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Abstract— In this research, we offer an enhanced deep 

learning technique for recognition of sign language. We 

offer a unique architecture that efficiently captures the 

spatial and temporal properties of sign language motions 

by combining recurrent neural networks (RNN) with 

convolutional neural networks (CNN). signal. Our strategy 

achieves better accuracy and real-time performance than 

previous approaches. 
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I. INTRODUCTION 

For the deaf and hard of hearing community, sign 

language serves as the primary means of 

communication, promoting social integration and 

meaningful connections. Sign language is the mother 

tongue of millions of deaf people worldwide, acting not 

only as a means of communication but also as a form 

of expression for their culture, identity, and heritage. 

However, there are significant communication barriers 

for deaf individuals in various settings, such as public 

spaces, workplaces, and educational institutions, due to 

the general public's limited understanding of sign 

language. 

By automatically deciphering sign language motions 

and translating them into text or spoken language, sign 

language recognition systems play a crucial part in 

breaking down this barrier and advancing inclusivity. 

In addition to facilitating communication between 

hearing and deaf people, these technologies enable deaf 

persons to take advantage of a wide range of 

opportunities, participate fully in society, and receive 

an education. With the ability to extract sophisticated 

spatial and temporal information from sign language 

films or photos, recent advancements in deep learning 

have transformed the area of sign language 

identification. Signal [2, 3]. In order to automatically 

detect hand shapes, movements, and face expressions 

in sign language gestures, convolutional neural 

networks (CNNs) have developed into an extremely 

effective technique for extracting spatial features. 

In the meantime, it has been demonstrated that 

recurrent neural networks (RNNs), particularly long 

and short-term memory (LSTM) networks, are 

efficient at modeling temporal dependencies. 

Language strings include inherent sequential data. 

Numerous obstacles still need to be overcome in order 

to fully recognize sign language, including variations 

in sign styles, occlusions, and dynamic backgrounds 

[3]. Innovative methods combining sophisticated deep 

learning techniques, reliable training processes, and 

large datasets are needed to overcome these obstacles. 

Our work presents a novel deep learning architecture 

that is tailored for sign language identification. By 

utilizing the advantages of both CNN and RNN, we are 

able to achieve better results in terms of accuracy, 

robustness, and real-time processing speed. 

II. APPROACHES AND TECHNIQUES 

The method based on the 3D hand model compares th

e input image with the 2D image projected by the 3D 

hand model. The main disadvantage of this approach, 

though, is that it is less practical because a sizable 

database is needed to manage all potential projections 

of the 3D hand model [7, 8]. On the other hand, 

appearance-based methods take features from the 

image and use them to model the hand pose's visual 

characteristics by comparing them with features taken 

from the original source, real-time video stream 

showing the person making the gesture. 

 

Techniques based on appearance can be divided into 

two categories: gesture detection (dynamic) and hand 

pose detection (static). In their appearance-based 

method, Nasser et al. extract the salient features as 

SIFT (Scale Invariant Feature Transform) key points. 

They use a series of hand positions to create a language 

that enables the recognition of dynamic movements. A 

comparable method combining AdaBoost for 

classification and Hairlike features for image 

description was proposed by Emile et al. They talk 

about benefits like quick computation, but they also 

point out a drawback: a lot of characteristics are 

needed, which makes the system training process 
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challenging [9]. Another difficulty is recognizing and 

removing hands from busy and dynamic backgrounds. 

For this aim, one of the most used methods is skin color 

detection. The HSV (Hue, Saturation, Value) color 

system was developed by PK. Bora et al. and shows 

skin tones within particular ranges for H and S. It is 

possible to extract items with skin tones from any 

background by using this information. 

 

Important phases in hand gesture recognition are 

feature extraction and categorization. To prove their 

superiority, Maceal et al. examined several shape 

descriptors, such as the Zernike moment. Zernike 

moments' rotation invariance and repeatability make 

them increasingly appropriate for use in image 

processing systems. Through the development of a 

static American Sign Language (ASL) gesture 

detection system on a single platform, Athira et al. [10] 

proved the feasibility of Zernike Moments. In order to 

translate speech into gestures, they also have a 

pronunciation engine. Dynamic hand gesture 

recognition requires the integration of gesture 

modeling and recognition. For this, Hidden Markov 

Models (HMM) have been effectively applied 

[@starner2000sign]. By showing that gesture and 

voice recognition have a similar relationship, the 

foundation for employing HMM is built. Hand 

movements along the tracked coordinate axis can be 

modeled by the HMM, with each direction representing 

a state. The Harsdorf object tracker, an object tracking 

algorithm, is used in [6] to select the best-fitting frames 

from the live video stream to represent the object's 

translation. Static and dynamic features are extracted 

for classification using this motion vector 

representation. The topic of feature extraction from 

gesture trajectories for dynamic hand gesture 

identification was covered by Emile et al. [7]. They 

follow the center of gravity's movement and derive a 

feature vector with variables like speed and 

acceleration. A prediction approach is needed for 

classification, and multiclass SVM was found to 

produce the best results in a comparative analysis [8]. 

 

III. APPLICATIONS OF CNN 

A subset of machine learning called deep learning has 

transformed a wide range of industries, including 

computer vision. Convolutional neural networks are 

among the most potent deep learning architectures 

(CNN). CNNs excel at image-related tasks because 

they can automatically identify spatial hierarchies of 

features from unprocessed pixel input. 

 

Deep Learning models, which are based on the 

architecture and operation of the human brain, are 

made up of multiple layers of networked neurons that 

enable them to automatically discover new ways to 

represent the same data. [3, 4]. These models have a 

major benefit over conventional machine learning 

techniques in that they can learn straight from raw data, 

doing away with the necessity for manually created 

features. CNN stands for Convolutional Neural 

Network. 

 

CNNs are a kind of deep neural network that have 

shown remarkable performance in segmentation, 

object detection, and image classification among other 

computer vision tasks. Convolutional layers, pooling 

layers, and fully linked layers are the three basic parts 

of CNN: 

 

a) Convolutional Layers: 

These layers enable the network to automatically learn 

the spatial hierarchies of characteristics like edges, 

textures, and samples by applying a collection of 

learnable filters (kernels) to the input image. 

 

b) Pooling Layer: 

Pooling layers preserve significant information while 

reducing the spatial dimension of the convolutional 

feature map. The two pooling operations that are most 

frequently employed are max pooling and average 

pooling. 

 

c) Fully Linked Layer: 

Usually located at the end of the network, these layers 

are in charge of generating predictions using the 

characteristics that earlier layers have acquired. 

Application for recognition of sign language. 

 

 
Fig 1. Different Layers in CNN 

 

In our effort, we use CNN's processing capacity to 

automatically extract spatial features—such as hand 

forms, motions, and facial expressions—from photos 

of people using sign language. A CNN can successfully 

detect various signs and motions by being trained on a 

sizable collection of pictures used in sign language [5]. 
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Our system can achieve high performance in sign 

language identification, automatically learn key 

aspects from raw photos, and adjust to differences in 

hand shape, movement, and backdrop thanks to the use 

of CNN. 

 

Our research intends to develop a deep learning system, 

namely convolutional neural networks (CNNs), that 

can recognize and interpret linguistic gestures in sign 

language with accuracy and dependability. 

Abbreviations and sign language movements will both 

be recognized and understood by the system with 

accuracy. 

IV. PIPELINE 

In order to anticipate the final image of the user, our 

method uses a two-layered set of rules. In the first 

three layers, we utilize OpenCV to capture a body, 

apply a Gaussian blur threshold and out to extract 

capabilities, and obtain the processed image [1, 2]. 

This processed image is then compared to the CNN 

version for prediction. If a letter is detected for more 

than fifty frames, it is published and considered for 

word formation. Moreover, we use a clean image to 

suggest area between words. 

 

During detection, we encounter several units of 

symbols exhibiting similar effects in the second layer 

of the algorithm. Following that, these units are 

categorized using classifiers that are primarily made for 

each collection. For the CNN version, the enter 

photograph has a decision of 128x128 pixels. 

The structure of our CNN version includes numerous 

layers: 

 

a) 1st Convolution Layer: 

This layer applies 32 filters, each measuring 3 by 3 

pixels in length. The result is an image with 126 by 126 

pixels for each clean out weight. The purpose of this 

residue is to extract low-degree functions from the 

input image, such as edges and textures, so that the 

research community may study hierarchical 

representations of the input data. 

 

b) 2nd Convolution Layer: 

This residue creates a 60x60 pixel image by applying 

32 filters, each having a length of 3x3 pixels, just as the 

principal convolutional layer. This residue is needed to 

additionally extract higher-degree functions from the 

characteristic maps that the initial convolutional layer 

has provided. 

 

c) 1st Pooling Layer: 

Max-pooling with a 2x2 kernel is used after the 

convolutional layer to down sample the image and cut 

the spatial dimensions in half. Max-pooling provides 

translation invariance to the discovered functions and 

helps to reduce the computational complexity of the 

community. 

 

d) 2nd Pooling Layer: 

After the second convolutional layer, a second max-

pooling operation using a 2x2 kernel is used to down 

sample the image further, bringing its spatial 

dimensions down to 30x30 pixels. This makes it 

possible to extract more summary functions and reduce 

the community's computational complexity. 

 

e) 1st Densely Connected Layer: 

The second pooling layer's output is compressed and 

extended to a fully connected layer with 128 neurons. 

This residue's purpose is to study higher-order 

functions by joining all of the neurons from the layer 

above. A dropout layer with a dropout charge of 0.5 is 

used to prevent overfitting. 

 

f) 2nd Densely Connected Layer: 

There is another totally connected layer with ninety-six 

neurons that receives the output from the primary 

densely related layer above it. Furthermore, the 

functionalities discovered in the previous layer are 

further refined in this layer. 

 

g) Final layer: 

The final layer, which has an identical range of neurons 

due to the training range being categorized (alphabets 

+ clean symbol), uses the output from the second 

densely linked layer as an input. Utilizing a SoftMax 

activation feature, the final layer outputs the 

opportunity distribution throughout the training set 

within the text. 

 

V. IMAGE PROCESSING 

Image processing is the act of capturing, analyzing, 

and deciphering hand motions from photos or videos 

using computer methods.  

For image preprocessing, we hire the subsequent 

techniques: 

 

a) Gaussian Blur Filter: 

Using OpenCV's Gaussian Blur feature, we apply a 

Gaussian blur on the recorded body. Lowering noise 

and smoothing down the image are made possible by 

this clean out, which is essential for greater function 

extraction in the next stages. Convolution of the picture 
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using a Gaussian kernel reduces excessive frequency 

noise and yields a more uniform and cleaner image. 
 

 
Fig 2. Image after applying the filter 

 

b) Noise Elimination: 

Following the use of the Gaussian blur clean out, we 

also utilize thresholding techniques to remove noise 

from the image. By utilizing a fixed-degree threshold, 

the threshold function of OpenCV is utilized to convert 

the grayscale image into a binary image. This makes it 

easier to identify and understand hand movements by 

enhancing the picture's readability and removing 

distracting elements. 

 

c) Skin-color Sampling: 

We design pores and skin-color pixels from the 

preprocessed image to consciousness at the hand 

motions. The process of skin detection involves 

thresholding the image inside the HSV (Hue, 

Saturation, Value) color space. We can distinguish the 

hand area from the body's history and other objects by 

establishing a variety of pores and skin tone values. 

This enables the CNN version to ignore the point 

statistics inside the image while simultaneously 

focusing on the relevant capabilities. 

 

These pretreatment techniques make sure that the entry 

pictures are of excessive nice and contain best the 

applicable statistics necessary for proper signal 

language identification. 
 

 
Fig 3. Image after applying Greyscale 

VI. TRANING AND TESTING 

To train and evaluate our sign language recognition 

model, we collected a dataset from Kaggle. The input 

images undergo preprocessing, where they are 

converted to greyscale from RGB and applied 

Gaussian blur to remove unwanted noise. We also 

apply adaptive thresholding to isolate the hand from 

the background and resizing the images to 128 x 128 

pixels. 
 

 
Fig 4. Model Summary  

 

The model is then trained and tested using the 

preprocessed photos. The probability that a picture 

belongs to each class is calculated by the prediction 

layer. This is accomplished by using the SoftMax 

function to normalize the result between 0 and 1, 

guaranteeing that the total of the probability for all 

classes is 1. 

 

During testing, the model's output is compared with 

the actual labels using cross-entropy, a performance 

metric commonly used in classification tasks. The 

cross-entropy loss is minimized by adjusting the 

neural network's weights through gradient descent 

optimization. TensorFlow provides a built-in function 

to compute cross-entropy, and we optimize it using the 

Adam Optimizer. This approach allows the model to 

learn from labeled data and improve its performance 

over time. 
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We initially set the model to train for 100 epochs, with 

4 steps per epoch. However, during training, the 

accuracy reached 99.22% at epoch 72. To prevent 

overfitting, we halted the training early. 
 

 
Fig 5. Epoch log during Training 

 

VII. EXPERIMENTAL RESULTS 

Our model was trained on a dataset containing over 

2,500 images. Initially, we set the model to train for 

100 epochs. An epoch in deep learning is one full run 

of the whole training set [4]. The model modifies its 

weights and biases to minimize the loss function at 

each epoch. However, we observed an impressive 

accuracy of 99.22% during testing at epoch 

72(Mentioned in Fig 5.). 
 

a) Epoch Accuracy Graph: 

The epoch accuracy graph shows the model's accuracy 

for each epoch throughout the training process [9]. It 

highlights the model's performance over time and 

provides insights into its learning progression. The 

graph demonstrated a consistent upward trend in 

accuracy during training. Towards the end, there was 

a slight dip in accuracy due to system capacity 

limitations, but the accuracy quickly recovered and 

continued to improve. 
 

 
Fig 6. Accuracy Graph 

b) Epoch Loss Graph: 

The epoch loss graph tracks the model's loss for each 

epoch during training. It shows how the model's error 

rate changes over time, with a lower loss indicating 

better performance [9]. The loss graph followed a 

steady downward trend, indicating a reduction in error 

throughout the training. Towards the end, there was a 

slight increase in loss due to system constraints. 

However, the loss quickly decreased again, reflecting 

the model's robustness. 

 
Fig 7. Loss Graph 

 

c) Comparison: 

Compared to other approaches to the same problem, 

our model significantly outperformed them. While the 

highest accuracy achieved by other methods ranged 

from 93% to 96% [8][11][12], our model achieved an 

impressive accuracy of 99.22%. This substantial 

improvement underscores the effectiveness and 

superiority of our approach in sign language 

recognition. 
 

 
Fig 8. Table of Comparison 

 

VIII. CONCLUSION  

In this study, we presented a sophisticated deep 

learning technique using Convolutional Neural 

Networks (CNNs) to improve signal language 

reputation. Our version outperformed existing 

methods for the same issue, with a trying out accuracy 

of 99.22% at epoch 72, leading to amazing results. The 



© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002 

 

IJIRT 169402   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY  1712 

experimental findings show that our proposed method 

is robust and effective in correctly detecting sign 

language gestures. The enhanced overall performance 

of our version demonstrates its potential for real-world 

international applications, such as helping the 

communicationally handicapped listen. Subsequent 

works of art may focus on refining the version and 

investigating its use in real-time signal language 

reputation systems. 
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