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Abstract: Artificial Intelligence (Al) and Machine
Learning (ML) have increasingly become central to
decision-making in critical domains such as healthcare,
finance, and autonomous systems. However, their
complexity has rendered many models opaque, often
referred to as "'black-box™ models, making it difficult for
users to understand or trust the decisions made.
Explainable Al (XAl) seeks to address this by providing
transparency in model decision-making processes. Two
prominent XAl techniques, SHAP (SHapley Additive
exPlanations) and LIME (Local Interpretable Model-
agnostic Explanations), are widely used to interpret
complex models. This paper presents a comparative
analysis of SHAP and LIME, examining their theoretical
foundations, strengths, limitations, and applications.
SHAP is rooted in cooperative game theory and offers
global interpretability with consistent and reliable
explanations, whereas LIME provides efficient, local
explanations suited for real-time applications. The paper
further discusses the challenges in applying these
methods, particularly around scalability and real-time
decision-making, and highlights potential future research
directions, including hybrid models that combine the
strengths of both SHAP and LIME.
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INTRODUCTION

Artificial Intelligence (Al) and Machine Learning
(ML) continue to drive innovation and
transformation across industries, revolutionizing
fields such as healthcare, finance, marketing,
autonomous systems, and more. These fields now
rely on sophisticated machine learning models for
tasks like medical diagnosis, fraud detection,

customer recommendations, and risk assessment.
However, as these models become more advanced
and complex, they also become less interpretable. In
many cases, even the data scientists and engineers
who design these models may not fully understand
how they reach their predictions.

This opacity has led to the rise of the term “black-box
models,” referring to models whose internal
workings are not accessible to human understanding.
While these models might be highly accurate and
capable of handling large amounts of data, their lack
of transparency poses a significant challenge. When
models are deployed in high-stakes environments—
such as healthcare, criminal justice, or autonomous
driving—stakeholders need to understand the
rationale behind their decisions. Without this
understanding, the trust and reliability of Al systems
are compromised.

Explainable Al (XAl) seeks to address this issue by
making machine learning models more transparent
and understandable to human users. SHAP (SHapley
Additive  exPlanations) and LIME (Local
Interpretable Model-agnostic Explanations) are two
of the most widely adopted XAl methods. SHAP
leverages game theory to explain the contribution of
individual features to model predictions, providing
both global and local interpretability. LIME
approximates model behavior locally by perturbing
the input data and generating simple, interpretable
models for specific instances.

This paper presents a detailed comparison of SHAP
and LIME, analyzing their strengths, limitations,
computational efficiency, and practical applications.
Additionally, it examines the ethical implications of
explainability in Al, the challenges of implementing
XAl at scale, and potential future research directions,
including hybrid approaches that combine the best of
both methods.
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Background on Explainable Al (XAl)
The Growing Need for Explainable Al

Al models are rapidly being integrated into high-
stakes domains such as healthcare, finance, legal
systems, and autonomous systems. In these domains,
the decisions made by machine learning models can
have life-altering consequences. However, when
these models act as black boxes—generating
predictions without providing clear reasoning—their
trustworthiness is severely diminished. For example,
in healthcare, doctors may hesitate to follow
treatment recommendations made by an Al system if
they cannot understand the factors driving those
recommendations. Similarly, in finance, opaque
models may make credit decisions that disadvantage
certain demographic groups without revealing why or
how.

The growing need for transparency in Al systems has
also been driven by increasing regulatory pressure.
For instance, the European Union’s General Data
Protection Regulation (GDPR) enshrines the "right to
explanation,” meaning that individuals affected by
Al-driven decisions must be provided with an
explanation of how those decisions were made. This
regulatory requirement is part of a larger push
towards ensuring that Al systems are accountable and
fair.

In addition to legal and regulatory motivations,
ethical concerns are at the forefront of discussions
about XAI. Unexplained Al decisions could
perpetuate biases, deepen inequalities, or lead to
other harmful consequences. Thus, explainability is
not just a technical necessity; it is a critical
component of ethical Al deployment.

Key Challenges in Developing Explainable Al
Models

Achieving true explainability in Al is a complex and
multifaceted challenge. Some of the major obstacles
include:

1. Balancing Complexity and Interpretability:
One of the most persistent challenges in Al is the
trade-off between complexity and interpretability.
Simple models, such as decision trees or logistic
regression, are easy to interpret but may not capture
complex patterns in the data. Conversely, more
powerful models, such as deep neural networks or

ensemble methods, can achieve state-of-the-art
performance but are difficult, if not impossible, to
interpret intuitively. XAl techniques like SHAP and
LIME aim to make these complex models
interpretable  without  sacrificing too much
performance.

2. Uncovering and Mitigating Bias: Machine
learning models often inherit biases from the datasets
on which they are trained. These biases can lead to
discriminatory outcomes, particularly in domains like
hiring, lending, or criminal justice, where model
decisions can disproportionately affect marginalized
groups. Without explainability, these biases may go
unnoticed, perpetuating unfair and unethical
practices. XAl methods can help expose bias by
highlighting the features that most influence a
model's predictions.

3. Trust and Accountability: Trust in Al
systems is essential for their widespread adoption.
Users, regulators, and other stakeholders must trust
that the Al models are making fair, ethical, and
reliable decisions. However, trust cannot be
established if users cannot understand or verify the
reasoning behind the model's decisions. XAl is
crucial for building this trust by offering clear and
interpretable explanations for the model's behavior.
4. Ethical Concerns and Fairness: With Al
systems increasingly being used in decision-making
processes that impact people's lives, there are ethical
concerns around fairness and equity. How can we
ensure that these systems do not perpetuate existing
societal biases or unfairly discriminate against certain
groups? XAl methods can play a role in detecting
biases in models, but further research is needed to
fully address these ethical concerns.

5. Regulatory  Compliance and  Legal
Considerations: As Al models become more
integrated into critical decision-making processes,
legal frameworks such as the GDPR and the
Algorithmic Accountability Act have mandated
transparency and explainability. Companies that
develop and deploy Al systems must ensure
compliance with these regulations, or they risk legal
and financial consequences. XAl methods like SHAP
and LIME offer potential solutions, but they also
raise new questions about how explanations are
communicated to users and how comprehensible they
are for non-technical audiences.

Overview of XAl Techniques

Several techniques have been developed to make Al
models more interpretable. In addition to SHAP and
LIME, other XAl methods include:
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o Counterfactual Explanations:
Counterfactual explanations provide insights into
what changes to the input data would lead to a
different outcome. For example, a counterfactual
explanation for a loan rejection might indicate that if
the applicant's income were $5,000 higher, the loan
would have been approved. Counterfactuals help
users understand how sensitive a model’s predictions
are to changes in input features.

. Saliency Maps: In image classification
models, saliency maps highlight the regions of an
image that are most influential in the model's
decision. This technique is commonly used in deep
learning models, such as convolutional neural
networks (CNNs), to provide visual explanations of
the model’s focus.

. Partial Dependence Plots (PDPs): PDPs
show the effect of a single feature on the predicted
outcome, holding all other features constant. This
technique provides a global view of the relationship
between features and predictions, helping users
understand how changes in feature values affect the
model's output.

. Feature Importance  Scores: Feature
importance methods assign a score to each feature,
indicating its contribution to the model's overall
performance. This technique is commonly used in
tree-based models like random forests and gradient
boosting machines, where feature importance scores
can be directly derived from the structure of the
trees.

While these techniques are useful, SHAP and LIME
are particularly versatile and widely applicable. They
have become the go-to methods for practitioners
looking to make complex machine learning models
more transparent.

SHAP: SHapley Additive exPlanations
Origins and Theoretical Foundations

SHAP is grounded in cooperative game theory and
builds on the concept of Shapley values, introduced
by Lloyd Shapley in the 1950s. In cooperative game
theory, Shapley values represent a way to fairly
distribute the payout of a game among the players
based on their individual contributions. In the context
of machine learning, SHAP applies this concept by
treating input features as "players" and the model's
prediction as the "payout." The Shapley value for
each feature quantifies its contribution to the final
prediction.

What sets SHAP apart from other XAl techniques is
its strong theoretical foundation, which guarantees
that the attributions provided are fair and consistent.
Specifically, SHAP satisfies three key properties:

1. Local Accuracy: The explanation provided
by SHAP is accurate for each individual prediction.
The sum of the SHAP values equals the model's
output, ensuring that the explanation is faithful to the
model’s behavior.

2. Consistency: If a model changes in such a
way that the contribution of a feature increases,
SHAP guarantees that the importance assigned to that
feature will not decrease. This consistency ensures
that the explanations generated by SHAP are stable
and reliable.

3. Additivity: SHAP ensures that the
contribution of each feature is fairly distributed,
meaning that the sum of all feature contributions
equals the model's prediction. This additivity
guarantees that SHAP explanations are globally
consistent and interpretable.

How SHAP Works

SHAP decomposes a model's prediction into the
contributions of individual features by calculating
Shapley values for each feature. These values are
computed by evaluating the effect of each feature in
combination with all possible subsets of other
features. The resulting Shapley value for each feature
represents its marginal contribution to the model's
output.

For example, in a model predicting house prices,
SHAP might reveal that the size of the house, its
location, and the number of bedrooms each
contribute a specific amount to the final predicted
price. By summing these contributions, the model’s
output can be broken down into interpretable parts,
providing clear insight into how the prediction was
made.

To efficiently calculate Shapley values, SHAP offers
different implementations tailored to specific types of
models. These include:

. Tree SHAP: This version is optimized for
tree-based models such as decision trees, random
forests, and gradient-boosting machines. Tree SHAP
takes advantage of the tree structure to efficiently
compute Shapley values, making it more
computationally feasible than other SHAP variants.
) Kernel SHAP: Kernel SHAP is a model-
agnostic implementation that can be applied to any
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type of machine learning model. It uses a kernel-
based approach to approximate Shapley values,
making it suitable for models where exact
computation is not feasible.

. Deep SHAP: Deep SHAP is designed for
deep learning models, particularly neural networks. It
combines the principles of SHAP with gradient-
based techniques like DeepLIFT to approximate
Shapley values for deep models.

Strengths of SHAP

1. Fairness and Consistency: SHAP guarantees
that feature attributions are fair and consistent across
all predictions. This property is particularly important
in applications where accountability is critical, such
as healthcare, finance, and legal decision-making.

2. Global and Local Interpretability: SHAP
provides both local and global interpretability,
allowing users to understand individual predictions
as well as the overall behavior of the model. This
flexibility makes SHAP a valuable tool for a wide
range of use cases, from explaining specific loan
approvals to understanding the general factors
driving credit scoring models.

3. Handling Feature Interactions: One of
SHAP’s key strengths is its ability to model
interactions between features. By evaluating all
possible feature combinations, SHAP can capture
how different features work together to influence a
prediction. This capability is particularly useful in
domains like genetics or personalized medicine,
where feature interactions play a significant role in
determining outcomes.

4, Unified Framework for Explaining Models:
SHAP provides a unified framework for interpreting
different types of machine learning models. Whether
the model is a random forest, a neural network, or a
support vector machine, SHAP can generate
consistent, theoretically sound explanations for its
predictions.

Limitations of SHAP

1. Computational Complexity: One of the
main drawbacks of SHAP is its computational cost.
Calculating exact Shapley values requires evaluating
all possible feature subsets, which can be
computationally expensive for large datasets or
models with many features. Even with optimizations
like Tree SHAP and Kernel SHAP, the method can
be too slow for real-time applications.

2. Scalability Issues: SHAP’s computational
complexity makes it challenging to scale to large
datasets or real-time systems. While SHAP works
well for offline analysis, it may not be practical for
applications where quick decisions are required, such
as fraud detection or autonomous driving.

3. Applicability to Non-additive Models:
While SHAP performs well with additive models, its
complexity increases when applied to models that are
non-additive or highly non-linear, such as deep
neural networks. In these cases, the approximations
provided by SHAP may be less reliable or harder to
interpret.

LIME: Local
Explanations

Interpretable  Model-agnostic

Overview of LIME

LIME is a model-agnostic explanation technique
designed to provide local interpretability for
individual predictions. Unlike SHAP, which
generates explanations based on the model’s global
behavior, LIME focuses on explaining the model’s
behavior in the vicinity of a specific instance. It does
this by perturbing the input data around the instance
of interest and observing how the model’s predictions
change. Based on these perturbations, LIME fits a
simpler, interpretable surrogate model (often a linear
model) to approximate the complex model’s decision
boundary.

LIME’s strength lies in its ability to provide quick,
local explanations for individual predictions, making
it particularly useful for applications where users
need to understand specific outcomes.

How LIME Works

LIME works by perturbing the input features of an
instance and observing how the model’s predictions
change. These perturbed data points are then used to
train a simpler, interpretable model (usually a linear
model) that approximates the complex model's
decision boundary in the local region. The surrogate
model provides an explanation for the specific
prediction by indicating which features contributed
most to the model’s decision.

For example, in a text classification model, LIME can
generate explanations by perturbing individual words
or phrases and observing how the model’s prediction
changes. By fitting a linear model to the perturbed
data, LIME can provide a local explanation that
indicates which words were most influential in
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determining the model’s classification of the
document.

LIME can be applied to a variety of data types,
including:

) Text: In text classification tasks, LIME can
highlight important words or phrases that influenced
the model’s prediction.

) Tabular Data: For structured datasets, LIME
can indicate which features were most important in
making a specific prediction.

. Images: In image classification, LIME can
highlight the regions of an image that were most
important to the model’s decision.

Strengths of LIME

1. Model-Agnostic: LIME is a model-agnostic
explanation technique, meaning it can be applied to
any machine learning model, regardless of its
architecture. This flexibility makes LIME suitable for
a wide range of applications, from simple linear
models to deep neural networks.

2. Local Interpretability: LIME excels at
providing local explanations for individual
predictions. This localized approach is especially
useful in applications where users need to understand
specific decisions, such as why a loan application was
rejected or why a medical diagnosis was made.

3. Computational Efficiency: LIME is more
computationally efficient than SHAP because it
focuses on generating local explanations rather than
explaining the entire model. By perturbing the input
data and fitting a simpler surrogate model, LIME can
quickly provide explanations, even for complex
models.

Limitations of LIME

1. Locality and Variability: One of LIME’s
main limitations is its focus on local explanations.
While this is useful for understanding individual
predictions, the explanations may not generalize well
to other instances. As a result, LIME’s explanations
can vary depending on the instance being explained,
making it less consistent than SHAP.

2. Parameter Sensitivity: LIME’s results can
be sensitive to the choice of parameters, such as the
number of features included in the explanation or the
kernel width for perturbations. This can lead to
variability in the generated explanations, potentially
confusing users.

3. Limited Handling of Feature Interactions:
LIME assumes that features are independent within

its local surrogate models, which can lead to
inaccurate explanations when features interact
heavily. This limitation makes LIME less effective in
domains where feature interactions are important,
such as genetics or personalized healthcare.

Comparative Analysis: SHAP vs. LIME
Accuracy and Reliability

SHAP provides more consistent and reliable
explanations compared to LIME, largely due to its
foundation in cooperative game theory. By
calculating Shapley values for all possible feature
subsets, SHAP ensures that feature attributions are
fair and accurate. This makes SHAP particularly
suitable for high-stakes applications where
explanation consistency is critical, such as healthcare
or financial decision-making.

LIME, in contrast, generates approximate
explanations based on local surrogate models. While
LIME is computationally more efficient, its reliance
on local surrogates can result in variability in the
explanations, particularly when applied to highly
non-linear models. As a result, LIME’s explanations
are often less reliable than those generated by SHAP.

Interpretability

Both SHAP and LIME offer interpretable outputs,
but the scope of their explanations differs. SHAP
provides global interpretability by offering insights
into how features influence predictions across the
entire dataset. This global perspective is useful for
understanding the overall behavior of a model,
especially in applications like credit scoring or fraud
detection, where stakeholders need to trust the
model’s general decision-making process.

LIME, on the other hand, focuses on local
interpretability, providing explanations for individual
predictions. This localized approach is particularly
useful in contexts where understanding specific
decisions is more important than understanding the
overall model. For example, in personalized
healthcare, LIME can help doctors understand why a
particular treatment was recommended for an
individual patient.

Computational Efficiency
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SHAP’s main drawback is its computational
complexity. Calculating Shapley values for all
possible feature combinations requires significant
computational resources, making SHAP impractical
for real-time applications or models with a large
number of features.

In contrast, LIME is more computationally efficient
because it generates explanations based on local
approximations. LIME’s ability to quickly produce
local explanations makes it well-suited for real-time
applications, although this efficiency comes at the
cost of accuracy and consistency.

Applicability

LIME’s model-agnostic nature makes it highly
versatile. It can be applied to any type of machine
learning model, including text, image, and tabular
data. This versatility makes LIME a valuable tool for
interpreting models across various domains and
applications.

While SHAP is also versatile, it requires different
implementations for different types of models. For
example, Tree SHAP is specifically designed for
tree-based models, while Deep SHAP is tailored for
deep learning models. This complexity can make
SHAP more challenging to apply in certain contexts,
particularly for non-expert users.

Global vs. Local Explanations

One of the key distinctions between SHAP and LIME
is their focus on global versus local explanations.
SHAP excels at providing global interpretability,
making it ideal for understanding how features
influence predictions across the entire dataset. This
global perspective is valuable in applications like
credit scoring, where understanding the overall
behavior of the model is critical for ensuring fairness
and accountability.

LIME, by contrast, focuses on local interpretability,
explaining why the model made a specific prediction
for a given instance. This localized approach is
particularly useful in personalized medicine, where
doctors need to understand why a particular treatment
was recommended for an individual patient.

Handling Feature Interactions
SHAP’s ability to handle feature interactions is one

of its key strengths. By calculating Shapley values for
all possible feature combinations, SHAP can model

how features interact to influence predictions. This
makes SHAP particularly useful in domains where
feature interactions are important, such as genetics or
personalized healthcare.

LIME, on the other hand, assumes that features are
independent within its local surrogate models. This
assumption can lead to inaccurate explanations when
features interact heavily, as LIME does not capture
these interactions as effectively as SHAP.

Applications of SHAP and LIME
Healthcare

Machine learning is increasingly being used in
healthcare to predict patient outcomes, assist in
diagnosing diseases, and recommend personalized
treatments. However, the complexity of these models
often makes them difficult for healthcare
professionals to trust and interpret. Both SHAP and
LIME have proven valuable tools for explaining
healthcare models and improving their transparency.
For example, SHAP has been used to explain
complex predictive models that estimate patient
mortality rates or the likelihood of hospital
readmission. By providing clear, consistent
explanations, SHAP helps healthcare providers
understand which factors, such as age, medical
history, or lab results, contributed most to the
prediction. This transparency is crucial for building
trust in Al-driven healthcare systems.

LIME has also been applied in healthcare,
particularly for explaining individual predictions. In
personalized medicine, for example, LIME can
explain why a specific treatment was recommended
for a patient, helping doctors understand the key
factors that influenced the decision. This localized
approach is especially useful when doctors need to
explain the model’s recommendations to patients in
clear, understandable terms.

Finance

In the financial sector, transparency and fairness are
critical, particularly in areas like credit scoring, fraud
detection, and algorithmic trading. Both SHAP and
LIME have been used to improve the interpretability
of machine learning models in these domains.

SHAP has been used to explain credit-scoring models
by showing which features contributed most to a loan
approval or rejection. By providing global
explanations, SHAP allows lenders to ensure that the
model’s decisions are fair and unbiased, which is
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essential for meeting regulatory requirements. For
example, SHAP might reveal that an applicant’s
income, credit history, and employment status were
the most important factors in determining loan
eligibility.

LIME has also been applied to fraud detection
systems in finance. For instance, LIME can explain
why a specific transaction was flagged as fraudulent
by highlighting the features that contributed most to
the model’s decision, such as transaction amount,
time, and location. This helps investigators focus on
the most important aspects of the transaction and
make more informed decisions during their
investigations.

Natural Language Processing

Natural language processing (NLP) models, which
analyze and generate human language, are another
area where explainability is crucial. SHAP and LIME
have both been used to interpret text classification
models, providing insights into how models make
predictions in sentiment analysis, spam detection,
and document classification tasks.

In sentiment analysis, for example, SHAP can
provide global explanations by showing which words
or phrases generally influence the model’s
predictions. This allows users to understand how the
model behaves across different types of text.

LIME, on the other hand, is useful for explaining
individual predictions in NLP tasks. For example,
LIME can highlight the specific words or phrases that
were most important in determining the classification
of a document, helping users understand why the
model classified a particular email as spam or why it
rated a product review as positive or negative.

Image Classification

Interpreting image classification models s
challenging due to the high dimensionality of image
data. Both SHAP and LIME have been applied to
explain image classification models, helping
researchers and practitioners understand how these
models make decisions.

LIME has been widely used in image classification
tasks to generate visual explanations by highlighting
the regions of an image that were most important to
the model’s decision. For example, in a model used
for diagnosing medical images, LIME can highlight
the areas of an X-ray or MRI scan that were most

influential in the model’s diagnosis, helping doctors
understand the model’s decision-making process.
SHAP, although less commonly used in image
classification, can still provide valuable insights. For
example, SHAP can be used to explain the
contributions of different image features, such as
color, texture, or shape, to the model’s predictions.
This transparency is particularly important in medical
imaging, where understanding the rationale behind a
diagnosis is crucial for building trust in Al-driven
diagnostic systems.

Challenges and Future Directions
Scalability Issues

One of the primary challenges with both SHAP and
LIME is their scalability to large datasets and
complex models. SHAP, in particular, suffers from
high computational costs due to the need to evaluate
all possible combinations of input features. This
makes SHAP difficult to apply in real-time systems
or on large-scale datasets, such as those used in image
or video classification.

LIME, while more computationally efficient than
SHAP, can also struggle with high-dimensional data,
particularly when the number of features is large.
Future research may focus on optimizing both SHAP
and LIME to handle larger datasets more efficiently
without sacrificing interpretability.

Integration with Real-time Systems

For XAl methods to be useful in real-world
applications, they must be able to generate
explanations in real-time. This remains a challenge
for both SHAP and LIME, particularly in domains
where quick decision-making is critical, such as
autonomous vehicles or financial trading. Future
work may focus on reducing the computational
complexity of these methods to make them suitable
for real-time applications.

Standardized Evaluation Metrics

Another challenge in the field of XAl is the lack of
standardized metrics for evaluating the quality of
explanations. While SHAP and LIME provide
intuitive explanations, there is currently no consensus
on how to measure the interpretability and usefulness
of these explanations. Future research may focus on
developing benchmarks and metrics for assessing the
quality of XAl methods across different domains.
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Ethical Al and Fairness

As Al models become more widely used in decision-
making processes, concerns about fairness and bias
have come to the forefront. Both SHAP and LIME
can play a role in detecting and mitigating biases in
models, but there is still much work to be done in this
area. Hybrid approaches that combine the strengths
of both methods may offer better solutions for
detecting bias and ensuring fairness in Al models.

Hybrid Models

One potential future direction in XAl is the
development of hybrid models that combine the
strengths of SHAP and LIME. For example, SHAP’s
ability to provide global interpretability could be
combined with LIME’s local explanations to create a
more comprehensive understanding of a model’s
behavior. This hybrid approach could be particularly
useful in applications where both global and local
interpretability are required, such as in healthcare or
finance.

CONCLUSION

In this paper, we have provided a comprehensive
comparison of SHAP and LIME, two of the most
widely used techniques for explaining machine
learning models. SHAP offers global interpretability
and strong theoretical guarantees, making it
particularly well-suited for domains where fairness
and accountability are critical. However, SHAP’s
computational complexity can be a limitation,
especially for large datasets or real-time
applications.

LIME, on the other hand, excels at providing local,
model-agnostic explanations that are efficient and
intuitive. While LIME may not offer the same level
of consistency as SHAP, its flexibility and efficiency
make it a valuable tool for interpreting individual
predictions.

Both methods have been successfully applied across
a wide range of domains, from healthcare and finance

to natural language processing and image
classification.  However, challenges remain,
particularly in terms of scalability, real-time

integration, and the evaluation of explanations. As
the field of XAl continues to evolve, future research
will likely focus on addressing these challenges and
further  improving the interpretability and
transparency of machine learning models.
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