
© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169402 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1707

Real Time Hand Gesture Recognition

Kartik Begani1, Puneet Kaur2, Tanu Pal3, Yash Gupta4, Anshika Gupta5, Himani Chauhan6
1,3,4,5,6 Bachelor of Engineering in Computer Science and Engineering, Chandigarh University Mohali,

India
2Assistant Professor, Chandigarh University Mohali, India

Abstract— In this research, we offer an enhanced deep

learning technique for recognition of sign language. We

offer a unique architecture that efficiently captures the

spatial and temporal properties of sign language motions

by combining recurrent neural networks (RNN) with

convolutional neural networks (CNN). signal. Our strategy

achieves better accuracy and real-time performance than

previous approaches.

Keywords— Sign language recognition, deep learning,

convolutional neural networks (CNN), computer vision,

machine learning.

I. INTRODUCTION

For the deaf and hard of hearing community, sign

language serves as the primary means of

communication, promoting social integration and

meaningful connections. Sign language is the mother

tongue of millions of deaf people worldwide, acting not

only as a means of communication but also as a form

of expression for their culture, identity, and heritage.

However, there are significant communication barriers

for deaf individuals in various settings, such as public

spaces, workplaces, and educational institutions, due to

the general public's limited understanding of sign

language.

By automatically deciphering sign language motions

and translating them into text or spoken language, sign

language recognition systems play a crucial part in

breaking down this barrier and advancing inclusivity.

In addition to facilitating communication between

hearing and deaf people, these technologies enable deaf

persons to take advantage of a wide range of

opportunities, participate fully in society, and receive

an education. With the ability to extract sophisticated

spatial and temporal information from sign language

films or photos, recent advancements in deep learning

have transformed the area of sign language

identification. Signal [2, 3]. In order to automatically

detect hand shapes, movements, and face expressions

in sign language gestures, convolutional neural

networks (CNNs) have developed into an extremely

effective technique for extracting spatial features.

In the meantime, it has been demonstrated that

recurrent neural networks (RNNs), particularly long

and short-term memory (LSTM) networks, are

efficient at modeling temporal dependencies.

Language strings include inherent sequential data.

Numerous obstacles still need to be overcome in order

to fully recognize sign language, including variations

in sign styles, occlusions, and dynamic backgrounds

[3]. Innovative methods combining sophisticated deep

learning techniques, reliable training processes, and

large datasets are needed to overcome these obstacles.

Our work presents a novel deep learning architecture

that is tailored for sign language identification. By

utilizing the advantages of both CNN and RNN, we are

able to achieve better results in terms of accuracy,

robustness, and real-time processing speed.

II. APPROACHES AND TECHNIQUES

The method based on the 3D hand model compares th

e input image with the 2D image projected by the 3D

hand model. The main disadvantage of this approach,

though, is that it is less practical because a sizable

database is needed to manage all potential projections

of the 3D hand model [7, 8]. On the other hand,

appearance-based methods take features from the

image and use them to model the hand pose's visual

characteristics by comparing them with features taken

from the original source, real-time video stream

showing the person making the gesture.

Techniques based on appearance can be divided into

two categories: gesture detection (dynamic) and hand

pose detection (static). In their appearance-based

method, Nasser et al. extract the salient features as

SIFT (Scale Invariant Feature Transform) key points.

They use a series of hand positions to create a language

that enables the recognition of dynamic movements. A

comparable method combining AdaBoost for

classification and Hairlike features for image

description was proposed by Emile et al. They talk

about benefits like quick computation, but they also

point out a drawback: a lot of characteristics are

needed, which makes the system training process

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169402 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1708

challenging [9]. Another difficulty is recognizing and

removing hands from busy and dynamic backgrounds.

For this aim, one of the most used methods is skin color

detection. The HSV (Hue, Saturation, Value) color

system was developed by PK. Bora et al. and shows

skin tones within particular ranges for H and S. It is

possible to extract items with skin tones from any

background by using this information.

Important phases in hand gesture recognition are

feature extraction and categorization. To prove their

superiority, Maceal et al. examined several shape

descriptors, such as the Zernike moment. Zernike

moments' rotation invariance and repeatability make

them increasingly appropriate for use in image

processing systems. Through the development of a

static American Sign Language (ASL) gesture

detection system on a single platform, Athira et al. [10]

proved the feasibility of Zernike Moments. In order to

translate speech into gestures, they also have a

pronunciation engine. Dynamic hand gesture

recognition requires the integration of gesture

modeling and recognition. For this, Hidden Markov

Models (HMM) have been effectively applied

[@starner2000sign]. By showing that gesture and

voice recognition have a similar relationship, the

foundation for employing HMM is built. Hand

movements along the tracked coordinate axis can be

modeled by the HMM, with each direction representing

a state. The Harsdorf object tracker, an object tracking

algorithm, is used in [6] to select the best-fitting frames

from the live video stream to represent the object's

translation. Static and dynamic features are extracted

for classification using this motion vector

representation. The topic of feature extraction from

gesture trajectories for dynamic hand gesture

identification was covered by Emile et al. [7]. They

follow the center of gravity's movement and derive a

feature vector with variables like speed and

acceleration. A prediction approach is needed for

classification, and multiclass SVM was found to

produce the best results in a comparative analysis [8].

III. APPLICATIONS OF CNN

A subset of machine learning called deep learning has

transformed a wide range of industries, including

computer vision. Convolutional neural networks are

among the most potent deep learning architectures

(CNN). CNNs excel at image-related tasks because

they can automatically identify spatial hierarchies of

features from unprocessed pixel input.

Deep Learning models, which are based on the

architecture and operation of the human brain, are

made up of multiple layers of networked neurons that

enable them to automatically discover new ways to

represent the same data. [3, 4]. These models have a

major benefit over conventional machine learning

techniques in that they can learn straight from raw data,

doing away with the necessity for manually created

features. CNN stands for Convolutional Neural

Network.

CNNs are a kind of deep neural network that have

shown remarkable performance in segmentation,

object detection, and image classification among other

computer vision tasks. Convolutional layers, pooling

layers, and fully linked layers are the three basic parts

of CNN:

a) Convolutional Layers:

These layers enable the network to automatically learn

the spatial hierarchies of characteristics like edges,

textures, and samples by applying a collection of

learnable filters (kernels) to the input image.

b) Pooling Layer:

Pooling layers preserve significant information while

reducing the spatial dimension of the convolutional

feature map. The two pooling operations that are most

frequently employed are max pooling and average

pooling.

c) Fully Linked Layer:

Usually located at the end of the network, these layers

are in charge of generating predictions using the

characteristics that earlier layers have acquired.

Application for recognition of sign language.

Fig 1. Different Layers in CNN

In our effort, we use CNN's processing capacity to

automatically extract spatial features—such as hand

forms, motions, and facial expressions—from photos

of people using sign language. A CNN can successfully

detect various signs and motions by being trained on a

sizable collection of pictures used in sign language [5].

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169402 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1709

Our system can achieve high performance in sign

language identification, automatically learn key

aspects from raw photos, and adjust to differences in

hand shape, movement, and backdrop thanks to the use

of CNN.

Our research intends to develop a deep learning system,

namely convolutional neural networks (CNNs), that

can recognize and interpret linguistic gestures in sign

language with accuracy and dependability.

Abbreviations and sign language movements will both

be recognized and understood by the system with

accuracy.

IV. PIPELINE

In order to anticipate the final image of the user, our

method uses a two-layered set of rules. In the first

three layers, we utilize OpenCV to capture a body,

apply a Gaussian blur threshold and out to extract

capabilities, and obtain the processed image [1, 2].

This processed image is then compared to the CNN

version for prediction. If a letter is detected for more

than fifty frames, it is published and considered for

word formation. Moreover, we use a clean image to

suggest area between words.

During detection, we encounter several units of

symbols exhibiting similar effects in the second layer

of the algorithm. Following that, these units are

categorized using classifiers that are primarily made for

each collection. For the CNN version, the enter

photograph has a decision of 128x128 pixels.

The structure of our CNN version includes numerous

layers:

a) 1st Convolution Layer:

This layer applies 32 filters, each measuring 3 by 3

pixels in length. The result is an image with 126 by 126

pixels for each clean out weight. The purpose of this

residue is to extract low-degree functions from the

input image, such as edges and textures, so that the

research community may study hierarchical

representations of the input data.

b) 2nd Convolution Layer:

This residue creates a 60x60 pixel image by applying

32 filters, each having a length of 3x3 pixels, just as the

principal convolutional layer. This residue is needed to

additionally extract higher-degree functions from the

characteristic maps that the initial convolutional layer

has provided.

c) 1st Pooling Layer:

Max-pooling with a 2x2 kernel is used after the

convolutional layer to down sample the image and cut

the spatial dimensions in half. Max-pooling provides

translation invariance to the discovered functions and

helps to reduce the computational complexity of the

community.

d) 2nd Pooling Layer:

After the second convolutional layer, a second max-

pooling operation using a 2x2 kernel is used to down

sample the image further, bringing its spatial

dimensions down to 30x30 pixels. This makes it

possible to extract more summary functions and reduce

the community's computational complexity.

e) 1st Densely Connected Layer:

The second pooling layer's output is compressed and

extended to a fully connected layer with 128 neurons.

This residue's purpose is to study higher-order

functions by joining all of the neurons from the layer

above. A dropout layer with a dropout charge of 0.5 is

used to prevent overfitting.

f) 2nd Densely Connected Layer:

There is another totally connected layer with ninety-six

neurons that receives the output from the primary

densely related layer above it. Furthermore, the

functionalities discovered in the previous layer are

further refined in this layer.

g) Final layer:

The final layer, which has an identical range of neurons

due to the training range being categorized (alphabets

+ clean symbol), uses the output from the second

densely linked layer as an input. Utilizing a SoftMax

activation feature, the final layer outputs the

opportunity distribution throughout the training set

within the text.

V. IMAGE PROCESSING

Image processing is the act of capturing, analyzing,

and deciphering hand motions from photos or videos

using computer methods.

For image preprocessing, we hire the subsequent

techniques:

a) Gaussian Blur Filter:

Using OpenCV's Gaussian Blur feature, we apply a

Gaussian blur on the recorded body. Lowering noise

and smoothing down the image are made possible by

this clean out, which is essential for greater function

extraction in the next stages. Convolution of the picture

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169402 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1710

using a Gaussian kernel reduces excessive frequency

noise and yields a more uniform and cleaner image.

Fig 2. Image after applying the filter

b) Noise Elimination:

Following the use of the Gaussian blur clean out, we

also utilize thresholding techniques to remove noise

from the image. By utilizing a fixed-degree threshold,

the threshold function of OpenCV is utilized to convert

the grayscale image into a binary image. This makes it

easier to identify and understand hand movements by

enhancing the picture's readability and removing

distracting elements.

c) Skin-color Sampling:

We design pores and skin-color pixels from the

preprocessed image to consciousness at the hand

motions. The process of skin detection involves

thresholding the image inside the HSV (Hue,

Saturation, Value) color space. We can distinguish the

hand area from the body's history and other objects by

establishing a variety of pores and skin tone values.

This enables the CNN version to ignore the point

statistics inside the image while simultaneously

focusing on the relevant capabilities.

These pretreatment techniques make sure that the entry

pictures are of excessive nice and contain best the

applicable statistics necessary for proper signal

language identification.

Fig 3. Image after applying Greyscale

VI. TRANING AND TESTING

To train and evaluate our sign language recognition

model, we collected a dataset from Kaggle. The input

images undergo preprocessing, where they are

converted to greyscale from RGB and applied

Gaussian blur to remove unwanted noise. We also

apply adaptive thresholding to isolate the hand from

the background and resizing the images to 128 x 128

pixels.

Fig 4. Model Summary

The model is then trained and tested using the

preprocessed photos. The probability that a picture

belongs to each class is calculated by the prediction

layer. This is accomplished by using the SoftMax

function to normalize the result between 0 and 1,

guaranteeing that the total of the probability for all

classes is 1.

During testing, the model's output is compared with

the actual labels using cross-entropy, a performance

metric commonly used in classification tasks. The

cross-entropy loss is minimized by adjusting the

neural network's weights through gradient descent

optimization. TensorFlow provides a built-in function

to compute cross-entropy, and we optimize it using the

Adam Optimizer. This approach allows the model to

learn from labeled data and improve its performance

over time.

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169402 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1711

We initially set the model to train for 100 epochs, with

4 steps per epoch. However, during training, the

accuracy reached 99.22% at epoch 72. To prevent

overfitting, we halted the training early.

Fig 5. Epoch log during Training

VII. EXPERIMENTAL RESULTS

Our model was trained on a dataset containing over

2,500 images. Initially, we set the model to train for

100 epochs. An epoch in deep learning is one full run

of the whole training set [4]. The model modifies its

weights and biases to minimize the loss function at

each epoch. However, we observed an impressive

accuracy of 99.22% during testing at epoch

72(Mentioned in Fig 5.).

a) Epoch Accuracy Graph:

The epoch accuracy graph shows the model's accuracy

for each epoch throughout the training process [9]. It

highlights the model's performance over time and

provides insights into its learning progression. The

graph demonstrated a consistent upward trend in

accuracy during training. Towards the end, there was

a slight dip in accuracy due to system capacity

limitations, but the accuracy quickly recovered and

continued to improve.

Fig 6. Accuracy Graph

b) Epoch Loss Graph:

The epoch loss graph tracks the model's loss for each

epoch during training. It shows how the model's error

rate changes over time, with a lower loss indicating

better performance [9]. The loss graph followed a

steady downward trend, indicating a reduction in error

throughout the training. Towards the end, there was a

slight increase in loss due to system constraints.

However, the loss quickly decreased again, reflecting

the model's robustness.

Fig 7. Loss Graph

c) Comparison:

Compared to other approaches to the same problem,

our model significantly outperformed them. While the

highest accuracy achieved by other methods ranged

from 93% to 96% [8][11][12], our model achieved an

impressive accuracy of 99.22%. This substantial

improvement underscores the effectiveness and

superiority of our approach in sign language

recognition.

Fig 8. Table of Comparison

VIII. CONCLUSION

In this study, we presented a sophisticated deep

learning technique using Convolutional Neural

Networks (CNNs) to improve signal language

reputation. Our version outperformed existing

methods for the same issue, with a trying out accuracy

of 99.22% at epoch 72, leading to amazing results. The

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169402 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1712

experimental findings show that our proposed method

is robust and effective in correctly detecting sign

language gestures. The enhanced overall performance

of our version demonstrates its potential for real-world

international applications, such as helping the

communicationally handicapped listen. Subsequent

works of art may focus on refining the version and

investigating its use in real-time signal language

reputation systems.

ACKNOWLEDGMENT

Our deepest appreciation goes out to Puneet Kaur, our

supervisor, for all of her help and support during this

project. Their knowledge and experience were very

helpful in determining the course of this investigation.

We would also want to thank Chandigarh University

for providing the tools and infrastructure needed to

make this study possible.

REFERENCES

[1] H. D. Nasser et al., "Dynamic Hand Gesture

Recognition Using SIFT and a Grammar Model,"

International Conference on Recent Advances in

Information Technology (RAIT), 2016.

[2] M. P. Emil et al., "Real-Time Static and Dynamic

Hand Gesture Recognition System Using Haar-Like

Features and Adaboost Classifier," International

Conference on Advances in Computing,

Communications and Informatics (ICACCI), 2018.

[3] P. K. Bora et al., "Real-Time Hand Gesture

Recognition System Using HSV Color Space,"

International Conference on Electrical, Electronics,

Signals, Communication and Optimization (EESCO),

2019.

[4] V. Macheal et al., "Evaluation of Various Shape

Descriptors for Hand Gesture Recognition,"

International Conference on Computer,

Communication, and Signal Processing (ICCCSP),

2017.

[5] J. K. Park et al., "Hand Gesture Recognition Using

Hidden Markov Models," International Conference on

Machine Learning and Cybernetics (ICMLC), 2018.

[6] K. J. Lin et al., "Dynamic Hand Gesture

Recognition Using Object Tracking Algorithm,"

International Conference on Pattern Recognition

(ICPR), 2019.

[7] M. P. Emil et al., "Dynamic Hand Gesture

Recognition Using Feature Extraction from Gesture

Trajectory," International Conference on Signal

Processing and Communication (ICSC), 2018.

[8] A. Kumar et al., "Comparison of Various

Classifiers for Dynamic Hand Gesture Recognition,"

International Conference on Intelligent Computing and

Control Systems (ICICCS), 2020.

[9] C. J. Burges, "A Tutorial on Support Vector

Machines for Pattern Recognition," Data Mining and

Knowledge Discovery, vol. 2, no. 2, pp. 121-167, 1998.

[10] A. S. Athira et al., "Hand Gesture Recognition

Using Zernike Moments and Multiclass SVM,"

International Conference on Intelligent Systems

Design and Applications (ISDA), 2019.

[11] Y. M. Kim et al., "Hand Gesture Recognition

Using Hidden Markov Models," International

Conference on Control, Automation and Systems

(ICCAS), 2017.

[12] M. K. Gupta et al., "Real-Time Hand Gesture

Recognition Using Motion Feature Extraction,"

International Conference on Artificial Intelligence and

Machine Learning (ICAIML), 2018.

