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Abstract—As water scarcity continues to intensify globally, 

understanding and managing water consumption at both 

individual and community levels has become a critical 

challenge. This paper presents an innovative solution 

through a mobile application designed to quantify and 

track the water footprint of agricultural products and 

consumer goods. By providing real-time, region-specific 

data on water usage, the app empowers users to make 

informed decisions based on the water footprint of their 

daily purchases and activities. The solution leverages 

advanced data analytics to offer personalized water 

conservation tips, facilitating a more sustainable lifestyle. 

Additionally, the app incorporates geospatial analysis to 

tailor recommendations for farming practices in water-

scarce regions, further extending its impact beyond 

consumer usage. This research explores the design and 

functionality of the app, focusing on how it can educate 

users on the hidden water costs of products and promote 

water-saving behaviours. By offering actionable insights 

and fostering awareness of virtual water, this solution 

seeks to contribute significantly to global water 

conservation efforts and environmental sustainability. 

Keywords—Water footprint, sustainable development, 

mobile application, water conservation, consumer 

behaviour, geospatial analysis, environmental awareness. 

I. INTRODUCTION 

Water scarcity is one of the most pressing global 

challenges of the 21st century, exacerbated by climate 

change, urbanization, and population growth. Over 

two billion people currently live in countries 

experiencing high water stress, and this number is 

expected to rise. While water conservation has 

traditionally focused on industrial and agricultural 

sectors, individual water consumption—often 

invisible and overlooked—presents a significant 

opportunity for improvement. 

A key aspect of personal water use is the water 

footprint, which refers to the total volume of water 

required to produce the goods and services consumed 

by an individual, community, or nation. This includes 

both direct water usage, such as household 

consumption, and indirect water, or virtual water, 

embedded in the production of goods like food, 

clothing, and electricity. The water footprint often 

surpasses direct consumption, with products like beef 

requiring up to 15,000 litres of water per kilogram, 

highlighting the need for consumers to better 

understand their environmental impact. As global 

water demands rise, it becomes crucial for individuals 

to recognize the water costs of their choices. 

 

Fig 1.Definition of the green and blue water footprint 

in relation to the water balance of a catchment area. 

Source : Hoekstra et al. ( 2011 ). 
 

To address this challenge, this paper proposes the 

development of a mobile application aimed at tracking 

and reducing personal water footprints. The app will 

integrate regional agricultural data to calculate the 

water usage of everyday activities, including diet, 

transportation, and household consumption. By 

offering users real-time insights, the app encourages 

more sustainable practices and provides personalized 

recommendations for reducing water footprints, such 

as suggesting water-efficient products or tips on 

sustainable water usage. 
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Beyond individual consumption, the app also seeks to 

support agricultural water conservation. By 

incorporating regional agricultural data, it will help 

farmers select crops suited to water-scarce areas and 

offer tailored irrigation recommendations. This will 

promote efficient farming practices and reduce water 

wastage while improving crop yields. Additionally, 

the app addresses behavioural change by incorporating 

educational features to raise awareness of water 

footprints. Users will be able to track their progress, 

set conservation goals, and receive actionable 

feedback, fostering a culture of responsibility and 

sustainability. 

 

The proposed mobile application thus serves as an 

innovative tool that bridges the gap between individual 

water usage and sustainable water management. By 

providing a personalized understanding of water 

footprints and practical solutions, the app empowers 

individuals, households, and farmers to make 

informed decisions that contribute to global water 

conservation efforts. 

II.EXISTING SYSTEM 

Existing solutions for personal water footprint tracking 

often focus on providing users with data-driven insights 

into their environmental impact, aiming to promote 

sustainable lifestyle choices. Many popular apps in this 

domain, such as Waterprint and MyWaterFootprint, 

utilize product and consumption data to calculate 

individual water footprints. These apps offer users 

detailed breakdowns of water usage across different 

activities and products, helping users to understand and 

reduce their water consumption. Features include 

options to track daily, weekly, or monthly water usage, 

enabling users to see trends over time and set personal 

goals for conservation. 

 

Advanced impact-tracking apps like FYC Labs’ suite 

not only provide individual assessments but also 

support businesses by integrating footprint tracking into 

corporate processes. This solution allows for 

monitoring across supply chains, setting sustainability 

goals, and implementing data-driven strategies that 

align with industry regulations.Additionally, some 

solutions incorporate community features, enabling 

users to share achievements, partake in sustainability 

challenges, and gain insights into reducing their 

ecological impact further. Although these apps 

effectively raise awareness and foster individual 

responsibility, most lack comprehensive integration 

with real-time data sources, such as IoT-based sensors 

for water and resource tracking, which could enhance 

accuracy and personalization in future iterations. 

III.PROPOSED SYSTEM 

The proposed solution is a mobile application 

designed to help users understand and manage their 

water footprints by analysing individual and 

agricultural water usage. The app aims to foster water-

conscious decision-making at the consumer and 

agricultural levels, providing users with actionable 

insights tailored to their region’s unique 

environmental conditions. By leveraging multiple data 

sources, including CROPWAT for crop-specific water 

requirements and meteorological APIs (e.g., Open 

Weather Map, IMD) for rainfall and climate data, the 

app calculates water footprints across thirty-six 

distinct meteorological zones in India. This data is 

updated annually to ensure relevance and accuracy, 

creating a dynamic resource that adapts to changing 

environmental conditions. 

 

The application architecture is built using Android 

Studio with Java to ensure compatibility with a wide 

range of devices and seamless user accessibility. 

Tensor Flow Lite enables product recognition via 

image input, allowing users to classify products and 

retrieve detailed water footprint information. SQLite 

supports offline data storage, enhancing accessibility, 

while Firebase offers secure, real-time data 

synchronization. MP Android Chart is used for data 

visualization, presenting users with insights in a clear 

and accessible format, and QGIS integration provides 

geospatial analysis, visually displaying regional data 

on water use and availability. 
 

 

                   Fig 2.App architecture diagram. 

 

User functionality is structured to provide both direct 

and indirect water consumption insights. For 

consumers, scanning a product’s barcode or 

ingredients allows for a comprehensive water footprint 

calculation, including “virtual water” used in 

production. For agricultural users, the app provides 

recommendations for crop choices and irrigation 

methods that are water-efficient and region-specific. 

These personalized recommendations support 
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sustainable agricultural practices, helping farmers 

manage resources effectively and reduce water 

without compromising yield. 

 

                 Fig 3.App user activity diagram. 

 

The app’s hierarchical approach starts by analysing 

individual water usage patterns, offering regional 

insights, and then providing actionable 

recommendations. This structure not only educates 

users on water scarcity but also empowers them to 

make changes based on tangible data. Ultimately, this 

solution encourages both consumers and farmers to 

adopt sustainable practices, addressing the global issue 

of water scarcity at the grassroots level. By providing 

an accessible and data-driven approach, the app 

contributes to water conservation efforts and supports 

a more sustainable future. 

IV. EXPERIMENTAL RESULTS 

This section presents the experimental results 

achieved through systematic data collection, model 

training, accuracy evaluation, and recognition testing 

within our mobile application for calculating water 

footprints. The subsections detail each stage in a 

rigorous, structured format, underscoring our 

methodology’s effectiveness in addressing the 

objectives outlined in the project’s conceptual 

framework. 

 

A. Data Collection: 

 

Data collection was a fundamental step in this project, 

as the precision of water footprint estimations is highly 

dependent on the dataset’s comprehensiveness and 

accuracy. Our team compiled a dataset that included 

detailed water footprint data for over 3,000 food items, 

sourced from agricultural databases, industry records, 

and academic publications on water use. The data was 

segmented into three primary classifications: blue water 

(surface and groundwater used), green water 

(rainwater), and grey water (polluted water from 

production processes). For regional adaptation, we used 

rainfall and evapotranspiration data from reliable 

sources, such as Open Weather Map and the Indian 

Meteorological Department (IMD), tailored specifically 

to the thirty-six meteorological zones of India. 
 

 
 

Fig 4.Overview of the data collected. 

 

Additionally, a large image dataset was created with 

over 3,000 images of food items to train the CNN model 

for visual classification. These images captured each 

item under various lighting conditions and angles, 

enhancing model robustness and accuracy during 

practical deployment. Image preprocessing, including 

resizing, normalization, and labelling, was conducted 

uniformly to align with corresponding water footprint 

data, ensuring high-quality input for the model training 

phase. 

 

B. Model Training: 

 

We employed a Convolutional Neural Network (CNN) 

model architecture to classify and predict water 

footprints for various food items. This choice was based 

on CNN’s proficiency in image recognition tasks, 

leveraging spatial hierarchies in image data to achieve 

high accuracy in product identification. Training was 

performed on a representative subset of fifty-ninefood 

items, selected to cover a broad spectrum of water 
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footprint levels, allowing the model to learn distinct 

visual characteristics associated with different product 

categories. 

 

The model was trained over multiple epochs—25, 50, 

75, 100, 125, 150, 175, and 200—to identify the optimal 

training duration. Each epoch constituted one complete 

iteration over the dataset, refining the model’s pattern 

recognition capabilities. TensorFlow was used to 

expedite training through GPU acceleration, 

minimizing processing time while maximizing model 

performance. The choice of CNN and TensorFlow 

enabled efficient, scalable training suitable for mobile 

deployment, with careful adjustment of parameters such 

as epochs and batch size to achieve optimal results. 

 

C. Accuracy Evaluation: 

 

The model’s accuracy was monitored across epochs to 

determine the ideal point of convergence. Performance 

improved significantly up to epoch one hundred, 

reaching a peak accuracy of 95.8%, after which 

additional epochs showed diminishing returns. This 

outcome suggested that epoch 100 was the optimal 

stopping point, where the model effectively captured 

the distinguishing patterns within the dataset. 

 
Fig 5. Graph comparing accuracy at various epoch 

levels 
 

 
Fig 6. Graph comparing accuracy at various epoch 

levels 

Accuracy was calculated based on correct predictions 

over the total predictions for the validation dataset. 

Initial accuracy was 78.4% at epoch 25, gradually 

increasing to 86.3% at epoch 50, and 91.7% at epoch 

75. The steady increase confirmed the model’s capacity 

to learn complex visual patterns effectively. These 

findings validated our model configuration, indicating a 

balance between computational efficiency and 

prediction accuracy suitable for real-time mobile 

applications. 

 

D. Recognition Results: 

 

The model was subsequently tested on a separate 

validation dataset comprising new images of food items 

not included in the training phase. This stage assessed 

the model’s generalization ability, crucial for practical 

application in diverse environments. Our model 

achieved a high recognition accuracy of 93.5% across 

the validation dataset, reflecting its capability to 

perform consistently in identifying unseen data. 

 

 
Fig 7.Results for text inputs. 

 

 
Fig 8.Results for image inputs. 

Further evaluation of recognition results categorized 

outputs into true positives, false positives, true 

negatives, and false negatives. Calculated precision was 

94.1%, and recall was 92.8%, underscoring the model’s 
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robust performance in correctly identifying target 

classes while minimizing misclassification rates. This 

balance between precision and recall reinforces the 

model’s suitability for reliable, real-world applications. 

 

E. Regional Adaptation and User Feedback: 
 

We conducted additional testing in various 

meteorological zones, allowing the application to 

integrate local climate and agricultural data for accurate, 

region-specific water footprint calculations. This 

regional adaptation capability was particularly valuable 

for agricultural users, enabling the app to provide 

climate-informed recommendations for crop and water 

usage. Feedback from test users highlighted the app’s 

potential to deliver actionable insights on personal and 

agricultural water consumption patterns. 

Validation of region-specific accuracy was achieved by 

comparing predictions with historical water footprint 

records, confirming consistent accuracy across regions. 

This geographic adaptability underscores the app’s 

versatility, catering to both urban and rural users and 

supporting personalized, sustainable water usage 

practices. 

 

F. Chatbot Integration: 

 

A chatbot was integrated to enhance user interaction 

and accessibility, particularly for rural users. This 

chatbot leverages natural language processing to 

provide personalized insights, answer questions, and 

guide users on water-saving practices. Its bilingual 

functionality addresses language barriers, making 

information on water footprints and conservation more 

accessible.  

 
Fig 9. Chatbot feature. 

The chatbot’s functionality extends to providing 

product-specific information, further aiding in making 

informed consumption decisions. This feature is 

expected to increase engagement, as users can access 

personalized feedback and guidance without extensive 

browsing, thus simplifying their journey to water-

conscious choices. 

 

G. Usability and Future Enhancements: 

 

While the app performs effectively across image 

recognition and footprint estimation, some usability 

factors require enhancement. Low-light image capture 

occasionally affects accuracy, suggesting the need for 

improved preprocessing to adjust for various lighting 

conditions. Future updates will address this and expand 

the chatbot’s language support and conversational 

depth. 
 

V.CONCLUSION 

  

This research presents a novel mobile application 

solution to enhance individual awareness and 

accountability in water conservation through 

personalized water footprint estimation. By integrating 

advanced image recognition, regional data adaptation, 

and real-time feedback, the application enables users to 

make informed, sustainable choices in their daily lives. 

Leveraging a convolutional neural network (CNN) 

model with an accuracy of 95.8%, the app accurately 

identifies food items and calculates corresponding 

water footprints, thereby making virtual water 

consumption visible to users. Our integration of a 

bilingual chatbot further enhances accessibility, 

allowing users from diverse linguistic backgrounds to 

engage effectively with the application. 
 

Empirical results highlight the application’s 

adaptability and effectiveness in providing precise 

water footprint data, while regional modifications 

underscore its scalability across varied climatic zones. 

Future developments will address usability challenges 

and expand language support, ensuring broader reach 

and impact. By fostering conscious water usage 

behaviours, this application contributes to global water 

conservation efforts, offering an effective, scalable tool 

for promoting sustainable consumption. The insights 

gained from this study provide a foundational 

framework for future research in digital water 

management solutions, contributing to the wider 

discourse on sustainable development and resource 

conservation. 
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