
© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169878 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2471

Software Testing by Metrics Calculation

Ms. R. Hinduja1, V. Akash2, and A. Arshath 3
1 Department of Software System, Sri Krishna Arts and Science College

2,3 PG student of Computer Science, Sri Krishna Arts and Science College

Abstract: Software testing plays an indispensable role in

ensuring the quality, reliability, and maintainability of

applications. This paper introduces a system designed to

automate the calculation of software metrics for Python

projects. By analyzing key metrics such as lines of code

(LOC), number of classes, methods, Response for Class

(RFC), Coupling Between Object Classes (CBO), and

Lack of Cohesion in Methods (LCOM), the system

provides quantitative insights into code quality. The

results are stored in an Excel file for further analysis,

allowing developers to assess the maintainability and

design quality of their software. This automation

significantly reduces manual effort and error while

offering a robust tool for software quality assurance.

I. INTRODUCTION

Software quality assurance is a critical aspect of the

software development lifecycle. With increasing

complexity in modern software, manual testing

methods are no longer sufficient to evaluate quality

comprehensively. Metrics-based analysis provides

developers with a quantitative understanding of their

code’s maintainability, complexity, and reliability.

However, traditional tools often lack integration with

modern development workflows, especially for

Python projects. This paper presents a Python-based

system to automate the calculation of essential

software metrics, addressing this gap. The system

provides actionable insights into code quality,

enabling developers to identify design flaws early in

the development process.

II. DESCRIPTION

The proposed system is developed using Python,

featuring a user-friendly GUI designed with PyQt5. It

automates the process of metrics calculation by

parsing the selected project directory, analysing

Python files, and computing critical metrics. These

metrics include measures of coupling, cohesion, and

complexity, providing a holistic view of the project’s

quality. The system seamlessly integrates with

Python-based workflows, allowing results to be

exported to an Excel file for further review and

reporting. This automation reduces manual effort

while ensuring accuracy and scalability.

III. DATASET COLLECTION

To validate the system, various open-source Python

projects were used as datasets. These projects, varying

in size and complexity, were selected to test the

system’s versatility and robustness. The datasets

provided diverse scenarios, including small scripts,

medium-sized applications, and large-scale

frameworks. This diversity ensured the system could

handle real-world challenges in analysing Python code

and computing metrics efficiently.

IV. EXISTING SYSTEM

Existing systems for software metrics calculation

often rely on standalone tools or manual analysis,

which are inefficient and error-prone. These systems

generally lack support for Python-specific features and

fail to provide automated solutions for storing results.

Moreover, traditional methods do not integrate

seamlessly into modern development workflows,

limiting their usability. The need for a Python-specific,

automated, and user-friendly tool has driven the

development of the proposed system.

V. PROPOSED SYSTEM

The proposed system addresses the limitations of

existing methods by automating the process of metrics

calculation for Python projects. It allows users to

select a project directory and computes metrics such as

lines of code, number of classes, number of methods,

RFC, CBO, LCOM, and others. The results are

displayed in a GUI and exported to an Excel file for

further analysis. This system improves efficiency,

accuracy, and integration, making it a valuable tool for

Python developers to evaluate code quality and

maintainability.

VI. LITERATURE REVIEW

Software metrics have long been recognized as critical

indicators of code quality and maintainability.

Research highlights the importance of cohesion and

coupling metrics in predicting fault-proneness and

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169878 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2472

maintainability. Studies emphasize that high coupling

and low cohesion often lead to poorly designed

systems, increasing maintenance costs and reducing

reliability. While several tools exist to compute these

metrics, they often focus on Java or C++ projects, with

limited support for Python. This paper fills this gap by

providing a Python-centric solution for automated

metrics calculation.

VII. METRICS CALCULATION

The system calculates a range of metrics that provide

insights into various aspects of software quality:

• Lines of Code (LOC): Measures the size of the

project and is a basic indicator of complexity.

• Number of Classes and Methods: Indicates

modularity and abstraction.

• Response for Class (RFC): Measures the

complexity of a class by counting the number of

methods that can be invoked in response to a

message.

• Coupling Between Object Classes (CBO):

Reflects dependencies between classes, where

higher values indicate potential design issues.

• Lack of Cohesion in Methods (LCOM): Measures

the degree to which methods in a class are related,

with higher values indicating poor cohesion.

• Depth of Inheritance Tree (DIT): Reflects

inheritance complexity and its impact on code

readability and maintainability.

VIII. WORKFLOW

The system operates in a structured workflow:

1. The user selects a Python project directory via the

GUI.

2. The Python ast library parses the files to extract

relevant information about classes, methods, and

code structure.

3. The system computes metrics using algorithms

tailored for Python’s object-oriented features.

4. Results are displayed in a user-friendly interface

and exported to an Excel file for detailed analysis

and reporting.

5. Developers analyze the metrics to assess design

quality and identify potential areas for

improvement.

XI. RESULTS

The system was tested on various open-source Python

repositories. The metrics provided insights into the

quality of the projects, identifying areas where

cohesion was low or coupling was high. The ability to

export results to Excel streamlined reporting and

facilitated further analysis. Developers could quickly

identify problematic areas, such as deeply nested

inheritance trees or highly coupled classes, and

address them to improve code maintainability and

reliability.

X. CONCLUSION

This paper presents an efficient system for automated

software metrics calculation in Python projects. By

focusing on key metrics such as cohesion, coupling,

and complexity, the system provides actionable

insights into code quality. The integration of a GUI

and Excel export functionality enhances usability and

efficiency, making it a valuable tool for software

developers. Future work will focus on extending the

system to support additional metrics and integrate it

with continuous integration pipelines for real-time

quality assessment.

REFERENCES

[1] Pressman, R. S., Software Engineering: A

Practitioner's Approach, McGraw Hill.

[2] Chidamber, S. R., & Kemerer, C. F., "A Metrics

Suite for Object-Oriented Design," IEEE

Transactions on Software Engineering.

[3] Fenton, N., & Pfleeger, S. L., Software Metrics: A

Rigorous and Practical Approach.

