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Abstract—The dynamics equation for 2R planar 

manipulator using the Lagrange method. The Lagrange 

equation of motion provides a systematic approach to 

obtaining robot dynamics equations. This paper provides 

an introduction to lagrangian mechanics and the 

importance of the lagrangian method, a comparison of 

Newton Euler method and the lagrangian method, steps to 

be followed to derive an equation of motion, derivation, 

simulation result, Application of lagrangian in various 

domains. 

Index Terms—lagrangian, 2R Planar manipulator, kinetic 

energy, potential energy, joints, link, revolute joint, 

coordinates. 

I. INTRODUCTION 

The kinematic equations describe the motion of the 

robot without consideration of the forces and moments 

producing the motion, the dynamic equations 

explicitly describe the relationship between force and 

motion. The equations of motion are important to 

consider in the design of robots, as well as in 

simulation and animation, and the design of control 

algorithms. We introduce the so-called Euler-

Lagrange equations, which describe the evolution of a 

mechanical system subject to holonomic constraints. 

To determine the Euler-Lagrange equations in a 

specific situation, one has to form the Lagrangian of 

the system, which is the difference between the kinetic 

energy and the potential energy. Lagrange's equations 

of motion are a handy tool in classical mechanics, and 

provide a methodical approach to derive the equations 

for a mechanical system's dynamics. Joseph-Louise 

Lagrange formulated this method in the 18th century, 

and it frames the study of dynamics in energy rather 

than force, particularly useful in complex systems. In 

the robotic area of study, Lagrange's equations of 

motion are an effective method of examining the 

dynamics of a robotic system, and in particular 

manipulators. The 2R planar manipulator is a very 

simple model in the field of robotics; it consists of 2 

rotational joints and 2 links and serves as a model for 

motion analysis, control, and design principles for 

multi-joint systems. The 2R manipulator consists of 2 

connecting links that can rotationally join together to 

position its end effector at various points in a Cartesian 

two-dimensional plane. In this project, we are 

interested in applying the dynamics of a 2R 

manipulator which will serve as a model to represent 

the dynamics of the mechanical system under study. In 

this case, we will employ Lagrangian mechanics to 

derive the manipulator's behavior. Lagrangian 

mechanics is concerned with discussing motion in 

terms of kinetic and potential energy rather than in 

terms of forces. The Lagrangian L is defined as: 

                            

L = K – V 

                           𝑄𝑟 =
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑟
) −

𝜕𝐿

𝜕𝑞𝑟
 

Where, K represents the kinetic energy of the 

manipulator, encompassing the motion of both links, 

and V represents the potential energy due to 

gravitational forces acting on the links. Lagrange's 

equations of motion provide a systematic and versatile 

approach to analyzing the dynamics of mechanical 

systems. The function L, which is the difference of the 

kinetic and potential energy, is called the Lagrangian 

of the system, and the Equation is called the Euler-

Lagrange Equation.  

 

The Euler-Lagrange equations provide a formulation 

of the dynamic equations of motion equivalent to those 

derived using Newton’s Second law. ease of use is 

particularly evident in the following aspects: 

Lagrange's method focuses on kinetic and potential 

energy rather than forces, simplifying the analysis of 

complex systems. Concentrating on energy allows for 

an intuitive understanding of motion and behavior. 

Using generalized coordinates enables the 

representation of complex systems with fewer 

variables. This flexibility allows for the easy 

incorporation of constraints, such as fixed lengths in 

robotic arms, and accommodates non-linear systems 

that may be challenging to handle using traditional 

methods. As a variational method specialized in multi-

body systems, the Lagrangian method is important to 

the methods of robotics because it has solved robot 

dynamics problems.  
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The Lagrangian method is rooted in classical 

mechanics and modern physics so it provides a 

systematic way for practitioners to investigate 

dynamic systems. Instead of forces, the Lagrangian 

method studies motion by appealing to energy 

principles to provide a clearer interpretation of motion, 

particularly for constrained motion in complex 

systems. The reason why the Lagrangian method is 

useful as applied to problem-solving in physics is that 

the mathematics can quite consequentially be 

simplified using generalized coordinates to allow the 

equations of motion to be more easily derived using 

the least action. The Lagrangian formulation also 

provides the basis for more sophisticated areas, 

including Hamiltonian mechanics and Quantum Field 

Theory, bridging cases involving classical models to 

more complicated forms. In summary, the Lagrangian 

method enhances our ability to model, predict, and 

comprehend the actions of physical systems 

coherently and elegantly. 

II. IMPORTANCE OF THE LAGRANGIAN 

METHOD 

 

As a variational method specialized in multi-body 

systems, the Lagrangian method is important to the 

methods of robotics because it has solved robot 

dynamics problems. The Lagrangian method is rooted 

in classical mechanics and modern physics so it 

provides a systematic way for practitioners to 

investigate dynamic systems. Instead of forces, the 

Lagrangian method studies motion by appealing to 

energy principles to provide a clearer interpretation of 

motion, particularly for constrained motion in 

complex systems. The reason why the Lagrangian 

method is useful as applied to problem solving in 

physics is that the mathematics can quite 

consequentially be simplified using generalized 

coordinates to allow the equations of motion to be 

more easily derived using least action. The Lagrangian 

formulation also provides the basis for more 

sophisticated areas, including Hamiltonian mechanics 

and Quantum Field Theory, bridging cases involving 

classical models to more complicated forms. In 

summary, the Lagrangian method enhances our ability 

to model, predict, and comprehend the actions of 

physical systems coherently and elegantly. 

III. . COMPARISON BETWEEN NEWTON-     

EULER METHOD AND LAGRANGIAN METHOD 

In the Newton-Euler formulation, the equations of 

motion are derived from Newton's Second Law, which 

relates force and momentum, as well as torque and 

angular momentum. The resulting equations involve 

constraint forces, which must be eliminated to obtain 

closed-form dynamic equations. In the Newton-Euler 

formulation, the equations are not expressed in terms 

of independent variables and do not include input joint 

torques explicitly. Arithmetic operations are needed to 

derive the closed-form dynamic equations. This 

represents a complex procedure that requires physical 

intuition. An alternative to the Newton-Euler 

formulation of manipulator dynamics is the 

Lagrangian formulation, which describes the behavior 

of a dynamic system in terms of work and energy 

stored in the system rather than of forces and momenta 

of the individual members involved. The constraint 

forces involved in the system are automatically 

eliminated in the formulation of Lagrangian dynamic 

equations. The closed-form dynamic equations can be 

derived systematically in any coordinate system.  

IV. STEPS TO BE FOLLOWED TO DERIVE THE 

EQUATION OF MOTION USING THE 

LAGRANGIAN METHOD 

STEP1: Recognize the configuration of the 

manipulator (joint types, link types). 

STEP 2: Indicate the number of degrees of freedom, 

and any constraints. 

STEP 3: Choose the generalized coordinates (qi) to 

describe (joint angles, link lengths) the manipulator 

configuration. 

STEP 4: For each link, we have to derive the kinetic 

energy based on the mass and velocity of the center of 

mass. 

STEP 5: Compute the potential energy due to gravity 

for each link, respectively. We combine kinetic energy 

and potential energy to derive the lagrangian L as 

follows. 

                                 L = K-V 

STEP 6: For each generalized coordinate qi, apply the 

Euler-Lagrange equation. That is described as, 

 

            𝑄𝑟 =
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑟
) −

𝜕𝐿

𝜕𝑞𝑟
        r = 1,2,……n 

V. DERIVATION OF EQUATION OF MOTION 

FOR 2R PLANAR MANIPULATOR USING THE 

LAGRANGIAN METHOD 

The 2R planar manipulator, which is equipped with 

two revolute joints and two links, stands as an essential 

model in robotics and mechanical engineering. It 

demonstrates a foundational model necessary for 
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grasping the principles of motion, control, and 

dynamics in robotic mechanisms. An ideal 

manipulator is to be free of friction in its joints and to 

possess rigid links, which simplifies the analysis and 

focuses on the fundamental dynamics.  

An ideal model of a 2R planar manipulator is 

illustrated in the below Figure. It is called ideal 

because we assumed that the links are massless and 

there is no friction. The masses m1 and m2 are the 

mass of the second motor to run the second link and 

the load at the endpoint. We take the absolute angle θ1 

and the relative angle θ2 as the generalized coordinates 

to express the configuration of the manipulator. 

 
                                  Fig.1 

 

The global position of m1 and m2 are: 

                    [
𝑋1

𝑌1
] = [

𝑙1𝑐𝑜𝑠𝑞1

𝑙1𝑠𝑖𝑛𝑞1
] 

    [
𝑋2

𝑌2
] = [

𝑙1𝑐𝑜𝑠𝑞1 + 𝑙2cos (𝑞1 + 𝑞2)
𝑙1𝑠𝑖𝑛𝑞1 + 𝑙2sin (𝑞1 + 𝑞2)

] 

Therefore, the global velocity of the masses are 

                     [
�̇�1

�̇�1

] = [
−𝑙1�̇�1𝑠𝑖𝑛𝑞1

𝑙1�̇�1𝑐𝑜𝑠𝑞1
] 

[
�̇�2

�̇�2

] =   [
−𝑙1�̇�1𝑠𝑖𝑛𝑞1 − 𝑙2(�̇�1 + �̇�2)sin(𝑞1 + 𝑞2)
𝑙1�̇�1𝑐𝑜𝑠𝑞1 + 𝑙2(�̇�1 + �̇�2)cos (𝑞1 + 𝑞2)

] 

The kinetic energy of this manipulator is made of 

kinetic energy of the masses and is equal to: 

                            K=k1+k2                                 (1) 

Where k1 is the kinetic energy of the first link 

Where k2 is the kinetic energy of the second link 

  K=
1

2
𝑚1(�̇�1

2 + �̇�1
2) +

1

2
𝑚2(�̇�2

2 + �̇�2
2)            (2)                                               

  K = 
1

2
𝑚1𝑙1

2�̇�1
2 +

1

2
𝑚2(𝑙1

2�̇�1
2 + 𝑙2

2(�̇�1 + �̇�2)2 

    +2𝑙1𝑙2�̇�1(�̇�1 + �̇�2)𝑐𝑜𝑠𝑞2)                  (3)                                                                               

The potential energy of the manipulator is: 

           V= 𝑉1 + 𝑉2 = 𝑚1𝑔𝑌1 + 𝑚2𝑔𝑌2 

Where V1 is the potential energy of the link 1 

Where V2 is the potential energy of the link 2 

 V=𝑚1𝑔𝑙1 𝑠𝑖𝑛𝑞1 + 𝑚2𝑔(𝑙1 𝑠𝑖𝑛𝑞1 +

           𝑙2𝑠𝑖𝑛(𝑞1 + 𝑞2))                                             (4) 

The Lagrangian is then obtained from Equations (3) 

and(4) 

                                 L= K – V 

  L   = 
1

2
𝑚1𝑙1

2�̇�1
2+

1

2
𝑚2(𝑙1

2�̇�1
2 + 𝑙2

2(�̇�1 + �̇�2)2 

                 + 2𝑙1𝑙2�̇�1(�̇�1 + �̇�2)𝑐𝑜𝑠𝑞2) 

               - (𝑚1𝑔𝑙1𝑠𝑖𝑛𝑞1 + 𝑚2𝑔(𝑙1 𝑠𝑖𝑛𝑞1 

                + 𝑙2𝑠𝑖𝑛(𝑞1 + 𝑞2)))                               (5)     

Which provides the required partial derivatives as 

follows: 

    
𝜕𝐿

𝜕𝑞1
= −(𝑚1 + 𝑚2)𝑔𝑙1𝑐𝑜𝑠𝑞1 −

          𝑚2𝑔𝑙2𝑐𝑜𝑠(𝑞1 + 𝑞2)                                      (6)                                                                 

         
𝜕𝐿

𝜕�̇�1
= (𝑚1 + 𝑚2)𝑙1

2�̇�1 + 𝑚2𝑙2
2(�̇�1 + �̇�2) 

                +𝑚2𝑙1𝑙2(2�̇�1 + �̇�2) 𝑐𝑜𝑠𝑞2                       (7)                                                                                              

                   
d

dt
(

∂L

∂q̇1
) =(𝑚1 + 𝑚2)𝑙1

2�̈�1 + 𝑚2𝑙2
2(�̈�1 +

�̈�2) 

+𝑚2𝑙1𝑙2(2�̈�1 + �̈�2)𝑐𝑜𝑠𝑞2 

           −𝑚2𝑙1𝑙2�̇�2(2�̇�1 + �̇�2)𝑠𝑖𝑛𝑞2                   (8) 

   
𝜕𝐿

𝜕𝑞2
= −𝑚2𝑙1𝑙2�̇�1(�̇�1 + �̇�2)𝑠𝑖𝑛𝑞2 

−𝑚2𝑔𝑙2𝑐𝑜𝑠(𝑞1 + 𝑞2)                                (9) 

𝜕𝐿

𝜕�̇�2
= 𝑚2𝑙2

2(�̇�1 + �̇�2) + 𝑚2𝑙1𝑙2�̇�1𝑐𝑜𝑠𝑞2         (10) 

     
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�2
) = 𝑚2𝑙2

2(�̈�1 + �̈�2) + 𝑚2𝑙1𝑙2�̈�1 𝑐𝑜𝑠𝑞2 
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−𝑚2𝑙1𝑙2�̇�1�̇�2𝑠𝑖𝑛𝑞2                           (11) 

Therefore, the equations of motion for the 2R 

manipulator are: 

𝑄1 =
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�1

) −
𝜕𝐿

𝜕𝑞1

 

 

𝑄1 = (𝑚1 + 𝑚2)𝑙1
2�̈�1 + 𝑚2𝑙2

2(�̈�1 + �̈�2)           

+ 𝑚2𝑙1𝑙2(2�̈�1 + �̈�2)𝑐𝑜𝑠𝑞2        

− 𝑚2𝑙1𝑙2�̇�2(2�̇�1 + �̇�2)𝑠𝑖𝑛𝑞2

+ (𝑚1 + 𝑚2)𝑔𝑙1𝑐𝑜𝑠𝑞1

+ 𝑚2𝑔𝑙2𝑐𝑜𝑠(𝑞1

+ 𝑞2)                          (12) 

𝑄2 =
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�2

) −
𝜕𝐿

𝜕𝑞2

 

𝑄2 = 𝑚2𝑙2
2(�̈�1 + �̈�2) + 𝑚2𝑙1𝑙2�̈�1 𝑐𝑜𝑠𝑞2

− 𝑚2𝑙1𝑙2�̇�1�̇�2𝑠𝑖𝑛𝑞2

+ 𝑚2𝑙1𝑙2�̇�1(�̇�1 + �̇�2)𝑠𝑖𝑛𝑞2

+ 𝑚2𝑔𝑙2𝑐𝑜𝑠(𝑞1

+ 𝑞2)                         (13) 

The generalized forces Q1 and Q2 are the required 

forces to drive the generalized coordinates. In this 

case, Q1 is the torque at the base motor and Q2 is the 

torque of the motor at m1. The equations of motion 

can be rearranged to have a more systematic form. 

𝑄1 = ((𝑚1 + 𝑚2)𝑙1
2 + 𝑚2𝑙2(𝑙2 + 2𝑙1 𝑐𝑜𝑠𝑞2))�̈�1

+ 𝑚2𝑙2(𝑙2 + 𝑙1 𝑐𝑜𝑠𝑞2)�̈�2

− 2𝑚2𝑙1𝑙2𝑠𝑖𝑛𝑞̇ 2�̇�1�̇�2

− 𝑚2𝑙1𝑙2𝑠𝑖𝑛𝑞̇ 2�̇�2
2

+ (𝑚1 + 𝑚2)𝑔𝑙1𝑐𝑜𝑠𝑞1

+ 𝑚2𝑔𝑙2𝑐𝑜𝑠(𝑞1

+ 𝑞2)                             (14) 

𝑄2 = 𝑚2𝑙2(𝑙2 + 𝑙1 𝑐𝑜𝑠𝑞2)�̈�1 + 𝑚2𝑙2
2�̈�2

+ 𝑚2𝑙1𝑙2𝑠𝑖𝑛𝑞2�̇�1
2

+ 𝑚2𝑔𝑙2𝑐𝑜𝑠(𝑞1

+ 𝑞2)                              (15) 

VII. SIMULATION RESULTS AND DISCUSSION 

 Define the link’s masses and lengths, as well as the 

gravitational acceleration. All of these are important in 

determining kinetic and potential energy. There are 10 

seconds of simulation which starts with the initial 

conditions of both joint angles initialized at π/4radians 

and all angular velocities set to 0. The function 

manipulator_eq is defined as an anonymous function. 

This function will calculate the derivatives of the state 

variables (angles and angular velocities). The ode45 

function will solve the ordinary differential equations 

(ODEs), which are defined in manipulator_eq, and 

output a time vector t and solution matrix sol, which 

contains the angles and angular velocities at each time. 

Plots both the joint angles and their respective 

velocities concerning time. There are two subplots 

showing angles in the first, and angular velocities in 

the second subplot. The main function is to calculate 

the derivatives of the state variables. It takes in the 

current state y (which contains angles and angular 

velocities) along with the system parameters. The 

links’ center of mass positions are computed with 

trigonometric functions based on the given joint 

angles. The kinetic energy T for each link is 

calculated, with the second link’s energy including 

contribution from both translational and rotational 

motion. Potential energy V related to the force of 

gravity for both links is computed from their height. 

Calculate whatever derivatives of the Lagrangian 

needed for the Euler-Lagrange equation. 

 

Joint Angles Over Time: The graph containing two 

curves that plot two angles, θ1 (in blue) and θ2 (in red), 

of the manipulator joints over the 10 seconds of 

simulation. The angles will likely oscillate (or 

advance) due to the initial conditions, meaning θ1 is 

always at the same measure of change for θ2 at any 

time. 

Angular Velocities Over Time: A second graph shows 

the angular velocities (in blue) and (in red), over the 

same period. This graph shows how the speeds of each 

joint change to the dynamics of the manipulator. 

VIII. APPLICATION OF THE LAGRANGIAN 

FORMULATION IN VARIOUS DOMAIN 
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Since Lagrangian mechanics leads to deriving the 

equations of motion for robotic arms and mobile 

robots it makes it possible to design control systems to 

ensure precise motion and manipulation. It allows for 

the simulation of robotic systems to forecast the 

outputs under different conditions. 

This applies to the study of dynamics in mechanical 

systems, which involve structural and machine 

vibration modes. Develop models of multiple 

interacting elements, such as vehicles and machinery, 

to simulate their motion and interactions. 

In space or aircraft design, Lagrangian methods help 

to optimize flight paths and strategies of control. 

It is applied in the investigation of stability of flight 

dynamics and design of the control systems ensuring 

stabilization of aircraft. 

This formulation is fundamental to modern physics, 

with special references to the derivation of equations 

of motion in classical field theories and quantum 

mechanics. 

Lagrangian mechanics picks out symmetries; it gives 

rise to conservation laws by Noether's theorem. 

Lagrangian principles find utility in using engineers 

to optimize their designs for optimum performance 

and efficiency in structures and mechanical systems. 

It is used to explain the dynamics of materials under 

different forces and motions 

 Modeling of the movement of humans and animals. 

This is applicable in designing prosthetics and 

understanding locomotion dynamics. This may help 

in studying the efficacy of different movements and 

postures, which can lead to more ergonomic design 

in the workplace. 

The present approach to Lagrangian formulation 

lends itself to the construction of controllers for 

dynamic systems with desirable behavior and 

stability. 

The theory is used to observe wave motion in fluids 

and the dynamics of fluid bodies. It has been 

employed in the design of controlling strategies for 

engineering applications related to flows. 

IX. CONCLUSION 

In summary, the present study investigates the major 

aspects of a motion equation for a 2R robot 

manipulator using Lagrangian mechanics; 

specifically, Lagrangian dynamics derivation of the 

equations of motion for a 2R planar manipulator. 

This method will enable an understanding of the 

influences of consideration of kinetic and potential 

energy on the behavior of the manipulator under 

various conditions. It also enables the use of the 

results for simulation, control design, and further 

study of even more complex robotic systems. 

Knowledge of these dynamics is crucial in propelling 

the research of robotics, strategies of optimization in 

control designs, and even enhancing methodologies 

of design in future applications. 
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