +

𝐵𝜃

𝑚
(𝑞𝑇𝛾𝑝 − 1)(65) 

Where we have set 𝑃𝑟 = 𝑚𝛾𝑣𝑟 = 𝑚𝑢𝑟 and 𝑢𝑟 = 𝛾𝑣𝑟 , 

which implies that we can also have 

  
𝑑𝑟

𝑑𝜉
=

𝑚𝑐2𝑢𝑟

𝑚𝑐2+𝑞𝜓
  (66) 

Also, it has been shown that the wakefield potential 

𝜓 can be evolved (Francesco, 2014) using the relation 

𝑑𝜓

𝑑𝜉
=

𝑚𝑐2𝑢𝑟

𝑚𝑐2+𝑞𝜓
(𝐸𝑟 − 𝐵𝜃) − 𝐸𝑧 (67) 

F Numerical Scheme for Plasma Macro Particle 

Advancement 

In this section, equations (65), (66) and (67) are 

solved numerically using predictor – corrector 

scheme, to advance plasma macro particles. To 

achieve this, the Adams – Bashforth – Moulton 

predictor – corrector pair is applied. Where the 

wakefield potential (𝜓), macro particle position (𝑟) 

and velocity (𝑢) will be predicted using Adams – 

Bashforth formula of order four and letter corrected 

using Adams – Moulton formula of the same order 

using predicted previous information. But first, we 

rewrite equations (65), (66) and (67) as 
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𝑑𝑢𝑟

𝑑𝜉
= 𝜂𝑢 = −

𝑞𝑇𝛾𝑝

𝑚
𝐸𝑟 +

𝐵𝜃

𝑚
(𝑞𝑇𝛾𝑝 − 1)(68) 

𝑑𝑟

𝑑𝜉
= 𝜂𝑟 =

𝑚𝑐2𝑢𝑟

𝑚𝑐2+𝑞𝜓
  (69) 

and 

𝑑𝜓

𝑑𝜉
= 𝜂𝜓 =

𝑚𝑐2𝑢𝑟

𝑚𝑐2+𝑞𝜓
(𝐸𝑟 − 𝐵𝜃) − 𝐸𝑧 (70) 

So that 𝑢𝑟, 𝑟 and 𝜓  be evolved numerically as 

𝑢𝑟𝜑𝑛+1
= 𝑢𝑟𝜑𝑛

+
Δ𝜉

24
[55𝜂𝑢𝑛

− 59𝜂𝑢𝑛−1
+

37𝜂𝑢𝑛−2
− 9𝜂𝑢𝑛−3

]   (71) 

And 

𝑢̃𝑟𝜑𝑛+1
= 𝑢𝑟𝜑𝑛

+
Δ𝜉

24
[9𝜂𝑢𝑛+1

+ 19𝜂𝑢𝑛
− 5𝜂𝑢𝑛−1

+

𝜂𝑢𝑛−2
]   (72) 

Also 

𝑟𝜑𝑛+1
= 𝑢𝑟𝜑𝑛

+
Δ𝜉

24
[55𝜂𝑟𝑛

− 59𝜂𝑟𝑛−1
+ 37𝜂𝑟𝑛−2

−

9𝜂𝑟𝑛−3
]   (73) 

and 

𝑟̃𝜑𝑛+1
= 𝑢𝑟𝜑𝑛

+
Δ𝜉

24
[9𝜂𝑟𝑛+1

+ 19𝜂𝑟𝑛
− 5𝜂𝑟𝑛−1

+

𝜂𝑟𝑛−2
]   (74) 

Lastly, 

𝜓𝑛+1 = 𝜓𝑛 +
Δ𝜉

24
[55𝜂𝜓𝑛

− 59𝜂𝜓𝑛−1
+ 37𝜂𝜓𝑛−2

−

9𝜂𝜓𝑛−3
]   (75) 

And  

𝜓̃𝑛+1 = 𝜓𝑛 +
Δ𝜉

24
[9𝜂𝜓𝑛+1

+ 19𝜂𝜓𝑛
− 5𝜂𝜓𝑛−1

+

𝜂𝜓𝑛−2
]   (76) 

The error estimate is given as 

𝜀𝑛+1 = −
19

270
(𝑢̃𝑟𝑛+1

− 𝑢𝑟𝑛+1
) 

  

Clearly, a starting technique is required for 

implementing these equations. Therefore, the 4th 

order Runge-Kutta (RK4) method is employed, since 

we are using 4th order multistep method as our 

predictor – corrector scheme. 

G Beam Particles Advancement Scheme 

In quasi static approximation, the beam is advanced 

using a different time variable, defined (Morshed et 

al. 2010) as 𝑠 = 𝑐𝑡. Therefore, it is necessary to 

express the set of equations describing the beam 

evolution in 𝑠. To achieve this, we proceed as 

 
𝜕𝑠

𝜕𝑡
= 𝑐 ⟹ 𝜕𝑡 =

𝜕𝑠

𝑐
  (77) 

Lorentz force equation is required to describe the 

beam evolution through plasma 

 
𝜕𝑃𝑏

𝜕𝑡
= 𝑞𝑏 [𝐸 +

𝑣𝑏

𝑐
× 𝐵] (78) 

Using equation (456), equation (457) will become 

 
𝜕𝑃𝑏

𝜕𝑠
=

𝑞𝑏

𝑐
[𝐸 +

𝑣𝑏

𝑐
× 𝐵]  (79) 

This work considered highly relativistic beam 

models, so 𝑣𝑏 = 𝑐. Which therefore imply that the 

radial and longitudinal evolution of the beam 

particles can be express as 

 
𝜕𝑃𝑟𝑏

𝜕𝑠
=

𝑞𝑏

𝑐
𝐸𝑟    (80) 

 
𝜕𝑃𝑧𝑏

𝜕𝑠
=

𝑞𝑏

𝑐
𝐸𝑧   (81) 

Using the relation 𝑢 = 𝛾𝑣, equations (80) and (81) 

will become 

 
𝜕𝑢𝑟𝑏

𝜕𝑠
=

𝑞𝑏

𝑚𝑐
𝐸𝑟    (82) 

 
𝜕𝑢𝑧𝑏

𝜕𝑠
=

𝑞𝑏

𝑚𝑐
𝐸𝑧    (83) 

And the beam particles positions are advanced as 

 
𝑑𝑥𝑏

𝑑𝑠
=

𝑢𝑥𝑏

𝛾𝑏
   (84) 

 
𝑑𝑦𝑏

𝑑𝑠
=

𝑢𝑦𝑏

𝛾𝑏
   (85) 

The relation 𝜉𝑏 = 𝑐𝑡 − 𝑧 is used to get 
𝑑

𝑑𝑡
𝜉𝑏 = 𝑐 − 𝑣𝑏   (86) 

Using equation (77), equation (86) can then be 

expressed as 

 
𝑑

𝑑𝑠
𝜉𝑏 = 1 −

𝑣𝑧𝑏

𝑐
   or 

 
𝑑

𝑑𝑠
𝜉𝑏 = 1 −

𝑢𝑧𝑏

𝛾𝑏𝑐
  (87) 

The numerical form of equations (82), (83), (84), (85) 

and (87) will be 
𝑢𝑟𝑏𝑛+1−𝑢𝑟𝑏𝑛

Δ𝑠
=

𝑞𝑏𝑛

𝑚𝑐
𝐸𝑟

𝑛+
1
2

 (88) 

 𝑢𝑟
𝑏𝑛+

1
2

=
𝑢𝑟𝑏𝑛+1+𝑢𝑟𝑏𝑛

2
  (89) 

 
𝑢𝑧𝑏𝑛+1−𝑢𝑧𝑏𝑛

Δ𝑠
=

𝑞𝑏𝑛

𝑚𝑐
𝐸𝑧

𝑛+
1
2

 (90) 

𝑥𝑏
𝑛+

1
2

= 𝑥𝑏𝑛
+

Δ𝑠

2

𝑢𝑥𝑏𝑛

𝛾𝑏𝑛

  (91) 

 𝑦𝑏
𝑛+

1
2

= 𝑦𝑏𝑛
+

Δ𝑠

2

𝑢𝑦𝑏𝑛

𝛾𝑏𝑛

  (92) 

 𝜉𝑏
𝑛+

1
2

= 𝜉𝑏𝑛
+

Δ𝑠

2
(1 −

𝑢𝑧𝑏𝑛

𝑐𝛾𝑏𝑛

) (93) 
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III RESULTS AND DISCUSSION 

A Beam and Plasma Particles Representation 

 
Figure 3: phase space representation of the square 

beam charge density charge distribution 

 

In Figure 3 above, the yellow to green region indicate 

where the beam density is largely concentrated. Such 

that, the beam is highly localized near the front of the 

simulation domain. The compact nature of the beam 

is suitable for driving a strong wakefield because the 

beam density is high where it is concentrated. 

Therefore, the phase space plot clearly indicates that 

the beam is highly localized, focused and ideal for 

generating strong wakefield when driven in plasma. 

The narrow radial distribution of the beam suggests a 

potential of strong focusing force which usually 

ensure effective interaction with plasma particles. 

The longitudinal density profile suggest that the beam 

is compact enough to induce substantial plasma 

electrons displacement, necessary for large amplitude 

wakefield or strong wakefield excitation. 

 
Figure 4: Line plot of the beam charge density 

distribution with distance 

The density distribution of the beam as a function of 

radial distance 𝑟 is shown in Figure 4. The beam 

density 𝑛𝑏 reached a peak of 8 × 1020𝑚−3 at the 

radial center, and steeply decrease with increase in 𝑟. 

The radial distance 𝑟 is the distance away from the 

center of the beam in meters. This plot indicates that 

the beam density is highly concentrated near it center 

(where 𝑟 = 0). The sharp density gradient ensures 

that the beam interact strongly with the plasma 

electrons, thereby, largely responsible for creating 

strong accelerating wakefield behind the beam, as it 

propagates through the plasma.  

 
Figure 5: plasma macro-particles distribution in 3-

dimension 

 

This represents plasma macro-particle distribution 

within the specified plasma volume. The dark regions 

correspond to lower plasma macro particle density 

while the brighter regions (yellow and green) 

correspond to regions with higher densities. The plot 

indicates a slight perturbed plasma macro-particle 

distribution, as observed from the colour variation 

seen. They could be as a result of the thermal state of 

the plasma electrons or non-uniformity in the initial 

condition applied. However, this basically represent 

the initial plasma state before propagation of the 

drive beam through the plasma 
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Figure 6: square beam in plasma distribution 

 

The red region shows the high-density particle beam, 

used as the drive beam in the plasma. The blue 

regions indicate the unperturbed plasma with low 

density compared to the high-density beam. This plot 

depicts the initial stage where the beam is introduced 

into the plasma. 

 

Figure 7: plasma charge density distribution. From 

left to right, depict plasma particles phase space 

charge density distribution, charge density 

distribution along x, y, and z-direction 

The 3D charge density distribution (top-left) shows 

how charge density is distributed spatially through 

the plasma simulation domain. The charge density 

distribution appears to be fairly uniform with small 

variations throughout the simulation domain. The 

total intensity of the charge density is low, around 

1 × 10−24𝐶/𝑚3 , which is consistent with charge 

densities required for plasma simulations. 

The plots in top-right, bottom-right, and bottom-left 

exhibit similar fluctuations in charge density between 

0 and 1.2 × 10−24𝐶/𝑚3. These oscillations observed 

could be due to the slight perturbation effects 

observed could be due to the slight perturbations seen 

in Figure 5. The anisotropy in charge density 

oscillations along different axes, suggest that the 

wakefield generation has direction-dependent effects. 

 

Figure 8: plasma current density distribution. From 

left to right, depict plasma particles phase space 

current density distribution, charge current 

distribution along x, y, and z-direction 

The top-right plot illustrates the spatial distribution of 

the current density across the simulation domain. The 

magnitude of the current density is approximately 

2 × 10−5𝐴/𝑚2, as indicated by the color bar, 

suggesting that the plasma current density is 

relatively small. The plots also reveal a non-uniform 

distribution with localized regions of high current 

density amidst areas of lower density, highlighting 

the flow of charges within the plasma. However, the 

significance of current density on the normalized 
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blowout radius has been mentioned (Lu et al., 2010). 

Consequently, the potential applications of high 

average current density generated in a plasma 

accelerator has been stressed (Zgadgaj et al., 2020). 

IV CONCLUSION 

This progress report highlights the successful 

development of a quasi-static PIC code tailored for 

nonlinear beam-driven PWFA simulations. The 

achieved reductions in computational complexity, 

coupled with the accurate representation of beam-

plasma dynamics, position the code as a valuable 

asset for advancing plasma accelerator research. 

Continued efforts in validation, optimization, and 

feature integration will further solidify its role in 

pushing the boundaries of plasma-based acceleration 

technologies, ultimately contributing to the 

realization of more compact, efficient, and powerful 

particle accelerators. 
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