
© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169206 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 798

Deep Learning based Network Anomaly Detection

Anmol Singh, Anita Kumari, Rohan Chaudhary, Sheenam Naaz

Dept. of Computer Science and Enginnering Sharda University Greater Noida, 201310, India

Abstract: Because it offers a practical way to stop and

combat network intrusions, network anomaly detection is

essential. Many deep learning techniques based on

Autoencoders (AUTOENCODERs) have been created for

anomaly identification as a result of advances in Artificial

Intelligence (AI). The efficacy of the current

AUTOENCODER models varies, nevertheless, and they

lack a thorough method for evaluating important

performance indicators and maximizing detection

accuracy. A unique 5 layer Autoencoder model designed

for identification of network anomalies is presented in this

paper. Our strategy is based on a careful analysis of

performance parameters that are crucial to

AUTOENCODER-based identification. Our platform uses

a novel data processing strategy that alters and eliminates

outliers that significantly impact the feature set in order to

overcome potential biases from unbalanced data. Our

approach consistently differentiates between normal and

abnormal using an improved reconstruction error function

and abnormal network traffic. Our model delivers

improved detection accuracy and F1-score when combined

with an efficient feature learning and dimensionality

reduction architecture. Our suggested model performs

better than alternative approaches when tested on dataset,

with an F1-score of 92.26% and a detection accuracy of

90.61%.

Keywords: NSL-KDD, anomaly detection, intrusion-

detection, network security, AI, deep learning,

autoencoders, unsupervised learning and machine

learning.

1. INTRODUCTION

By 2030, it is estimated that over 500 billion devices

will be connected to the internet [1]. The fact that the

Internet is available 24/7 has its advantages for

businesses, be it big or small. However, it also brings

great hazards to the security of networks and leads

numerous challenges too due to huge increment in

frequency of cybercrimes including network attacks

documented over previous several years [2], [3].

The need to obtain the trend of network attacks for

network security and provide reliable solutions to

maintain this area is fateful.

Data science, machine learning, and artificial

intelligence (AI) have shown immense potential to

drive rapid progress in tackling complex problems and

challenges. Recently, many AI-powered methods for

detecting network anomalies have emerged,

showcasing the use of data science and AI techniques

to address network security challenges. In recent

years, there has been an increasing adoption of deep

learning techniques utilizing Autoencoders (s) [4] as

outlier score generators for analyzing large volumes of

network traffic by identifying anomalous features [5]–

[7]. The Autoencoder architecture is particularly

suitable for network anomaly detection due to its

straightforward mechanism for learning from input

data and reconstructing output. In the context of s, the

training process aims to minimize the reconstruction

loss between the input and the output. Network

samples are classified as normal or anomalous based

on the reconstruction loss rate. Various Network

Anomaly Detection (NAD) methods leveraging s

exist, focusing on optimizing specific metrics related

to model performance, including model architecture,

diverse data pre-processing strategies, and different

reconstruction loss techniques. However, current

state-of-the-art approaches lack a systematic

framework for assessing the impact of various

indicators (both categorical and continuous) on

models, with insufficient research dedicated to

determining effective strategies at all stages or

recommending the optimal architecture for network

anomaly detection. Based on a comprehensive

evaluation of fundamental performance metrics

associated with model development, we propose a

specific 5-layer Autoencoder model designed for

precise detection and characterization of anomalous

network traffic.

The following is what our suggested model adds:

• We found a strong relationship between

detection accuracy and the quality of data acquisition

(e.g., input samples). Unlike the data preprocessing

methods used in existing state-of-the-art Autoencoder

models, implementing data encoding before outlier

removal and normalization leads to improved

accuracy. Our study suggests that prioritizing data

encoding in the preprocessing phase enhances data

balance among different categories and reduces model

bias during training.

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169206 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 799

• When training an Autoencoder model, the

percentile rule acts as a straightforward and effective

non-parametric technique for detecting outliers. This

method is particularly useful for achieving a suitable

distribution of reconstruction loss. Additionally, it can

be fine-tuned for enhanced performance by adjusting

the percentile threshold during the outlier removal

phase.

• The impact of different reconstruction loss

functions on detection accuracy was evaluated. The

Mean Absolute Error (MAE)-based reconstruction

loss function yielded the highest accuracy for the

AUTOENCODER model used in network anomaly

detection, although the difference was not significant.

• We investigated the influence of different

Autoencoder -based model architectures on

performance. The optimal performing model was the

5-layer configuration, comprising one input layer, two

dense layers, one bottleneck layer, and one output

layer. The variations in accuracy and F1-score were

minimal, with less than 5% fluctuation, indicating no

statistically significant change in performance despite

differences in hidden layers size and neuron sizes

across various architectures. Furthermore, our

experimental results demonstrate that data selection

has a more pronounced effect on performance than the

choice of model architecture.

• The optimal model performance was attained

based on the following criteria: (1) the implementation

of a one-hot encoding technique that maintained 95%

of the normal data features during the Autoencoder

training; (2) the use of a modified Autoencoder (MAE)

reconstruction loss function; and (3) a five-layer

model architecture structured as [122-32-5-32-122].

Our proposed method was evaluated using the well-

known NSL-KDD dataset [8], yielding remarkable

results with an accuracy of 90.61% and an F1-score of

92.26%, outperforming similar approaches.

In Section III, we present a comprehensive description

of our proposed Autoencoder model, detailing its

architecture and algorithmic framework. Section IV

discusses the NSL-KDD dataset and highlights the

most effective data preprocessing techniques for

network anomaly detection. Section V covers the

experimental setup, outlines the performance metrics

employed, and presents the results obtained. Finally,

Section VI summarizes our findings and outlines our

plans for future research efforts.

2. RELATED_WORK

In recent times, using machine learning techniques for

anomaly detection has emerged as a popular

alternative to traditional signature-based intrusion

detection systems. The automation provided by

machine learning has enabled the creation of multiple

models that rely less on human expertise, which has

historically been a costly and restrictive factor.

Proposed methods are classified as either supervised

or unsupervised algorithms based on the use of labeled

data during training. In network intrusion detection

using supervised machine learning, this leads to the

challenge of classification; in order to achieve a high

detection rate, researchers looked at a number of

binary classification techniques.

 On the KDD99 dataset, the authors employed the J48

model to attain an accuracy of 93.82%, whereas on the

NSL-KDD dataset, they employed the Naïve Bayes

Tree (NBTree) to attain an accuracy of 82.02%.

Various methods for network anomaly detection have

been proposed, utilizing Decision Trees (DT), Naïve

Bayes (NB) classifiers, and Support Vector Machines

(SVM) [11]. In their research, the authors of [12]

employed fuzzy logic for anomaly detection,

achieving an accuracy of 84.54%. Additionally,

another study [13] introduced an Artificial Neural

Network (ANN) model, which reported an accuracy of

81.2% on the NSL-KDD dataset.

To improve detection effectiveness, hybrid models

that combine various advanced algorithms have been

developed. For example, Kevric et al. [14] showed that

merging two tree algorithms leads to better

performance than using single tree classifiers,

achieving an accuracy of 89.24% on the KDD dataset.

This highlights the efficacy of combining random trees

with Naïve Bayes (NB) trees. Autoencoders

(AUTOENCODERs) are frequently used for feature

extraction and play a significant role in the initial

stages of hybrid models. One of the key benefits of

using AUTOENCODERs is their capability to produce

a more compact representation of the original input

while reducing noise [9], [15], and [16]. After

employing AUTOENCODERs for feature learning,

Azar et al. [17] utilized supervised machine learning

methods, including Support Vector Machines (SVM)

and K-Nearest Neighbors (KNN), achieving a

classification accuracy of 83.3%.

Similarly, Al-Qatf et al. [7] integrated Autoencoders

(AUTOENCODERs) with Support Vector Machines

(SVM) and utilized the KDD dataset, achieving a

binary classification accuracy of 84.96%. In addition,

their proposed approach utilized an autoencoder

(AUTOENCODER) for dimensionality reduction and

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169206 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 800

feature representation learning. Javaid et al. [18]

introduced a classification model based on a softmax

regression neural network combined with a sparse

autoencoder for feature extraction, achieving an

intrusion detection accuracy of 88.39%. Accurate

labeling and balanced training data were critical to the

effectiveness of supervised learning techniques,

including hybrid ones. In order to decrease feature

dimension and determine the optimal number of

outliers, the study in [12], [13] uses a variety of

clustering approaches to analyze the input sample

characteristics. We argue that these methods are

neither generalizable nor transferable to other datasets

in similar models. Only the outliers in the numerical

features are studied in the research by [20], not the

symbolic features.

Since outliers are probably also present in symbolic

features and need to be properly handled, we argue that

this too contributes to bias.

3. DETECTION OF NETWORK ANALYSES

BASED ON AUTOENCODERS

A. GENUINE MODEL

An autoencoder is an unsupervised, feed-forward

neural network designed to replicate its input data. It

consists of an input layer, an output layer, and multiple

hidden layers, typically arranged symmetrically. The

hidden layers progressively reduce in neuron count

toward a central “bottleneck” or latent space, the most

compressed layer, which captures an essential

representation of the input data. The output layer has

the same number of neurons as the input, aiming to

reconstruct the input with minimal error. The

autoencoder’s goal is for the output vector x^ to

closely match the input vector x.

Fig 1. A generic autoencoder model

A typical autoencoder architecture operates in two

main stages: encoding and decoding. In the encoding

phase, each input sample x is mapped to a hidden layer

representation y, forming an mmm-dimensional vector

[x1,x2,x3,…,xm][x_1, x_2, x_3, \ldots, x_m][x1,x2

,x3,…,xm], as shown in Equation (1):

𝑦 = 𝑓1(𝑤𝑥 + 𝑏) (1)

In this context, f1 refers to the activation function of

the encoder, W denotes the weight matrix, and b

represents the bias vector. During the decoding phase,

as illustrated in Equation (2), the hidden representation

y is converted back into a reconstructed output x^.

𝑥 = 𝑓2
́ (𝑤́ 𝑦 + 𝑏) (2)

Here, f2 acts as the activation function for the decoder,

while W′ and b′ denote the weight matrix and bias

vector for the output layer, respectively. To minimize

the reconstruction error between xxx and x^, a

reconstruction loss L is calculated from Equation (3)

using non-linear functions. The model parameters

θ={W,W′,b,b} are iteratively refined by minimizing

this reconstruction loss..

𝐿(𝑥, 𝑥̂) =
1

𝑚
∑(𝑥𝑖 − 𝑥𝑖̂)

2

𝑚

𝑖=1

B. OUR APPROACH

The AutoEncoder model leverages reconstruction

error to identify anomalies in network data,

determining whether a network sample is unusual. For

comparable data, an AUTOENCODER that has been

trained on a dataset of typical network traffic usually

yields a low reconstruction error. Therefore, it seems

sense to mark a network sample as anomalous if

testing results in a large reconstruction error. This idea

serves as the foundation for our suggested model, the

specifics of which are described in Algorithm.

Algorithm Overview

This algorithm uses an Autoencoder

(AUTOENCODER) to detect anomalies in network

traffic. The idea is that the autoencoder is trained on

normal (non-anomalous) traffic data and tries to

reconstruct it. Any significant reconstruction error on

test data implies an anomaly.

Inputs:

Training Dataset S={X1,X2,…,Xn}S = {X1, X2, …,

Xn}S={X1,X2,…,Xn}: A set of normal network

traffic samples.

Testing Dataset N={X^1,X^2,…,X^n}: A set of

network traffic samples (could be normal or

anomalous). X and X^ both m_dimensional vectors

representing network features.

Encoder Eϕ: Compresses the input into a smaller latent

representation (bottleneck).

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169206 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 801

Decoder Dθ: reassembles the compressed form of the

original input.

Output:

AnomalySet: A set of detected anomalies.

NormalSet: A set of samples classified as normal.

Step 1: Training Phase

1. Initialize Parameters: Initialize the encoder's

and decoder's parameters ϕ\phiϕ and θ\thetaθ

(weights, biases).

2. Train the Autoencoder: For a specified

quantity of iterations:

Take k samples from the training dataset S to create a

mini-batch.

3. Forward Pass: Pass each sample Xithrough

the encoder to get the compressed representation

Eϕ(Xi), and then through the decoder to reconstruct Xi

as Dθ(Eϕ(Xi)).

Loss Calculation: Compute the reconstruction loss for

the mini-batch. The objective is to use Mean Squared

Error (MSE) to reduce the discrepancy between the

original input and its reconstruction.

𝑉(𝐸, 𝐷) =
1

𝑚
∑ (𝑋𝑖 − 𝐷𝜃 (𝐸𝜙(𝑋𝑖)))

2
𝑘

𝑖=1

Parameter Update: To update the parameters, use

Stochastic Gradient Descent (SGD) ϕ and θ to

minimize this loss.

4. Threshold Calculation: After training,

compute the reconstruction loss for every sample in

the training set S. For each sample X:

Pass it through the AUTOENCODER (encoder Eϕ)

and decoder Dθ to get the reconstructed sample

Compute the Mean Absolute Error

(MAUTOENCODER) between the original and the

reconstructed sample:

Set the threshold α to the maximum reconstruction

error seen in the training set:

α=max (L(X, X^))

5. A new test sample's normality or anomaly is

ascertained using this threshold.

Step 2: Testing_Phase

1. For each test sample X∈N:

Reconstruction: Pass X^ through the autoencoder

(encoder Eϕ and decoder Dθ).

Reconstruction Loss: Calculate the

MAUTOENCODER between the test sample's

reconstruction and the original:

𝐿(𝑋́) = |𝑋 − 𝐷𝜃(𝐸𝜙(𝑋́))|

2. Anomaly Detection:

If the reconstruction loss L(X^) is greater than the

threshold α\alphaα:

Classify X^ as an anomaly and add it to the

AnomalySet.

Otherwise, classify X^ as normal and add it to the

NormalSet.

During the training phase, the autoencoder learns to

reconstruct typical network traffic.

The largest reconstruction error for typical traffic

samples is used to determine the threshold 𝛼α.

Any sample that has a reconstruction error higher than

this cutoff during the testing phase is regarded as an

anomaly, signifying unusual network activity.

Based on the autoencoder's ability to reconstruct a

sample, this approach effectively finds network

anomalies; abnormalities are suggested by poor

reconstructions (high errors).

During the training phase, network traffic samples are

input into the trained Autoencoder model, where an

"anomaly score," or reconstruction error, is computed.

This score is then evaluated against a threshold

defined in the training process. Initially, original

network traffic features are extracted and compressed

through the encoding step, using the model’s latent

space to reconstruct the output. The discrepancy

between the reconstructed and original samples results

in the reconstruction error. After analyzing all samples,

the maximum reconstruction error is established as the

threshold for anomaly detection.

During testing, traffic samples are once again passed

through the trained AUTOENCODER model, where

the reconstruction error is recalculated as the anomaly

score. If this score exceeds the threshold, the sample is

classified as anomalous. The model utilizes a five-

layer Autoencoder architecture, which encodes the

122-dimensional input features into a 32-dimensional

vector, further compressing them into a 5-dimensional

latent space before decoding back to 122 dimensions.

This structure, outlined as [122-32-5-32-122], is

trained in an unsupervised manner using mini-batch

stochastic gradient descent. Dense layers with

Rectified Linear Unit (ReLU) activation functions are

employed throughout the network rather than sigmoid,

to enhance computational speed in both encoding and

reconstruction.

The Mean Absolute Error (MAUTOENCODER)

metric is employed to measure the Figure 2 illustrates

the reconstruction error between the input and its

reconstruction.

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169206 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 802

Fig 2. Our 5-layer AutoEncoder model approach.

3. METHODOLOGIES

This section outlines the workflow of our proposed

model, the NSL-KDD dataset used in our study, and

our data preprocessing approach. The NSL-KDD

dataset includes two subsets: KDDTrain+ and

KDDTest+. Although both contain examples of

normal and abnormal network traffic, we use only the

normal samples from KDDTrain+ for training.

Initially, several preprocessing techniques are applied

to the KDDTrain+ dataset, including outlier removal,

one-hot encoding to convert categorical features into

numerical values, and normalization by scaling the

data to the [0, 1] range, as illustrated in Fig. 3.

After preprocessing the KDDTrain+ dataset, we

determine a threshold based on the reconstruction

error rate associated with normal traffic patterns and

then fit the data into our proposed AUTOENCODER

model. During testing, we use the trained

AUTOENCODER with the KDDTest+ dataset to

compute an anomaly score, which corresponds to the

reconstruction error threshold. The model assumes

that the feature values for normal and abnormal traffic

will differ, resulting in distinct reconstruction error

rates. If a test sample’s anomaly score falls below the

set threshold, it is classified as normal; if it exceeds the

threshold, it is marked as anomalous.

Note that the encoding process occurs before outlier

removal in preprocessing. This ensures that outliers in

categorical features are addressed effectively, treating

both numerical and categorical features consistently,

and thereby reducing data imbalance biases.

A.)DATASET_NSL-KDD

To address the basic problems [8] with earlier versions

of network intrusion detection systems (such as

KDDCup99), a dataset named NSL-KDD has been

developed. Along with UNSW-NB15 and CICIDS-

2017, the dataset is considered one of the most popular

recent datasets for network intrusion, despite the fact

that it may not be an exact depiction of real networks

due to the shortage of publicly accessible data for

network_intrusion detection systems. AutoEncoder

models are trained and evaluated using KDDTrain+

and KDDTest+, two subsets of the NSL-KDD

datasets. Despite the fact that both datasets contain

several class labels, we reclassify KDDTrain+ and

KDDTest+ into two groups, normal and abnormal

traffic sample, in order to focus on the impacts of the

key performance indicator.

Table 1 shows that of the 125,973 entries in the

KDDTrain+ dataset, 67,343 are labeled as "normal"

and 58,630 as "abnormal." Similarly, in the KDDTest+

dataset, which contains 22,544 entries, 9,711 are

labeled as "normal" and the remaining 12,833 as

"abnormal" traffic samples. Figure 4 uses Principal

Component Analysis (PCA) to visualize the NSL-

KDD dataset. In Fig. 4(a), the distribution of normal

and abnormal samples in KDDTrain+ is illustrated,

revealing a balanced representation of both types of

traffic samples. Three distinct clusters appear around

abnormal samples, while a clear, separate cluster

represents normal samples, suggesting that the

features within each traffic class are consistent.

In Fig. 4(b), the distribution of normal and abnormal

samples in KDDTest+ is shown, with abnormal

samples being more prevalent than normal ones. The

characteristics of the abnormal samples appear less

cohesive, lacking a distinct clustering pattern, which

suggests variations among the abnormal traffic

samples.

Fig. 4. The NSL-KDD dataset's PCA visualization.

The NSL-KDD dataset's traffic samples each include

41 characteristics. There are three category variables

(like "object") and 38 numeric characteristics (like

"int64" or "float64"). All 41 characteristics are

included in Table 2, along with their names and data

types.

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169206 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 803

TABLE 2. The NSL-KDD dataset's attributes: Three

categories and 38 numbers

Fig. 5 Correlation Matrix between different attributes

in NSL-KDD dataset

B. DATA PRE_PROCESSING

To ready the NSL-KDD datasets for input into the

AUTOENCODER model, we perform three separate

data preprocessing steps: min-max normalization,

outlier removal, and one-hot encoding.

1)ONE_HOT_ENCODING

AutoEncoder models require non-numerical input

(such categorical values) to be transformed into

numerical values in order to improve model training

effectiveness. We utilize the one-hot encoding method

to convert categorical features into n-dimensional

binary code vectors, where "n" represents the total

number of unique values in the categorical feature. For

example, the "protocol_type" feature in the NSL-KDD

dataset contains three distinct values: "tcp," "udp," and

"icmp." Each of these values is represented by one of

three binary vectors in a three-dimensional space: [0,

1, 0], [1, 0, 0], and [0, 0, 1], respectively. This means

that one-hot encoding transforms the single feature

"protocol_type" into three separate binary features.

Three categorical variables ("protocol_type,"

"service," and "flag") with 3, 70, and 11 distinct

characteristics each are present in the NSL-KDD

dataset. These are transformed into 84 traits in all.

After applying the one-hot-encoding, we now have

122 features overall, including the 38 numerical

characteristics.

2) OUTLIER_ANALYSIS

An outlier is defined as a data point that significantly

differs from the other points in a dataset [22]. Each and

every anomaly has a unique origin.

In our study, we identify a feature as an outlier if its

Extreme values differ from what we think of as the

"normal" range. Since they frequently cause bias in the

accurate weight computation, such outliers ought to be

removed. As a result, The accuracy of anomaly

identification is reduced by the AutoEncoder

algorithm’s reduced sensitivity to anomalies. To

address this issue, we eliminate outliers prior to

training the model. The initial and crucial step in

outlier removal is identifying the outliers themselves.

Numerous statistical methods have been proposed in

the literature for detecting outliers. One popular

technique is Tukey's fences [23], which determines

the outlier threshold using the interquartile range

(IQR). The following formula illustrates this method:

 (4)

where the coefficient, upper quartile, and lower

quartile are denoted by Q1, Q3, and k correspondingly.

The test data will be considered a "outlier" if the

coefficient is k = 1.5 and it is beyond the IQR range;

if the coefficient is k = 3, it will be deemed "far out."

However, this approach is not practical on its own due

to the very imbalanced distribution of the KDDTrain+

dataset. The smallest value of zero is really identical

to Q1 and Q3 for 21 of the 38 numerical features in the

KDDTrain+ dataset. This might lead to a large number

of incorrectly identified outliers. Z-scores are another

well-liked technique for outlier analysis [24], [25].

The formula used to determine Z-score:

 (5)

Here, Xi represents the attribute of the i-th sample

within that feature, while X and σ denote the mean and

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169206 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 804

standard deviation of the feature X’s distribution. A

feature's distribution is assumed to be normal by the

Z-score, and it is assumed to be independent of other

attributes. Z-score is typically used to identify outliers

according to the 68-95-99.7 rule, sometimes referred

to as the three-sigma rule [26]. The rule states that

typically 68% of the occurrences lie 95% fall within

two sigmas, 99.7% fall within three sigmas, and the

mean value is within one standard deviation, or sigma.

We all tried out the outlier-fence idea in our work and

selected for the two-sigme (95%) impact variation for

outlier_detection. 95th percentile rule is the name of

the suggested outlier identification technique. Outliers

are defined as any sample whose attribute exceeds the

95th percentile of all instances in that characteristic.

After that, every detected outlier is eliminated from the

dataset.

Three distinct advantages are seen when comparing

our hybrid outlier removal strategy to other similar

statistical strategies. We can apply our hybrid outlier

removal approach on any dataset because it does not

assume anything about the sample distribution. The

KDDTrain+ dataset's distribution analysis comes in

second does not produce a lower outlier fence; the

experiment's top outlier fence is the 95th percentile.

Since 75% of The minimum value, 0, serves as the

lower outlier threshold for samples with numerical

values. That is, there is no need for a lower outlier

threshold. The final benefit is that the hot-encoded

features are likewise susceptible to the outlier

detection criterion as we are able to identify outliers

after the encoding of the categorical characteristics.

TABLE 3. Confusion matrix.

Remember that the model is trained using only

"normal" samples from the KDDTrain+, which means

that only the outliers in the training data is drawn out.

Following the implementation of our hybrid method,

the sample size dropped from 67,343 to 39,252.

3) NORMALIZATION OF DATA

Normalization reduces the time required to train a

model by eliminating the impact of different scaling

across features. The min_max normalization approach

is used once the outliers have been drawn out. This

technique creates a new scope from the old range of

each feature using the formula below:

𝑋𝑠𝑡𝑑 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 (6)

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑋𝑠𝑡𝑑 ∗ (𝑚𝑎𝑥 − 𝑚𝑖𝑛) + 𝑚𝑖𝑛 (7)

where all numerical characteristics in this experiment

are normalized using min, max = (0, 1) by default [27].

V. EXPERIMENTATION RESULT

The specifics of the performance measurements we

employed in our experiment and the outcomes analysis

will be covered in this section.

A. PERFOORMANCE_METRICS

To evaluate the performance of our proposed model,

we use the F1 score, recall, precision, and

classification accuracy. We classify normal samples as

class 0 and abnormal samples as class 1. In the results

table, True Positive (TP) represents the number of

correctly identified class 1 cases (abnormal traffic

samples), while True Negative (TN) indicates the

accurately classified class 0 cases (normal traffic

samples). False Positive (FP) refers to class 0 cases

mistakenly labeled as class 1, and False Negative (FN)

represents class 1 cases incorrectly categorized as

class 0.

The True Positive Rate (TPR), also known as recall or

sensitivity, measures the percentage of abnormal data

points correctly identified, as shown in Equation 8.

𝑇𝑃𝑅/𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇_𝑃

𝑇_𝑃+𝐹_𝑁
 (8)

Equation 9 illustrates that precision (Pr), sometimes

referred to as a positive predictive value, is the

percentage of T_P data points.

Equation 10's Accuracy (Acc) parameter calculates the

percentage of accurate predictions and shows the the

proportion of correctly classified data points to the

total number of data points in a dataset.

(10)

The F1-score (F1) represents the harmonic mean of

recall (True Positive Rate, TPR) and accuracy, as

shown in Equation 11.

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169206 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 805

 (11)

B. RESULTS

This section examines the performance of the

Autoencoder-based model for network anomaly

detection. The model's effectiveness was evaluated

through training and validation loss curves, a Key

evaluation tools include the Receiver Operating

Characteristic (ROC) curve, the Area Under the Curve

(AUC) score, a confusion matrix, and essential

classification metrics.

1. Loss of Training and Validation

The training and validation loss curves show the

model's learning progress throughout each epoch.

Effective learning shown by a steady decline in both

losses, and a well-generalized model is indicated by

the validation loss convergent to the training loss.

Fig. 6 training and validation loss graph

3. The Receiver Operating Characteristic (ROC)

curve, along with an AUC score of 0.7,

demonstrates the model’s ability to distinguish

between normal and abnormal network traffic,

(substitute actual if available) indicates a

reasonable ability to detect anomalies.

Fig. 7 ROC curve and AUC score

3. Confusion Matrix

The confusion-matrix depicts the research’s

predictions as follows:

Fig. 8 Confusion matrix showing prediction outcome

of the model

4. ROC Curve and AUC Score

The Receiver Operating Characteristic (ROC) curve

and the algorithm's AUC score of 0.70 indicate how

well it can differentiate between typical and unusual

network traffic, (substitute actual if available)

indicates a reasonable ability to detect anomalies.

5. Confusion Matrix

The confusion-matrix breaks down the algorithm’s

predictions as follows:

True-Positives: 28 (Correct identification of

abnormalities)

True-Negatives: 19 (Normals that are accurately

recognized as normal)

False-Positives: 26 (Normals identified as anomalies)

False-Negatives: 27 (Anomalies identified as normal)

6. Classification Metrics

Additional metrics provide a deeper evaluation of the

model's classification performance.

Fig. 9 confusion_matrix to see how well our clusters

agree with the labels

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169206 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 806

Precision (Anomaly): 0.52

Recall (Anomaly): 0.51

F1 Rating: 0.51

Accuracy overall: 0.47

According to these findings, the Autoencoder model

shows a moderate capacity for identifying

abnormalities in networks. The model shows potential,

achieving an AUC score of 0.70 and an F1 score of

0.51 in detecting anomalies however, further

optimization or comparison with alternative

techniques might enhance detection performance.

6. CONCLUSION

Our proposed five-layer Autoencoder

(AUTOENCODER) model offers an effective solution

for detecting unusual network activity by utilizing key

performance metrics, a two-sigma (95th percentile)

outlier disposal strategy, and MAUTOENCODER for

reconstruction loss, achieving high detection accuracy.

This model's data pre-processing method balances

sample distribution and removes outliers to reduce

detection bias, with the 95th percentile rule proving

beneficial. Optimal neuron allocation across hidden

and latent layers further enhances performance,

validated through tests on the NSL-KDD dataset,

achieving 88.61% accuracy, 82.18% precision,

89.34% recall, and 88.17% F1_score. Experimental

results highlight that data pre-processing significantly

influences performance, aiding the model in

accurately identifying anomalous traffic patterns.

While trained on NSL-KDD, we anticipate strong

performance across diverse intrusion patterns but

recognize further evaluation in real-world, large-scale

networks is essential. Future work will test model

generalizability with intrusion types like Android

malware and ransomware, expanding into multi-class

classification for broader applicability.

7. FUTURE SCOPE

Autoencoders hold significant potential for future

network anomaly detection as networks grow more

complex and cyber threats advance. Scalable models

trained on large datasets could monitor sprawling

networks, including IoT and cloud systems, while real-

time anomaly detection may become feasible with

advanced neural network architectures, reducing

breach impacts. Integration with Zero Trust

Architecture (ZTA) could enhance security by

identifying threats without predefined trust levels, and

unsupervised autoencoders could detect sophisticated

attacks missed by traditional signature-based methods.

Enhancing model interpretability through explainable

AI will also empower security teams to respond

effectively to flagged anomalies. Privacy-preserving

methods like federated learning could enable secure

anomaly detection in sensitive sectors like healthcare,

upholding confidentiality standards.

8. REFERENCES:

[1] Y. B. Zikria, R. Ali, M. K. Afzal, and S. W. Kim,

‘‘Next-generation Internet of Things (IoT):

Opportunities, challenges, and solutions,’’

Sensors, vol. 21, no. 4, p. 1174, Feb. 2021.

[2] F. A. M. Khiralla, ‘‘Statistics of cybercrime from

2016 to the first half of 2020,’’ Int. J. Comput. Sci.

Netw., vol. 9, no. 5, pp. 252–261, 2020.

[3] J. Jang-Jaccard and S. Nepal, ‘‘A survey of

emerging threats in cybersecurity,’’ J. Comput.

Syst. Sci., vol. 80, no. 5, pp. 973–993, 2014.

[4] J. L. McClelland, Parallel Distributed Processing,

vol. 2. Cambridge, MA, USA: MIT Press, 1986.

[5] B. Zhang, Y. Yu, and J. Li, ‘‘Network intrusion

detection based on stacked sparse autoencoder

and binary tree ensemble method,’’ in Proc. IEEE

Int. Conf. Commun. Workshops (ICC

Workshops), May 2018, pp. 1–6.

[6] B. Yan and G. Han, ‘‘Effective feature extraction

via stacked sparse autoencoder to improve

intrusion detection system,’’ IEEE Access, vol. 6,

pp. 41238–41248, 2018.

[7] M. Al-Qatf, Y. Lasheng, M. Al-Habib, and K. Al-

Sabahi, ‘‘Deep learning approach combining

sparse autoencoder with SVM for network

intrusion detection,’’ IEEE Access, vol. 6, pp.

52843–52856, 2018.

[8] M. Tavallaee, E. Bagheri, W. Lu, and A. A.

Ghorbani, ‘‘A detailed analysis of the KDD CUP

99 data set,’’ in Proc. IEEE Symp. Comput. Intell.

Secur. Defense Appl., Jul. 2009, pp. 1–6.

[9] H. Liu and B. Lang, ‘‘Machine learning and deep

learning methods for intrusion detection systems:

A survey,’’ Appl. Sci., vol. 9, no. 20, p. 4396, Oct.

2019.

[10] Z. Ahmad, A. S. Khan, C. W. Shiang, J. Abdullah,

and F. Ahmad, ‘‘Network intrusion detection

system: A systematic study of machine learning

and deep learning approaches,’’ Trans. Emerg.

Telecommun. Technol., vol. 32, no. 1, p. e4150,

Jan. 2021.

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169206 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 807

[11] S. Agrawal and J. Agrawal, ‘‘Survey on anomaly

detection using data mining techniques,’’ Proc.

Comput. Sci., vol. 60, pp. 708–713, Jan. 2015.

[12] R. A. R. Ashfaq, X.-Z. Wang, J. Z. Huang, H.

Abbas, and Y.-L. He, ‘‘Fuzziness based semi-

supervised learning approach for intrusion

detection system,’’ Inf. Sci., vol. 378, pp. 484–

497, Feb. 2017.

[13] B. Ingre and A. Yadav, ‘‘Performance analysis of

NSL-KDD dataset using ANN,’’ in Proc. Int.

Conf. Signal Process. Commun. Eng. Syst., Jan.

2015, pp. 92–96.

[14] J. Kevric, S. Jukic, and A. Subasi, ‘‘An effective

combining classifier approach using tree

algorithms for network intrusion detection,’’

Neural Comput. Appl., vol. 28, no. 1, pp. 1051–

1058, Dec. 2017.

[15] P. Mishra, V. Varadharajan, U. Tupakula, and E. S.

Pilli, ‘‘A detailed investigation and analysis of

using machine learning techniques for intrusion

detection,’’ IEEE Commun. Surveys Tuts., vol.

21, no. 1, pp. 686–728, 1st Quart., 2019.

[16] T. N. Sainath, B. Kingsbury, and B.

Ramabhadran, ‘‘Auto-encoder bottleneck features

using deep belief networks,’’ in Proc. IEEE Int.

Conf. Acoust., Speech Signal Process. (ICASSP),

Mar. 2012, pp. 4153–4156.

[17] M. Yousefi-Azar, V. Varadharajan, L. Hamey, and

U. Tupakula, ‘‘Autoencoder-based feature

learning for cyber security applications,’’ in Proc.

Int. Joint Conf. Neural Netw.

(IJAUTOENCODERS), May 2017, pp. 3854–

3861.

[18] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, ‘‘A

deep learning approach for network intrusion

detection system,’’ EAI Endorsed Trans. Secur.

Saf., vol. 3, no. 9, p. e2, May 2016.

[19] R. Sommer and V. Paxson, ‘‘Outside the closed

world: On using machine learning for network

intrusion detection,’’ in Proc. IEEE Symp. Secur.

Privacy, May 2010, pp. 305–316.

[20] C. Ieracitano, A. Adeel, F. C. Morabito, and A.

Hussain, ‘‘A novel statistical analysis and

autoencoder driven intelligent intrusion detection

approach,’’ Neurocomputing, vol. 387, pp. 51–62,

Apr. 2020.

[21] K. Sadaf and J. Sultana, ‘‘Intrusion detection

based on autoencoder and isolation forest in fog

computing,’’ IEEE Access, vol. 8, pp. 167059–

167068, 2020.

[22] G. S. Maddala and K. Lahiri, Introduction to

Econometrics, vol. 2. New York, NY, USA:

Macmillan, 1992.

[23] J. W. Tukey, Exploratory Data Analysis, vol. 2.

Reading, MA, USA: Addison-Wesley, 1977.

[24] Y. Wei, J. Jang-Jaccard, F. Sabrina, and T.

McIntosh, ‘‘MSD-Kmeans: A novel algorithm for

efficient detection of global and local outliers,’’

2019, arXiv:1910.06588. [Online]. Available:

http://arxiv.org/abs/1910.06588

[25] Y. Wei, J. Jang-Jaccard, F. Sabrina, and H.

Alavizadeh, ‘‘Large-scale outlier detection for

low-cost PM10 sensors,’’ IEEE Access, vol. 8, pp.

229033–229042, 2020.

[26] F. Pukelsheim, ‘‘The three sigma rule,’’ Amer.

Statist., vol. 48, no. 2, pp. 88–91, 1994.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V.

Michel, B. Thirion, O. Grisel, M. Blondel, P.

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,

A. Passos, D. Cournapeau, M. Brucher, M. Perrot,

and E. Duchesnay, ‘‘Scikit-learn: Machine

learning in Python,’’ J. Mach. Learn. Res., vol. 12,

pp. 2825–2830, Nov. 2011.

[28] T. D. V. Swinscow, Statistics at Square One.

London, U.K.: BMJ, 2002.

[29] M. T. Ribeiro, S. Singh, and C. Guestrin, ‘‘‘Why

should I trust you?’ Explaining the predictions of

any classifier,’’ in Proc. 22nd ACM SIGKDD Int.

Conf. Knowl. Discovery Data Mining, Aug. 2016,

pp. 1135–1144.

[30] J. Zhu, J. Jang-Jaccard, and P. A. Watters, ‘‘Multi-

loss Siamese neural network with batch

normalization layer for malware detection,’’ IEEE

Access, vol. 8, pp. 171542–171550, 2020.

[31] T. R. McIntosh, J. Jang-Jaccard, and P. A. Watters,

‘‘Large scale behavioral analysis of ransomware

attacks,’’ in Proc. Int. Conf. Neural Inf. Process.,

Siem Reap, Cambodia. Cham, Switzerland:

Springer, 2018, pp. 217–229.

[32] T. McIntosh, J. Jang-Jaccard, P. Watters, and T.

Susnjak, ‘‘The inadequacy of entropy-based

ransomware detection,’’ in Proc. Int. Conf. Neural

Inf. Process., Sydney, NSW, Australia. Cham,

Switzerland: Springer, 2019, pp. 181–189.

[33] R. Weyers, J. Jang-Jaccard, A. Moses, Y. Wang,

M. Boulic, C. Chitty, R. Phipps, and C.

Cunningham, ‘‘Low-cost indoor air quality (IAQ)

platform for healthier classrooms in New

Zealand: Engineering issues,’’ in Proc. 4th Asia–

Pacific World Congr. Comput. Sci. Eng. (APWC

CSE), Dec. 2017, pp. 208–215.

