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Abstract - JARVIS AI Voice Assistance is an advanced 

system designed for seamless voice interactions to manage 

tasks, control smart devices, and provide real-time 

assistance. Inspired by Iron Man’s fictional AI, JARVIS 

combines natural language processing and machine 

learning to understand and respond to user commands. Its 

capabilities include managing household systems, 

scheduling, retrieving information, and assisting in 

complex tasks. 

This project focuses on JARVIS as a digital assistant that 

connects to a user's home via Twitter, instant messaging, 

and voice commands, enabling two-way control over lights, 

appliances, cooking help, news alerts, and more. Built as a 

speech recognition application, it uses a synthesizer to 

convert text to speech and a recognizer to turn spoken 

words into text, enabling smooth, voice-based 

communication. 
 

Keywords: Voice Assistant, NLP, Neural Network, Google 

Search. 

I. INTRODUCTION 

Speech is one of the most natural and effective ways 

for people to engage with technology, offering a 

hands-free, seamless alternative to traditional input 

methods like keyboards and mice. By simply 

speaking, users can interact with applications, stay 

productive, and access information in scenarios where 

using their hands isn’t feasible—whether they’re 

driving, cooking, or multitasking. Speech not only 

enhances convenience, but it also adds a layer of 

accessibility that many other interfaces can’t match. 

At its core, speech recognition technology listens, 

understands, and responds to spoken commands. This 

ability to transform voice into action is becoming 

increasingly vital in daily life, from personal assistants 

on smartphones to voice-controlled smart home 

devices. Beyond convenience, speech recognition 

holds transformative potential for individuals with 

disabilities. For those who struggle with mobility or 

dexterity, voice control can significantly simplify daily 

tasks. A person could, with just their voice, turn lights 

on or off, adjust the thermostat, or operate various 

household appliances, giving them greater 

independence. 

This brings us to the exciting world of intelligent 

homes, where voice-activated systems can be used not 

only by the common person but also to greatly assist 

those with disabilities. Imagine controlling lights, 

appliances, or even security systems with just your 

voice, offering both convenience and independence. 

But how exactly is speech recognition achieved? To 

understand modern advancements, it's important to 

look back at its origins. The journey of automatic 

speech recognition began in the 1950s, when 

researchers first attempted to use machines to 

understand human speech. These early systems were 

based on acoustic-phonetics, the study of the physical 

properties of speech sounds. One of the pioneering 

efforts came in 1952 at Bell Laboratories, where 

Davis, Biddulph, and Balashek developed a system 

that could recognize isolated digits spoken by a single 

speaker. This system marked the first step towards the 

sophisticated voice-controlled systems we have today, 

laying the foundation for decades of innovation in 

speech recognition technology. 

As research progressed, these early concepts evolved 

into the highly advanced, multi-speaker systems we 

now see integrated into everyday technology, making 

speech recognition a key part of intelligent homes and 

beyond. 

The early speech recognition system focused on 

measuring spectral resonances during the vowel 

sounds of each digit. In 1959, Forgie at MIT Lincoln 

Laboratories made another important advancement by 

recognizing ten vowels in a /b/-vowel-/t/ format 

without being tied to a specific speaker. 

During the 1970s, speech recognition research made 

significant progress, particularly in isolated word 

recognition, which became a usable technology. This 

progress was influenced by studies from Velichko and 

Zagoruyko in Russia, Sakoe and Chiba in Japan, and 

Itakura in the United States. The Russian research 

helped develop pattern recognition techniques, the 

Japanese research applied dynamic programming 

methods, and Itakura introduced linear predictive 

coding (LPC). 

At AT&T Bell Labs, researchers started experiments to 

create speech recognition systems that could 
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understand speech from any speaker. They used 

various clustering algorithms to identify the different 

patterns needed to represent variations in speech 

across a wide range of users. 

In the 1980s, there was a shift in technology from 

template-based methods to statistical modeling 

approaches, particularly the hidden Markov model 

(HMM), which greatly improved speech recognition 

accuracy and efficiency [1]. 

The purpose of this paper is to explore and deepen our 

theoretical and practical understanding of speech 

recognition technology. We begin by examining the 

state-of-the-art feature extraction method known as 

Mel-Frequency Cepstral Coefficients (MFCC). By 

studying MFCC, we aim to apply this knowledge 

practically, leading to the implementation of a speech 

recognizer using .NET technology in C#, developed 

by Microsoft. 

For our project, we utilize the Speech Application 

Programming Interface (SAPI), a robust API created 

by Microsoft that enables developers to integrate 

speech recognition and speech synthesis capabilities 

into Windows applications. This integration allows us 

to leverage advanced speech processing techniques 

while creating a user-friendly interface for interaction, 

showcasing the potential of speech recognition in real-

world applications. 

Applications that use the Speech Application 

Programming Interface (SAPI) include Microsoft 

Office, Microsoft Agent, and Microsoft Speech Server. 

Generally, all APIs are designed so that software 

developers can create applications for speech 

recognition and synthesis using a standard set of 

interfaces. These interfaces are accessible from 

various programming languages, making it easier to 

integrate speech capabilities into different 

applications. In addition, third-party companies can 

create their own Speech Recognition and Text-to-

Speech (TTS) engines or modify existing ones to work 

with SAPI. Essentially, the speech platform includes 

application runtimes that provide speech functionality, 

an Application Programming Interface (API) for 

managing the runtime, and runtime languages that 

enable speech recognition and TTS in specific 

languages. 

II. SPEECH REPRESENTATION 

 The speech signal and all of its features can be 

represented in two separate domains: time and 

frequency domain. A speech signal is a slowly 

fluctuating signal in the sense that when studied over 

a short period of time (between 5 and 100 ms), its 

features are short-term stationary. This is not the case 

when we examine a voice signal over a longer time 

period (roughly time T>0.5 s). In this scenario, the 

signal characteristics are non-stationary, which means 

they shift to represent the diverse sounds spoken by 

the speaker. A voice signal representation is preferred 

in order to use and comprehend its properties correctly.  

 

1 THREE STATE REPRESENTATION  

The three-state representation is one way to classify 

events in speech. The events of interest for the three-

state representation are  

  

• Silence (S) - In this state, No speech is 

produced.  

  

• Unvoiced  (U)  -  This state occurs when the 

vocal cords are not vibrating, leading to an aperiodic 

or random speech waveform.  

  

• Voiced (V) - In this state, the vocal cords are 

tensed and vibrating periodically, resulting in a quasi-

periodic speech waveform.  

 

Quasi-periodic means that the speech waveform 

appears periodic over a short time period (5-100 ms) 

when it remains stable. 
 

 
Fig1: Three State Representation  

 

The upper plot (a) illustrates the complete speech 

sequence, while the middle plot (b) focuses on a 

specific section by zooming in on a part of the upper 

plot (a). At the bottom of Fig. 1, the segmentation into 

a three-state representation is displayed, highlighting 

the correlation with different segments of the middle 

plot. Although segmenting the speech waveform into 

clearly defined states can be complex, this challenge is 

often less daunting than it might initially appear. With 

careful analysis, the underlying patterns can be 

discerned, making the task manageable. 
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Fig 2 : Spectrogram using Welch’s Method (a) and 

speech amplitude (b) 

  

In this Fig2 representation, the darkest areas (dark 

blue) indicate segments of the speech waveform where 

no speech is produced, while the lighter areas (red) 

signify periods of vocalization with varying intensity. 

The speech waveform is presented in the time domain, 

illustrating the dynamic nature of speech over time. 

For the spectrogram, Welch’s method is employed, 

utilizing averaged modified periodograms to provide a 

clearer view of the frequency content within the 

speech signal [3]. This method enhances the analysis 

of speech by revealing how its spectral characteristics 

evolve, allowing for a deeper understanding of vocal 

patterns. The parameters used in this method include a 

block size of \( K = 320 \), a Hamming window with 

62.5% overlap, resulting in blocks of 20 ms with a 6.25 

ms distance between each block.  

 

2. PHONEMICS AND PHONETICS  

  

The Speech production begins in the human mind 

when a thought is formed and prepared for 

communication to a listener. After developing the 

desired thought, the speaker constructs a phrase or 

sentence by selecting from a collection of finite, 

mutually exclusive sounds. The basic theoretical unit 

for conveying linguistic meaning in this mental 

framework is called a phoneme. Phonemes represent 

the various components of a speech waveform, 

produced through the human vocal mechanism, and 

are divided into two categories: continuant (stationary) 

parts and non-continuant parts. 

 

A phoneme is considered continuant when the speech 

sound is produced while the vocal tract remains in a 

steady state. In contrast, a phoneme is classified as 

non-continuant when the vocal tract undergoes 

changes in its characteristics during speech 

production. For instance, if the shape of the vocal tract 

alters due to actions like opening and closing the 

mouth or moving the tongue, the resulting phoneme is 

non-continuant. Phonemes can be grouped based on 

properties of the time waveform or frequency 

characteristics, leading to various classifications of 

sounds produced by the human vocal tract. This 

distinction highlights the dynamic nature of speech 

and the intricate mechanisms involved in phoneme 

production.The classification, may also be seen as a 

division of the sections in Fig 3  

  

 
 

Fig3: Phoneme Classification  

    

3. FEATURE EXTRACTION (MFCC)  

The extraction of optimal parametric representations 

of acoustic signals is crucial for achieving superior 

recognition performance in speech processing. This 

efficiency directly impacts the subsequent phases of 

recognition, as it influences how well the system can 

interpret and act on the input signals. Mel-Frequency 

Cepstral Coefficients (MFCC) play a key role in this 

process, as they are designed to align with human 

auditory perceptions, particularly the fact that the 

human ear cannot perceive frequencies above 1 kHz. 

Essentially, MFCC utilizes established variations in 

the critical bandwidth of human hearing with 

frequency to enhance the accuracy of speech 

recognition systems. MFCC utilizes two types of 

filters: one that is spaced linearly for frequencies 

below 1000 Hz and another that uses logarithmic 

spacing for frequencies above 1000 Hz. The Mel 

Frequency Scale incorporates a subjective pitch to 

capture important phonetic characteristics in speech. 

The overall process is shown in following Fig: 4.  

 

Fig4: MFCC Block Diagram 

As shown in Figure 4, the Mel Frequency Cepstral 

Coefficients (MFCC) extraction process consists of 
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seven computational steps. Each step serves a specific 

function and employs various mathematical 

approaches, as briefly discussed below: 
 

STEP 1: PRE- EMPHASIS  
  

This step processes the passing of signal through a 

filter which emphasizes higher frequencies. This 

process will increase the energy of signal at higher 

frequency.  

  

Y[n]=X[n]-0.95X[n-1]  (1)  

  

Let’s consider a = 0.95, which make 95% of any one 

sample is presumed to originate from previous sample.  

  

STEP 2: FRAMING 

  

The process of segmenting the speech samples 

obtained from analog to digital conversion (ADC) into 

a small frame with the length within the range of 20 to 

40 msec. The voice signal is divided into frames of N 

samples. Adjacent frames are being separated by M 

(M<N).Typical values used are M  

= 100 and N= 256  

  

STEP 3: HAMMING WINDOWING  

  

Hamming window is used as window shape by 

considering the next block in feature extraction 

processing chain and integrates all the closest 

frequency lines. The Hamming window equation is 

given as: If the window is defined as W (n), 0 ≤ n ≤ N-

1 where  

  

N = number of samples in each frame  

  

Y[n] = Output signal  

  

X (n) = input signal  

  

W   (n)   =   Hamming   window,   then   the   result   of 

windowing signal is  
  

Shown below:  
  

Y(n)=X(n)×W(n)                                (2)  

w(n)=0.54-0.46cos[[2πn/(N-1)]  0≤n≤N-1   (3) 

If X (w), H (w) and Y (w) are the Fourier Transform 

of X (t), H (t) and Y (t) respectively.  

 

STEP 4: FAST FOURIER TRANSFORM  

To convert each frame of N samples from time domain 

into frequency domain. The Fourier Transform is to 

convert the convolution of the glottal pulse U[n] and 

the vocal tract impulse response H[n] in the time 

domain. This statement supports the equation below:  

  

 y(w)=FFT[h(t)*X(t)]=H(w)*X(w)  (4)  

  

If X (w), H (w) and Y (w) are the Fourier Transform 

of X (t), H (t) and Y (t) respectively.  

  

STEP 5: MEL FILTER BANK PROCESSING  

The frequencies range in FFT spectrum is very wide 

and voice signal does not follow the linear scale. The 

bank of filters according to Mel scale as shown in 

figure 5 is then performed.  
 

 
Fig. 5. Mel scale filter bank, from (young et al, 1997) 

This figure shows a set of triangular filters that are 

used to compute a weighted sum of filter spectral 

components so that the output of process approximates 

to a Mel scale. Each filter’s magnitude frequency 

response is triangular in shape and  equal  to  unity at  

the  center  frequency and  decrease linearly to zero at 

center frequency of two adjacent filters [7, 8]. Then, 

each filter output is the sum of its filtered spectral 

components. After that the following equation issued 

to compute the Mel for given frequency f in HZ.  

 F(Mel)=[2595*log_10 [1+f/700] ] 

 (5) 

  

STEP6: DISCRETE COSINE TRANSFORM  
  

This is the process to convert the log Mel spectrum 

into time domain using Discrete Cosine Transform 

(DCT). The result of the conversion is called Mel 

Frequency Cestrum Coefficient. The set of coefficient 

is called acoustic vectors. Therefore, each input 

utterance is transformed into a sequence of acoustic 

vector.  
  

STEP 7: DELTA ENERGY AND DELTA 

SPECTRUM 
 

The voice signal and the frames changes, such as the 

slope of a formant at its transitions. Therefore, there is 

a need  to  add  features  related  to  the  change  in  

cepstral features over time . 13 delta or velocity 
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features (12 cepstral features plus energy), and 39 

features a double delta or acceleration feature are 

added. The energy in a frame for a signal x in a 

window from time sample t1 to time sample t2, is 

represented at the equation below:  
  

Energy=∑X^2[t]                                 (6) 

Each  of  the  13  delta  features  represents  the  change 

between frames corresponding to cepstral or energy 

feature, while each of the 39 double delta features 

represents the change between frames in the 

corresponding delta features.  

  

 d(t)=[c(t+1)-c(t-1)]/2  (7)  

 

III. METHODOLOGIES 

As highlighted in [11], voice recognition operates on 

the principle that each person's voice has unique 

characteristics. During training and testing sessions, 

the audio signals can vary significantly due to several 

factors. For instance, a speaker's voice may change 

over time, be affected by health conditions (such as 

having a cold), and vary with the speaking rate. 

Additionally, external factors like background noise 

and differences in the recording environment can 

influence the audio captured by the microphone. 

 

Table II provides detailed information regarding the 

recording and training sessions, while Figure 7 

illustrates the flowchart of the overall voice 

recognition process. This process encompasses 

various stages, from capturing the voice input to 

recognizing and interpreting the spoken words, 

ultimately leading to accurate speech recognition 

despite the inherent variability in voice characteristics. 
 

Process  Description  

1)   Speech  2Female(age=20,age=53) 

2 Male(age=22,age=45)  
2)   Tool  Mono Microphone 

Microsoft Speech 

software  
3)   

Environment  
College Campus  

4)   Utterance  Twice each of the 

following word  

1) Volume Up  

2) Volume Down  

3) “Jarvis there” 4)   

Introduce yourself 5)   

Show date.  
5)   Sampling  16000 KHz  

Frequency  

6)   Feature 

Computational  
39 double delta MFCC 

coefficient  
   

 

Fig7: Flowchart for Voice Flow Algorithm 

 

  

Fig 8: . Example voice signal input of two difference 

speakers 

   

Figure 8 depicts how the speech analysis performance 

evaluation is carried out utilizing MFFC. A MFCC 

cepstral is a matrix; the disadvantage of this approach 

is that if constant window spacing is utilized, the 

lengths of the input and stored sequences are unlikely 

to be the same. Furthermore, as previously noted, the 

length of individual phonemes within a word will vary. 

For example, the word Volume Up may be said with a 

long /O/ and a short final /U/ or with a short /O/ and a 

long /U/.  

 

The input  voice signals of two  different speakers are 

shown in Figure 8.  

 

IV. RESULT AND DISCUSSION 
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Fig.9. Mel Frequency Cepstrum Coefficients 

(MFCC) of one Female and Male speaker 

 

Figure 9 shows the MFCC output of two different 

speakers. 

The matching process needs to compensate for length 

differences and take account of the non-linear nature 

of the length differences within the words.  

 

V. CONCLUSIONS 

  

This paper has explored various voice recognition 

algorithms that are crucial for improving voice 

recognition performance. The techniques discussed 

effectively authenticated individual speakers by 

analyzing unique characteristics in their voice signals. 

The results demonstrate that these methods can be 

reliably employed for voice recognition applications. 

Furthermore, several additional techniques, such as 

Linear Predictive Coding (LPC), Dynamic Time 

Warping (DTW), and Artificial Neural Networks 

(ANN), are currently being researched. The insights 

gained from this investigation will be presented in 

forthcoming publications, contributing to the ongoing 

advancements in the field of voice recognition 

technology. 
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