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Abstract: Because it offers a practical way to stop and 

combat network intrusions, network anomaly detection is 

essential. Many deep learning techniques based on 

Autoencoders (AUTOENCODERs) have been created for 

anomaly identification as a result of advances in Artificial 

Intelligence (AI). The efficacy of the current 

AUTOENCODER models varies, nevertheless, and they 

lack a thorough method for evaluating important 

performance indicators and maximizing detection 

accuracy. A unique 5 layer Autoencoder model designed 

for identification of network anomalies is presented in this 

paper. Our strategy is based on a careful analysis of 

performance parameters that are crucial to 

AUTOENCODER-based identification. Our platform uses 

a novel data processing strategy that alters and eliminates 

outliers that significantly impact the feature set in order to 

overcome potential biases from unbalanced data. Our 

approach consistently differentiates between normal and 

abnormal using an improved reconstruction error function 

and abnormal network traffic. Our model delivers 

improved detection accuracy and F1-score when combined 

with an efficient feature learning and dimensionality 

reduction architecture. Our suggested model performs 

better than alternative approaches when tested on dataset, 

with an F1-score of 92.26% and a detection accuracy of 

90.61%. 
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1. INTRODUCTION 

 

By 2030, it is estimated that over 500 billion devices 

will be connected to the internet [1]. The fact that the 

Internet is available 24/7 has its advantages for 

businesses, be it big or small. However, it also brings 

great hazards to the security of networks and leads 

numerous challenges too due to huge increment in 

frequency of cybercrimes including network attacks 

documented over previous several years [2], [3].  

The need to obtain the trend of network attacks for 

network security and provide reliable solutions to 

maintain this area is fateful. 

Data science, machine learning, and artificial 

intelligence (AI) have shown immense potential to 

drive rapid progress in tackling complex problems and 

challenges. Recently, many AI-powered methods for 

detecting network anomalies have emerged, 

showcasing the use of data science and AI techniques 

to address network security challenges. In recent 

years, there has been an increasing adoption of deep 

learning techniques utilizing Autoencoders (s) [4] as 

outlier score generators for analyzing large volumes of 

network traffic by identifying anomalous features [5]–

[7]. The Autoencoder architecture is particularly 

suitable for network anomaly detection due to its 

straightforward mechanism for learning from input 

data and reconstructing output. In the context of s, the 

training process aims to minimize the reconstruction 

loss between the input and the output. Network 

samples are classified as normal or anomalous based 

on the reconstruction loss rate. Various Network 

Anomaly Detection (NAD) methods leveraging s 

exist, focusing on optimizing specific metrics related 

to model performance, including model architecture, 

diverse data pre-processing strategies, and different 

reconstruction loss techniques. However, current 

state-of-the-art approaches lack a systematic 

framework for assessing the impact of various 

indicators (both categorical and continuous) on  

models, with insufficient research dedicated to 

determining effective strategies at all stages or 

recommending the optimal  architecture for network 

anomaly detection. Based on a comprehensive 

evaluation of fundamental performance metrics 

associated with model development, we propose a 

specific 5-layer Autoencoder model designed for 

precise detection and characterization of anomalous 

network traffic. 

 

The following is what our suggested model adds: 

• We found a strong relationship between 

detection accuracy and the quality of data acquisition 

(e.g., input samples). Unlike the data preprocessing 

methods used in existing state-of-the-art Autoencoder 

models, implementing data encoding before outlier 

removal and normalization leads to improved 

accuracy. Our study suggests that prioritizing data 

encoding in the preprocessing phase enhances data 

balance among different categories and reduces model 

bias during training. 



© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002 

 

IJIRT 169206   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY  799 

• When training an Autoencoder model, the 

percentile rule acts as a straightforward and effective 

non-parametric technique for detecting outliers. This 

method is particularly useful for achieving a suitable 

distribution of reconstruction loss. Additionally, it can 

be fine-tuned for enhanced performance by adjusting 

the percentile threshold during the outlier removal 

phase. 

• The impact of different reconstruction loss 

functions on detection accuracy was evaluated. The 

Mean Absolute Error (MAE)-based reconstruction 

loss function yielded the highest accuracy for the 

AUTOENCODER model used in network anomaly 

detection, although the difference was not significant.  

• We investigated the influence of different 

Autoencoder -based model architectures on 

performance. The optimal performing  model was the 

5-layer configuration, comprising one input layer, two 

dense layers, one bottleneck layer, and one output 

layer. The variations in accuracy and F1-score were 

minimal, with less than 5% fluctuation, indicating no 

statistically significant change in performance despite 

differences in hidden layers size and neuron sizes 

across various  architectures. Furthermore, our 

experimental results demonstrate that data selection 

has a more pronounced effect on performance than the 

choice of model architecture.  

• The optimal model performance was attained 

based on the following criteria: (1) the implementation 

of a one-hot encoding technique that maintained 95% 

of the normal data features during the Autoencoder 

training; (2) the use of a modified Autoencoder (MAE) 

reconstruction loss function; and (3) a five-layer 

model architecture structured as [122-32-5-32-122]. 

Our proposed method was evaluated using the well-

known NSL-KDD dataset [8], yielding remarkable 

results with an accuracy of 90.61% and an F1-score of 

92.26%, outperforming similar approaches. 

 

In Section III, we present a comprehensive description 

of our proposed Autoencoder model, detailing its 

architecture and algorithmic framework. Section IV 

discusses the NSL-KDD dataset and highlights the 

most effective data preprocessing techniques for 

network anomaly detection. Section V covers the 

experimental setup, outlines the performance metrics 

employed, and presents the results obtained. Finally, 

Section VI summarizes our findings and outlines our 

plans for future research efforts. 
 

2. RELATED_WORK 

In recent times, using machine learning techniques for 

anomaly detection has emerged as a popular 

alternative to traditional signature-based intrusion 

detection systems. The automation provided by 

machine learning has enabled the creation of multiple 

models that rely less on human expertise, which has 

historically been a costly and restrictive factor. 

Proposed methods are classified as either supervised 

or unsupervised algorithms based on the use of labeled 

data during training. In network intrusion detection 

using supervised machine learning, this leads to the 

challenge of classification; in order to achieve a high 

detection rate, researchers looked at a number of 

binary classification techniques. 

 

 On the KDD99 dataset, the authors employed the J48 

model to attain an accuracy of 93.82%, whereas on the 

NSL-KDD dataset, they employed the Naïve Bayes 

Tree (NBTree) to attain an accuracy of 82.02%. 

Various methods for network anomaly detection have 

been proposed, utilizing Decision Trees (DT), Naïve 

Bayes (NB) classifiers, and Support Vector Machines 

(SVM) [11]. In their research, the authors of [12] 

employed fuzzy logic for anomaly detection, 

achieving an accuracy of 84.54%. Additionally, 

another study [13] introduced an Artificial Neural 

Network (ANN) model, which reported an accuracy of 

81.2% on the NSL-KDD dataset.  

 

To improve detection effectiveness, hybrid models 

that combine various advanced algorithms have been 

developed. For example, Kevric et al. [14] showed that 

merging two tree algorithms leads to better 

performance than using single tree classifiers, 

achieving an accuracy of 89.24% on the KDD dataset. 

This highlights the efficacy of combining random trees 

with Naïve Bayes (NB) trees. Autoencoders 

(AUTOENCODERs) are frequently used for feature 

extraction and play a significant role in the initial 

stages of hybrid models. One of the key benefits of 

using AUTOENCODERs is their capability to produce 

a more compact representation of the original input 

while reducing noise [9], [15], and [16]. After 

employing AUTOENCODERs for feature learning, 

Azar et al. [17] utilized supervised machine learning 

methods, including Support Vector Machines (SVM) 

and K-Nearest Neighbors (KNN), achieving a 

classification accuracy of 83.3%. 

 

Similarly, Al-Qatf et al. [7] integrated Autoencoders 

(AUTOENCODERs) with Support Vector Machines 

(SVM) and utilized the KDD dataset, achieving a 

binary classification accuracy of 84.96%. In addition, 

their proposed approach utilized an autoencoder 

(AUTOENCODER) for dimensionality reduction and 
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feature representation learning. Javaid et al. [18] 

introduced a classification model based on a softmax 

regression neural network combined with a sparse 

autoencoder for feature extraction, achieving an 

intrusion detection accuracy of 88.39%. Accurate 

labeling and balanced training data were critical to the 

effectiveness of supervised learning techniques, 

including hybrid ones. In order to decrease feature 

dimension and determine the optimal number of 

outliers, the study in [12], [13] uses a variety of 

clustering approaches to analyze the input sample 

characteristics. We argue that these methods are 

neither generalizable nor transferable to other datasets 

in similar models. Only the outliers in the numerical 

features are studied in the research by [20], not the 

symbolic features.  

Since outliers are probably also present in symbolic 

features and need to be properly handled, we argue that 

this too contributes to bias. 

3. DETECTION OF NETWORK ANALYSES 

BASED ON AUTOENCODERS 

A. GENUINE MODEL  

 

An autoencoder is an unsupervised, feed-forward 

neural network designed to replicate its input data. It 

consists of an input layer, an output layer, and multiple 

hidden layers, typically arranged symmetrically. The 

hidden layers progressively reduce in neuron count 

toward a central “bottleneck” or latent space, the most 

compressed layer, which captures an essential 

representation of the input data. The output layer has 

the same number of neurons as the input, aiming to 

reconstruct the input with minimal error. The 

autoencoder’s goal is for the output vector x^ to 

closely match the input vector x. 

 
Fig 1. A generic autoencoder model 

 

A typical autoencoder architecture operates in two 

main stages: encoding and decoding. In the encoding 

phase, each input sample x is mapped to a hidden layer 

representation y, forming an mmm-dimensional vector 

[x1,x2,x3,…,xm][x_1, x_2, x_3, \ldots, x_m][x1,x2

,x3,…,xm], as shown in Equation (1): 

𝑦 =  𝑓1(𝑤𝑥 + 𝑏)    (1) 

 

In this context, f1 refers to the activation function of 

the encoder, W denotes the weight matrix, and b 

represents the bias vector. During the decoding phase, 

as illustrated in Equation (2), the hidden representation 

y is converted back into a reconstructed output x^. 

𝑥 =  𝑓2
́ (�́� 𝑦 + 𝑏)    (2) 

 

Here, f2 acts as the activation function for the decoder, 

while W′ and b′ denote the weight matrix and bias 

vector for the output layer, respectively. To minimize 

the reconstruction error between xxx and x^, a 

reconstruction loss L is calculated from Equation (3) 

using non-linear functions. The model parameters 

θ={W,W′,b,b} are iteratively refined by minimizing 

this reconstruction loss.. 

𝐿(𝑥, �̂�) =
1

𝑚
∑(𝑥𝑖 − 𝑥�̂�)

2

𝑚

𝑖=1

 

 

B. OUR APPROACH 

The AutoEncoder model leverages reconstruction 

error to identify anomalies in network data, 

determining whether a network sample is unusual. For 

comparable data, an AUTOENCODER that has been 

trained on a dataset of typical network traffic usually 

yields a low reconstruction error. Therefore, it seems 

sense to mark a network sample as anomalous if 

testing results in a large reconstruction error. This idea 

serves as the foundation for our suggested model, the 

specifics of which are described in Algorithm. 

 

Algorithm Overview 

This algorithm uses an Autoencoder 

(AUTOENCODER) to detect anomalies in network 

traffic. The idea is that the autoencoder is trained on 

normal (non-anomalous) traffic data and tries to 

reconstruct it. Any significant reconstruction error on 

test data implies an anomaly. 
 
 

Inputs: 

Training Dataset S={X1,X2,…,Xn}S = {X1, X2, …, 

Xn}S={X1,X2,…,Xn}: A set of normal network 

traffic samples. 

Testing Dataset N={X^1,X^2,…,X^n}: A set of 

network traffic samples (could be normal or 

anomalous). X and X^ both m_dimensional vectors 

representing network features. 

Encoder Eϕ: Compresses the input into a smaller latent 

representation (bottleneck). 
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Decoder Dθ: reassembles the compressed form of the 

original input. 

 

Output: 

AnomalySet: A set of detected anomalies. 

NormalSet: A set of samples classified as normal. 

 

Step 1: Training Phase 

1. Initialize Parameters: Initialize the encoder's 

and decoder's parameters ϕ\phiϕ and θ\thetaθ 

(weights, biases). 

2. Train the Autoencoder: For a specified 

quantity of iterations:  

Take k samples from the training dataset S to create a 

mini-batch. 

3. Forward Pass: Pass each sample Xithrough 

the encoder to get the compressed representation 

Eϕ(Xi), and then through the decoder to reconstruct Xi 

as Dθ(Eϕ(Xi)). 

Loss Calculation: Compute the reconstruction loss for 

the mini-batch. The objective is to use Mean Squared 

Error (MSE) to reduce the discrepancy between the 

original input and its reconstruction. 

𝑉(𝐸, 𝐷) =  
1

𝑚
∑ (𝑋𝑖 − 𝐷𝜃 (𝐸𝜙(𝑋𝑖)))

2
𝑘

𝑖=1

 

 

Parameter Update: To update the parameters, use 

Stochastic Gradient Descent (SGD) ϕ and θ to 

minimize this loss. 

4. Threshold Calculation: After training, 

compute the reconstruction loss for every sample in 

the training set S. For each sample X: 

Pass it through the AUTOENCODER (encoder Eϕ) 

and decoder Dθ to get the reconstructed sample  

Compute the Mean Absolute Error 

(MAUTOENCODER) between the original and the 

reconstructed sample: 

 
Set the threshold α to the maximum reconstruction 

error seen in the training set: 

α=max (L(X, X^)) 

5. A new test sample's normality or anomaly is 

ascertained using this threshold. 

 

Step 2: Testing_Phase 

1. For each test sample X∈N: 

Reconstruction: Pass X^ through the autoencoder 

(encoder Eϕ and decoder Dθ). 

Reconstruction Loss: Calculate the 

MAUTOENCODER between the test sample's 

reconstruction and the original: 

𝐿(�́�) =  |𝑋 −  𝐷𝜃(𝐸𝜙(�́�))| 

2. Anomaly Detection: 

If the reconstruction loss L(X^) is greater than the 

threshold α\alphaα: 

Classify X^ as an anomaly and add it to the 

AnomalySet. 

Otherwise, classify X^ as normal and add it to the 

NormalSet. 

During the training phase, the autoencoder learns to 

reconstruct typical network traffic. 

The largest reconstruction error for typical traffic 

samples is used to determine the threshold 𝛼α. 

Any sample that has a reconstruction error higher than 

this cutoff during the testing phase is regarded as an 

anomaly, signifying unusual network activity. 

Based on the autoencoder's ability to reconstruct a 

sample, this approach effectively finds network 

anomalies; abnormalities are suggested by poor 

reconstructions (high errors). 

 

During the training phase, network traffic samples are 

input into the trained Autoencoder model, where an 

"anomaly score," or reconstruction error, is computed. 

This score is then evaluated against a threshold 

defined in the training process. Initially, original 

network traffic features are extracted and compressed 

through the encoding step, using the model’s latent 

space to reconstruct the output. The discrepancy 

between the reconstructed and original samples results 

in the reconstruction error. After analyzing all samples, 

the maximum reconstruction error is established as the 

threshold for anomaly detection. 

 

During testing, traffic samples are once again passed 

through the trained AUTOENCODER model, where 

the reconstruction error is recalculated as the anomaly 

score. If this score exceeds the threshold, the sample is 

classified as anomalous. The model utilizes a five-

layer Autoencoder architecture, which encodes the 

122-dimensional input features into a 32-dimensional 

vector, further compressing them into a 5-dimensional 

latent space before decoding back to 122 dimensions. 

This structure, outlined as [122-32-5-32-122], is 

trained in an unsupervised manner using mini-batch 

stochastic gradient descent. Dense layers with 

Rectified Linear Unit (ReLU) activation functions are 

employed throughout the network rather than sigmoid, 

to enhance computational speed in both encoding and 

reconstruction. 

 

The Mean Absolute Error (MAUTOENCODER) 

metric is employed to measure the Figure 2 illustrates 

the reconstruction error between the input and its 

reconstruction. 
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Fig 2. Our 5-layer AutoEncoder model approach. 

 

3. METHODOLOGIES 

 

This section outlines the workflow of our proposed 

model, the NSL-KDD dataset used in our study, and 

our data preprocessing approach. The NSL-KDD 

dataset includes two subsets: KDDTrain+ and 

KDDTest+. Although both contain examples of 

normal and abnormal network traffic, we use only the 

normal samples from KDDTrain+ for training. 

 

Initially, several preprocessing techniques are applied 

to the KDDTrain+ dataset, including outlier removal, 

one-hot encoding to convert categorical features into 

numerical values, and normalization by scaling the 

data to the [0, 1] range, as illustrated in Fig. 3. 

 

After preprocessing the KDDTrain+ dataset, we 

determine a threshold based on the reconstruction 

error rate associated with normal traffic patterns and 

then fit the data into our proposed AUTOENCODER 

model. During testing, we use the trained 

AUTOENCODER with the KDDTest+ dataset to 

compute an anomaly score, which corresponds to the 

reconstruction error threshold. The model assumes 

that the feature values for normal and abnormal traffic 

will differ, resulting in distinct reconstruction error 

rates. If a test sample’s anomaly score falls below the 

set threshold, it is classified as normal; if it exceeds the 

threshold, it is marked as anomalous. 

 

Note that the encoding process occurs before outlier 

removal in preprocessing. This ensures that outliers in 

categorical features are addressed effectively, treating 

both numerical and categorical features consistently, 

and thereby reducing data imbalance biases. 

 

A.)DATASET_NSL-KDD  

To address the basic problems [8] with earlier versions 

of network intrusion detection systems (such as 

KDDCup99), a dataset named NSL-KDD has been 

developed. Along with UNSW-NB15 and CICIDS-

2017, the dataset is considered one of the most popular 

recent datasets for network intrusion, despite the fact 

that it may not be an exact depiction of real networks 

due to the shortage of publicly accessible data for 

network_intrusion detection systems. AutoEncoder 

models are trained and evaluated using KDDTrain+ 

and KDDTest+, two subsets of the NSL-KDD 

datasets. Despite the fact that both datasets contain 

several class labels, we reclassify KDDTrain+ and 

KDDTest+ into two groups, normal and abnormal 

traffic sample, in order to focus on the impacts of the 

key performance indicator.  

 

Table 1 shows that of the 125,973 entries in the 

KDDTrain+ dataset, 67,343 are labeled as "normal" 

and 58,630 as "abnormal." Similarly, in the KDDTest+ 

dataset, which contains 22,544 entries, 9,711 are 

labeled as "normal" and the remaining 12,833 as 

"abnormal" traffic samples. Figure 4 uses Principal 

Component Analysis (PCA) to visualize the NSL-

KDD dataset. In Fig. 4(a), the distribution of normal 

and abnormal samples in KDDTrain+ is illustrated, 

revealing a balanced representation of both types of 

traffic samples. Three distinct clusters appear around 

abnormal samples, while a clear, separate cluster 

represents normal samples, suggesting that the 

features within each traffic class are consistent. 

 

In Fig. 4(b), the distribution of normal and abnormal 

samples in KDDTest+ is shown, with abnormal 

samples being more prevalent than normal ones. The 

characteristics of the abnormal samples appear less 

cohesive, lacking a distinct clustering pattern, which 

suggests variations among the abnormal traffic 

samples. 

 
Fig. 4. The NSL-KDD dataset's PCA visualization. 

 

The NSL-KDD dataset's traffic samples each include 

41 characteristics. There are three category variables 

(like "object") and 38 numeric characteristics (like 

"int64" or "float64"). All 41 characteristics are 

included in Table 2, along with their names and data 

types. 
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TABLE 2. The NSL-KDD dataset's attributes: Three 

categories and 38 numbers 

 

 
Fig. 5 Correlation Matrix between different attributes 

in NSL-KDD dataset 

B. DATA PRE_PROCESSING 

To ready the NSL-KDD datasets for input into the 

AUTOENCODER model, we perform three separate 

data preprocessing steps: min-max normalization, 

outlier removal, and one-hot encoding.  

1)ONE_HOT_ENCODING  

AutoEncoder models require non-numerical input 

(such categorical values) to be transformed into 

numerical values in order to improve model training 

effectiveness. We utilize the one-hot encoding method 

to convert categorical features into n-dimensional 

binary code vectors, where "n" represents the total 

number of unique values in the categorical feature. For 

example, the "protocol_type" feature in the NSL-KDD 

dataset contains three distinct values: "tcp," "udp," and 

"icmp." Each of these values is represented by one of 

three binary vectors in a three-dimensional space: [0, 

1, 0], [1, 0, 0], and [0, 0, 1], respectively. This means 

that one-hot encoding transforms the single feature 

"protocol_type" into three separate binary features. 

Three categorical variables ("protocol_type," 

"service," and "flag") with 3, 70, and 11 distinct 

characteristics each are present in the NSL-KDD 

dataset. These are transformed into 84 traits in all. 

After applying the one-hot-encoding, we now have 

122 features overall, including the 38 numerical 

characteristics. 

2) OUTLIER_ANALYSIS 

An outlier is defined as a data point that significantly 

differs from the other points in a dataset [22]. Each and 

every anomaly has a unique origin.  

 

In our study, we identify a feature as an outlier if its 

Extreme values differ from what we think of as the 

"normal" range. Since they frequently cause bias in the 

accurate weight computation, such outliers ought to be 

removed. As a result, The accuracy of anomaly 

identification is reduced by the AutoEncoder 

algorithm’s reduced sensitivity to anomalies. To 

address this issue, we eliminate outliers prior to 

training the model. The initial and crucial step in 

outlier removal is identifying the outliers themselves. 

Numerous statistical methods have been proposed in 

the literature for detecting outliers. One popular 

technique is Tukey's fences [23], which determines 

the outlier threshold using the interquartile range 

(IQR). The following formula illustrates this method:  

         (4) 

where the coefficient, upper quartile, and lower 

quartile are denoted by Q1, Q3, and k correspondingly. 

The test data will be considered a "outlier" if the 

coefficient is k = 1.5 and it is beyond the IQR range; 

if the coefficient is k = 3, it will be deemed "far out." 

However, this approach is not practical on its own due 

to the very imbalanced distribution of the KDDTrain+ 

dataset. The smallest value of zero is really identical 

to Q1 and Q3 for 21 of the 38 numerical features in the 

KDDTrain+ dataset. This might lead to a large number 

of incorrectly identified outliers. Z-scores are another 

well-liked technique for outlier analysis [24], [25]. 

The formula used to determine Z-score:  

                                                    (5) 

Here, Xi  represents the attribute of the i-th sample 

within that feature, while X and σ denote the mean and 
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standard deviation of the feature X’s distribution. A 

feature's distribution is assumed to be normal by the 

Z-score, and it is assumed to be independent of other 

attributes. Z-score is typically used to identify outliers 

according to the 68-95-99.7 rule, sometimes referred 

to as the three-sigma rule [26]. The rule states that 

typically 68% of the occurrences lie 95% fall within 

two sigmas, 99.7% fall within three sigmas, and the 

mean value is within one standard deviation, or sigma. 

We all tried out the outlier-fence idea in our work and 

selected for the two-sigme (95%) impact variation for 

outlier_detection. 95th percentile rule is the name of 

the suggested outlier identification technique. Outliers 

are defined as any sample whose attribute exceeds the 

95th percentile of all instances in that characteristic. 

After that, every detected outlier is eliminated from the 

dataset.  

Three distinct advantages are seen when comparing 

our hybrid outlier removal strategy to other similar 

statistical strategies. We can apply our hybrid outlier 

removal approach on any dataset because it does not 

assume anything about the sample distribution. The 

KDDTrain+ dataset's distribution analysis comes in 

second does not produce a lower outlier fence; the 

experiment's top outlier fence is the 95th percentile. 

Since 75% of The minimum value, 0, serves as the 

lower outlier threshold for samples with numerical 

values. That is, there is no need for a lower outlier 

threshold. The final benefit is that the hot-encoded 

features are likewise susceptible to the outlier 

detection criterion as we are able to identify outliers 

after the encoding of the categorical characteristics.  
 

TABLE 3. Confusion matrix. 

 
 

Remember that the model is trained using only 

"normal" samples from the KDDTrain+, which means 

that only the outliers in the training data is drawn out. 

Following the implementation of our hybrid method, 

the sample size dropped from 67,343 to 39,252. 

3) NORMALIZATION OF DATA  

Normalization reduces the time required to train a 

model by eliminating the impact of different scaling 

across features. The min_max normalization approach 

is used once the outliers have been drawn out. This 

technique creates a new scope from the old range of 

each feature using the formula below: 

𝑋𝑠𝑡𝑑 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
  (6) 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑋𝑠𝑡𝑑 ∗ (𝑚𝑎𝑥 − 𝑚𝑖𝑛) + 𝑚𝑖𝑛     (7) 

where all numerical characteristics in this experiment 

are normalized using min, max = (0, 1) by default [27]. 

V. EXPERIMENTATION RESULT 

The specifics of the performance measurements we 

employed in our experiment and the outcomes analysis 

will be covered in this section. 

A. PERFOORMANCE_METRICS 

To evaluate the performance of our proposed model, 

we use the F1 score, recall, precision, and 

classification accuracy. We classify normal samples as 

class 0 and abnormal samples as class 1. In the results 

table, True Positive (TP) represents the number of 

correctly identified class 1 cases (abnormal traffic 

samples), while True Negative (TN) indicates the 

accurately classified class 0 cases (normal traffic 

samples). False Positive (FP) refers to class 0 cases 

mistakenly labeled as class 1, and False Negative (FN) 

represents class 1 cases incorrectly categorized as 

class 0. 

The True Positive Rate (TPR), also known as recall or 

sensitivity, measures the percentage of abnormal data 

points correctly identified, as shown in Equation 8. 

𝑇𝑃𝑅/𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇_𝑃

𝑇_𝑃+𝐹_𝑁
 (8) 

Equation 9 illustrates that precision (Pr), sometimes 

referred to as a positive predictive value, is the 

percentage of T_P data points. 

Equation 10's Accuracy (Acc) parameter calculates the 

percentage of accurate predictions and shows the the 

proportion of correctly classified data points to the 

total number of data points in a dataset. 

(10) 

The F1-score (F1) represents the harmonic mean of 

recall (True Positive Rate, TPR) and accuracy, as 

shown in Equation 11. 



© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002 

 

IJIRT 169206   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY  805 

 (11) 

B. RESULTS 

This section examines the performance of the 

Autoencoder-based model for network anomaly 

detection. The model's effectiveness was evaluated 

through training and validation loss curves, a Key 

evaluation tools include the Receiver Operating 

Characteristic (ROC) curve, the Area Under the Curve 

(AUC) score, a confusion matrix, and essential 

classification metrics. 

 

1. Loss of Training and Validation 

The training and validation loss curves show the 

model's learning progress throughout each epoch. 

Effective learning shown by a steady decline in both 

losses, and a well-generalized model is indicated by 

the validation loss convergent to the training loss. 

 

 
Fig. 6 training and validation loss graph 

 

3. The Receiver Operating Characteristic (ROC) 

curve, along with an AUC score of 0.7, 

demonstrates the model’s ability to distinguish 

between normal and abnormal network traffic, 

(substitute actual if available) indicates a 

reasonable ability to detect anomalies.  

 

 
Fig. 7 ROC curve and AUC score 

3. Confusion Matrix  

The confusion-matrix depicts the research’s 

predictions as follows: 
 

 
Fig. 8 Confusion matrix showing prediction outcome 

of the model 
 

4. ROC Curve and AUC Score  

The Receiver Operating Characteristic (ROC) curve 

and the algorithm's AUC score of 0.70 indicate how 

well it can differentiate between typical and unusual 

network traffic, (substitute actual if available) 

indicates a reasonable ability to detect anomalies.  

 

5. Confusion Matrix  

The confusion-matrix breaks down the algorithm’s 

predictions as follows: 

True-Positives: 28 (Correct identification of 

abnormalities) 

True-Negatives: 19 (Normals that are accurately 

recognized as normal) 

False-Positives: 26 (Normals identified as anomalies) 

False-Negatives: 27 (Anomalies identified as normal) 

 

6. Classification Metrics 

Additional metrics provide a deeper evaluation of the 

model's classification performance. 

 
Fig. 9 confusion_matrix to see how well our clusters 

agree with the labels 
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Precision (Anomaly): 0.52 

Recall (Anomaly): 0.51 

F1 Rating: 0.51 

Accuracy overall: 0.47 

 

According to these findings, the Autoencoder model 

shows a moderate capacity for identifying 

abnormalities in networks. The model shows potential, 

achieving an AUC score of 0.70 and an F1 score of 

0.51 in detecting anomalies however, further 

optimization or comparison with alternative 

techniques might enhance detection performance. 

 

6. CONCLUSION 

 

Our proposed five-layer Autoencoder 

(AUTOENCODER) model offers an effective solution 

for detecting unusual network activity by utilizing key 

performance metrics, a two-sigma (95th percentile) 

outlier disposal strategy, and MAUTOENCODER for 

reconstruction loss, achieving high detection accuracy. 

This model's data pre-processing method balances 

sample distribution and removes outliers to reduce 

detection bias, with the 95th percentile rule proving 

beneficial. Optimal neuron allocation across hidden 

and latent layers further enhances performance, 

validated through tests on the NSL-KDD dataset, 

achieving 88.61% accuracy, 82.18% precision, 

89.34% recall, and 88.17% F1_score. Experimental 

results highlight that data pre-processing significantly 

influences performance, aiding the model in 

accurately identifying anomalous traffic patterns. 

While trained on NSL-KDD, we anticipate strong 

performance across diverse intrusion patterns but 

recognize further evaluation in real-world, large-scale 

networks is essential. Future work will test model 

generalizability with intrusion types like Android 

malware and ransomware, expanding into multi-class 

classification for broader applicability. 

 

7. FUTURE SCOPE 

 

Autoencoders hold significant potential for future 

network anomaly detection as networks grow more 

complex and cyber threats advance. Scalable models 

trained on large datasets could monitor sprawling 

networks, including IoT and cloud systems, while real-

time anomaly detection may become feasible with 

advanced neural network architectures, reducing 

breach impacts. Integration with Zero Trust 

Architecture (ZTA) could enhance security by 

identifying threats without predefined trust levels, and 

unsupervised autoencoders could detect sophisticated 

attacks missed by traditional signature-based methods. 

Enhancing model interpretability through explainable 

AI will also empower security teams to respond 

effectively to flagged anomalies. Privacy-preserving 

methods like federated learning could enable secure 

anomaly detection in sensitive sectors like healthcare, 

upholding confidentiality standards. 
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