
© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169477 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1091

Fundamental Libraries to Train Handwritten Digit

Recognition Models

Lokesh Rathore1 and Dr. Ramji Yadav2
1Associate Faculty, Institute of Computer Science, Vikram University Ujjain

2Sr. Lecturer, Institute of Computer Science, Vikram University Ujjain

Abstract- This paper provides a comprehensive overview

of training and testing methodologies for handwritten

digit recognition using a combination of machine

learning and deep learning tools. The study leverages

popular datasets such as MNIST and EMNIST to

evaluate different model architectures, ranging from

traditional machine learning algorithms like Support

Vector Machines (SVM) and k-Nearest Neighbors (KNN)

to advanced deep learning models such as Convolutional

Neural Networks (CNNs). We outline the steps involved

in data preprocessing, model building, and evaluation

using industry-standard frameworks like TensorFlow,

Keras, and PyTorch. The training process focuses on

teaching models to recognize digit patterns, while the

testing phase measures their generalization abilities on

unseen data using metrics such as accuracy, precision,

recall, and F1 score. Additionally, the paper discusses

deployment strategies for integrating these models into

real-world applications using tools like Flask and

TensorFlow Lite, ensuring robust and scalable solutions.

Our findings provide a structured approach to developing

effective handwritten digit recognition systems using

state-of-the-art machine learning and deep learning

methodologies.

Keywords: Python, Jupyter Notebook, Tensorflow, Keras,

OpenCV, Scikit-learn, Pytorch, Pycharm, MNIST

dataset.

I. INTRODUCTION

Handwritten digit recognition is a foundational task

in the field of computer vision and machine learning,

with applications ranging from automated data entry

and digitization of documents to security systems and

check processing. As one of the earliest and most

studied problems in pattern recognition, it serves as a

standard baseline for assessing the performance of

various machine learning and deep learning models.

The challenge involves correctly classifying digits

(0-9) from images that may vary significantly in

terms of style, thickness, skewness, and noise due to

differences in individual handwriting.

This paper provides a comprehensive exploration of

the methodologies employed for training and testing

models in the context of handwritten digit

recognition, using a combination of machine learning

and deep learning tools. We analyze the efficacy of

these models by utilizing widely-used datasets such

as MNIST (Modified National Institute of Standards

and Technology) and its extended version, EMNIST.

These datasets provide a diverse range of handwritten

samples, making them ideal for evaluating the

strengths and limitations of various model

architectures. Our study covers a broad spectrum of

techniques, ranging from traditional methods like k-

Nearest Neighbors (KNN) and Support Vector

Machines (SVM) to state-of-the-art deep learning

architectures such as Convolutional Neural Networks

(CNNs).

The training and testing methodologies discussed in

this paper involve multiple stages, starting from data

preprocessing and normalization to ensure that the

input images are in a consistent format for the

models. We explore the process of building and fine-

tuning models using industry-standard frameworks

like TensorFlow, Keras, and PyTorch, which provide

a rich set of tools for constructing, training, and

evaluating complex neural networks. The training

phase focuses on teaching these models to accurately

recognize digit patterns, while the testing phase

emphasizes measuring their generalization

capabilities on unseen data. Key performance

metrics, including accuracy, precision, recall, and F1-

score, are used to quantitatively assess the

effectiveness of each model.

Additionally, this paper addresses deployment

strategies for integrating these models into real-world

applications. We consider various tools and

technologies such as Flask and TensorFlow Lite for

deploying models on web servers or mobile devices,

ensuring scalability and robustness. These

deployment strategies are crucial for transitioning

models from the research stage to practical

implementations that can handle real-world scenarios

with high efficiency and reliability.

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169477 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1092

The primary objective of this study is to present a

structured and systematic approach to developing

efficient handwritten digit recognition systems. By

highlighting the strengths and weaknesses of

different models and tools, this paper serves as a

guideline for researchers and practitioners seeking to

build or improve their own digit recognition

solutions. Our findings contribute to the broader

understanding of how different training and testing

methodologies impact the performance of

handwritten digit recognition systems and offer

insights into best practices for future research and

development in this domain.

II. TRAINING AND TESTING

In the context of handwritten digit recognition,

training and testing refer to the processes used to

teach a machine learning model and evaluate its

performance, respectively. So Training can be

defined as the process of teaching a machine learning

model how to recognize patterns in data. During

training, the model is fed a training dataset that

consists of labeled images of handwritten digits and

their corresponding labels. For example, an image of

the handwritten digit "3" is labeled as "3". After that,

the applicable model uses this data to learn by

adjusting its internal parameters (weights) through an

optimization process. During training, the model is

shown an image of a "3", and it predicts the digit. If

the prediction is incorrect, the model adjusts itself to

improve future predictions. After the model is

trained, it is tested on a testing dataset, which

contains similar handwritten digit images, but these

images were not used during training. The model

makes predictions on this test data, and the accuracy

of these predictions is measured by comparing them

to the actual labels. For example, after training, the

model is shown an image of a handwritten "3" from

the test set. The model predicts whether the image

represents a "0", "1", ..., or "9". If it correctly

identifies the image as "3", it indicates the model has

learned to generalize. In short, Training involves

learning from labeled data to adjust the model

whereas Testing involves evaluating the model’s

ability to generalize to new, unseen data.

III. DATASET

A dataset is a structured collection of data that is used

to train, validate, and test machine learning models.

In case of handwritten digit recognition, a dataset

consists of a series of handwritten digits images and

their corresponding labels from 0 to1. The dataset is

usually divided into two parts: a training set and a

testing set. A large portion of the dataset (typically

70–80%) is used to train the machine learning model

and The remaining portion of the dataset (usually 20–

30%) is set aside for testing. Each image in the

training dataset is passed to the model along with its

correct label and the model predicts the digit. After

the model is trained, it is evaluated on the testing

dataset to check how well it can generalize to new

data. There are several well-known datasets

commonly used for handwritten digit recognition.

Here are the most popular ones:

1. MNIST Dataset (Modified National Institute of

Standards and Technology) : This dataset is one of

the most famous datasets for handwritten digit

recognition. It is already split into training and testing

sets that contain 60,000 training images and 10,000

test images of handwritten digits (0-9), each image

being 28x28 pixels and grayscale. It is widely used

for training and evaluating models for digit

recognition due to its simplicity and size.

2. EMNIST Dataset: This dataset is an extended

version of MNIST, which includes both digits and

uppercase and lowercase handwritten letters. It

consists of over 800,000 characters in various splits,

offering more challenging tasks.

3. Kuzushiji-MNIST Dataset: This dataset is a

replacement for the MNIST dataset but consists of 10

classes of Hiragana characters from Japanese

historical texts. It contains 70,000 28x28 grayscale

images.

4. SVHN Dataset (Street View House Numbers): This

dataset contains real-world images of digits from

house number plates. Unlike MNIST, which consists

of clean, centered digits, SVHN contains digits that

are cropped from larger images and may be noisy or

distorted. This is more challenging than MNIST and

is used to evaluate models' ability to generalize to

real-world data.

5. Custom Datasets: You can create your own dataset

of handwritten digits by collecting images of digits

and labeling them. This is useful if you want to

experiment with different handwriting styles or test

how well your model generalizes to new types of

data.

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169477 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1093

IV. APPLICABLE MODELS FOR

HANDWRITTEN DIGIT RECOGNITION

Various models are applicable for handwritten digit

recognition, ranging from traditional machine

learning algorithms to advanced deep learning

architectures. K-Nearest Neighbors (KNN) is a

simple yet effective model that classifies digits based

on their proximity to known labeled data points.

Support Vector Machines (SVM) are another option,

often used for small datasets, which create decision

boundaries to separate digit classes. For more

complex tasks, Convolutional Neural Networks

(CNNs) are the most popular, as they are highly

effective at recognizing spatial patterns in images.

CNNs use layers of filters to automatically detect

features like edges and curves in handwritten digits.

Other deep learning models such as Fully Connected

Neural Networks (FCNs) and Recurrent Neural

Networks (RNNs), though less common for image

recognition, can be applied in combination with

CNNs for enhanced accuracy.

V. SUPPORTING ENVIRONMENT FOR

DEVELOPMENT OF HANDWRITTEN DIGIT

RECOGNITION TOOLS (ALGORITHMS AND

PROGRAMS)

Developing programs for handwritten digit

recognition typically involves a combination of

programming languages, libraries, and frameworks.

Here are some commonly used tools and technologies

for this purpose:

1. Programming Languages: Python is commonly

used due to its simplicity and the availability of

numerous libraries for machine learning and deep

learning tasks.

2. Machine Learning Libraries: Machine learning

libraries play a crucial role in the development

process. TensorFlow, an open-source framework

developed by Google, is widely used for building and

training deep learning models. PyTorch, known for

its dynamic computation graph and flexibility, is

popular for research and production purposes. Scikit-

learn is another tool often used for traditional

machine learning algorithms and data analysis.

3. Deep Learning Frameworks: In the realm of deep

learning frameworks, Keras is a high-level API that

simplifies neural network creation and can run on top

of TensorFlow, Theano, or CNTK. MXNet is another

flexible and scalable deep learning library, while

Caffe, developed by Berkeley AI Research (BAIR),

is known for its efficiency in image classification

tasks.

4. Image Processing Libraries: For image

processing, OpenCV provides a wide range of

functions for real-time computer vision, and PIL

(Python Imaging Library) is useful for adding image

manipulation capabilities to Python programs.

5. Datasets: The MNIST dataset is the most

commonly used dataset for handwritten digit

recognition, containing thousands of labeled images

of digits, making it ideal for training and testing

machine learning models.

6. Development Environment: Jupyter Notebooks is

an interactive development environment ideal for

experimenting with code and displaying results.

Apart from this, there are many IDEs (Integrated

Development Environments) such as PyCharm, VS

Code, or Spyder available, which provide features

like debugging, code completion, and project

management.

7. Other Tools: Additional tools include NumPy and

SciPy for numerical operations and scientific

computing, and Matplotlib and Seaborn for data

visualization, which help in understanding the

model's performance and data patterns. Together,

these tools form a robust foundation for developing

effective handwritten digit recognition systems using

machine learning and deep learning techniques.

These tools provide a robust foundation for

developing and deploying handwritten digit

recognition programs, whether using traditional

machine learning algorithms or deep learning

techniques.

VI. METHODOLOGY

Developing a program for handwritten digit

recognition involves several key steps. Here's a

structured process to follow:

1. Problem Definition: Define the goal that is

classification of handwritten digits (0-9) based on

pixel values.

2. Set Up the Environment: Set up a development

environment like Jupyter Notebook, PyCharm, or

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169477 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1094

Visual Studio Code and install required libraries and

tools (e.g., Python, TensorFlow/PyTorch, NumPy,

OpenCV, etc.).

pip install tensorflow keras matplotlib

import numpy as npy

import matplotlib.pyplot as mplt

from tensorflow.keras.models_

import Sequential

from tensorflow.keras.layers_

import Dense, Conv2D, MaxPooling2D, Flatten

from tensorflow.keras.utils_

import to_categorical

from tensorflow.keras.datasets import mnist

3. Data Collection and Preprocessing: Use a

standard dataset such as the MNIST dataset, which

contains 28x28 grayscale images of handwritten

digits. It is often provided directly within frameworks

like TensorFlow and PyTorch, or can be downloaded

separately. After then it is ensured each image is

resized correctly (28x28 pixels for MNIST), Scale

pixel values from 0-255 to a range of 0-1 to improve

model performance and then Convert the labels (0-9)

into categorical format for multi-class classification.

Load the MNIST dataset

(X_train, y_train), (X_test, y_test) =

mnist.load_data()

Reshape the data to fit the model (28x28

images with 1 channel)

X_train = X_train.reshape(X_train.shape[0],

28, 28, 1)

X_test = X_test.reshape(X_test.shape[0], 28,

28, 1)

Normalize the pixel values from [0, 255] to

[0, 1]

X_train = X_train.astype('float32') / 255

X_test = X_test.astype('float32') / 255

One-hot encode the labels (0-9)

y_train = to_categorical(y_train, 10)

y_test = to_categorical(y_test, 10)

4. Build the Model: In machine learning, the choice

of model type depends on the complexity and nature

of the task. For straightforward problems, such as

image classification of handwritten digits, traditional

machine learning algorithms like Support Vector

Machines or k-Nearest Neighbors can be effective.

However, for more intricate tasks demanding higher

accuracy and robust performance, deep learning

models like convolutional neural networks (CNNs)

are preferred. CNN architectures typically involve an

input layer that processes 28x28 pixel inputs (784

neurons if flattened), followed by multiple

convolutional and pooling layers to extract and learn

features, dense fully connected layers for

classification, and finally, an output layer using

softmax activation with 10 units for classifying

digits. These models are implemented using

frameworks such as TensorFlow, Keras, or PyTorch,

which provide tools for building, training, and

deploying neural networks efficiently.

5. Train the Model: To build an effective machine

learning model, begin by splitting the dataset into

training and validation/test sets, typically using an

80/20 split. Next, compile the model by choosing an

appropriate optimizer such as Adam or Stochastic

Gradient Descent (SGD), a loss function like

categorical cross-entropy for multi-class

classification, and performance metrics such as

accuracy to evaluate the model's performance. Once

compiled, train the model using the training set,

specifying parameters like the number of epochs and

batch size. During training, monitor the model's

progress by visualizing metrics such as loss and

accuracy over time to identify trends and potential

overfitting or underfitting issues.

6. Evaluate the Model: After training the model,

evaluate its performance on the validation set using

metrics such as accuracy, precision, recall, and F1

score to gain a comprehensive understanding of its

effectiveness. Visualize the results using a confusion

matrix to observe how well the model classifies each

digit and to identify any misclassifications. If

necessary, adjust hyperparameters like learning rate,

number of layers, batch size, or dropout rate to

enhance the model’s performance. Following these

adjustments, retrain the model and reevaluate it to

ensure the improvements lead to better overall

accuracy and classification.

7. Test the Model: To evaluate the model's

generalization ability, test it on new, unseen images

of handwritten digits that were not part of the training

or validation sets. This step helps verify how well the

model performs on real-world data and ensures it is

not overfitting to the training set. Additionally,

visualize the predictions by displaying the images

alongside the model’s predicted and true labels,

allowing for a qualitative assessment of its

performance. This visualization helps identify any

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169477 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1095

patterns in misclassifications and provides deeper

insights into areas where the model might need

further refinement.

8. Optimize and Improve: If the model's performance

is not satisfactory, consider applying data

augmentation techniques such as rotating, zooming,

or flipping images to generate more diverse training

examples and improve generalization. Additionally,

introduce regularization methods like dropout or L2

regularization to reduce overfitting. For further

enhancement, experiment with more advanced

models, such as deeper CNN architectures, or

leverage transfer learning from pre-trained models to

benefit from previously learned features and achieve

better accuracy.

9. Save and Deploy the Model: After training, save

the model in a suitable format such as `.h5` for Keras

or `.pt` for PyTorch to enable future use and easy

restoration. To deploy the model, consider using web

frameworks like Flask, Django, or FastAPI if creating

a web application. Alternatively, for mobile or edge

deployment, convert the model to formats like

TensorFlow Lite or ONNX to facilitate cross-

platform compatibility and optimize performance on

various devices.

10. Monitor and Maintain: Once the model is

deployed, continuously monitor its performance

using real-world data to ensure it maintains accuracy

and reliability. Track metrics like accuracy,

precision, and recall over time, and watch for any

signs of performance degradation. As new data

becomes available or if the data distribution shifts,

consider retraining or fine-tuning the model to keep

it up-to-date and capable of handling evolving

patterns effectively.

VII. CONCLUSION

In conclusion, this paper highlights the effectiveness

of different training and testing methodologies for

handwritten digit recognition using a blend of

machine learning and deep learning tools. We have

demonstrated how traditional machine learning

models like KNN and SVM perform well for smaller

datasets, while deep learning models like CNNs are

more suitable for complex tasks due to their ability to

automatically learn spatial hierarchies in data. The

experimental results show that using frameworks

such as TensorFlow, Keras, and PyTorch facilitates

rapid development and evaluation of models.

Moreover, integrating models into real-world

applications using deployment tools like Flask and

TensorFlow Lite ensures scalability and robustness.

Future work could explore advanced techniques such

as transfer learning and ensemble methods to further

enhance recognition accuracy and generalization

ability. Our findings offer a structured approach to

building effective handwritten digit recognition

systems and provide valuable insights for future

research and development in this domain.

REFERENCES

[1] G.Katiyar and S.Mehfuz, “SVM Based Off-

Line Handwritten Digit Recognition,” in IEEE

India 1570182391, New Delhi, 2015.

[2] S. Ahlawat and A. Choudhary, “Hybrid CNN-

SVM Classifier for Handwritten Digit

Recognition,” in International Conference on

Computational Intelligence and Data Science,

ELSEVIER, 2019.

[3] K. Swetha, Y. Hithaishi, N. Tejaswini, P.

Parthasaradhi and P. V. Rao, “Handwritten

Digit Recognition Using OpenCV and CNN,”

International Journal of Creative Research

Thoughts (IJCRT), vol. 9, no. 6, pp. C211-

C220, 2021.

[4] S. M. Shamim, M. B. A. Miah, A. Sarker and

M. R. &. A. A. Jobair, “Handwritten Digit

Recognition using Machine Learning

Algorithms,” Global Journal of Computer

Science and Technology: D Neural &

Artificial Intelligence, vol. 18, no. 1, pp. 17-

23, 2018.

[5] M. A. Hossain and M. M. Ali, “Recognition of

Handwritten Digit using Convolutional Neural

Network (CNN),” Global Journal of Computer

Science and Technology: D Neural &

Artificial Intelligence, vol. 19, no. 2, pp. 27-

33, 2019.

[6] P. Patil and B. Kaur, “Handwritten Digit

Recognition Using Various Machine Learning

Algorithms and Models,” International

Journal of Innovative Research in Computer

Science & Technology (IJIRCST), vol. 8, no.

4, pp. 337-340, 2020.

[7] N.A. Hamid, N.N.B.A. Sjarif, “Handwritten

Recognition Using SVM, KNN and Neural

Network,” arXiv:1702.00723 [cs.CV]

Computer Vision and Pattern Recognition

(cs.CV), 2017

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169477 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1096

[8] Y. B. Hamdan, P. Sathish, “Construction of

Statistical SVM based Recognition Model for

Handwritten Character Recognition,” Journal

of Information Technology and Digital World,

vol. 2, no. 3, pp. 92-107, 2021

[9] H. N. Khraibet, A. Behadili, “Classification

Algorithms for Determining Handwritten

Digit,” Iraq J. Electrical and Electronic

Engineering, vol.12, no.1, pp. 98-102, 2016

[10] S. Aqab, M.U. Tariq, “Handwriting

Recognition using Artificial Intelligence

Neural Network and Image Processing,”

International Journal of Advanced Computer

Science and Applications(IJACSA), vol. 11,

no.7, pp. 137-146, 2020

[11] B. Rajyagor, R. Rakhlia, “Handwritten

Character Recognition using Deep Learning,”

International Journal of Recent Technology

and Engineering (IJRTE), vol. 8, no.6, pp.

5815-5819, 2020

[12] D. Beohar, A. Rasool “Handwritten Digit

Recognition of MNIST dataset using Deep

Learning state-of-the-art Artificial Neural

Network (ANN) and Convolutional Neural

Network(CNN),” in IEEE based International

Conference on Emerging Smart Computing

and Informatics (ESCI) DOI:

10.1109/ESCI50559.2021.9396870, pp.542-

548, 2021

[13] K. H. Huang, “DeepAL: Deep Active

Learning in Python,”

arXiv:2111.15258v1,[cs.LG], pp. 1-4, 2021

[14] Y. M. Mohialden, R. W. Kadhim, N. M.

Hussien1, Samira Abdul Kader Hussain1,

“Top Python-Based Deep Learning Packages:

A Comprehensive Review,” IInternational

Journal Papier Advance and Scientific

Review, vol. 5, no.1, pp. 1-9, 2024

