
© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169894 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2706

Hybrid Cryptographic System for Secure, Scalable File

Encryption and Decryption Using RSA and AES

1Mohit Kumar Malviya, 2Prof. Manish Kumar Singhal
1M.tech Scholar, 2Associate Professor & H.O.D

1,2Department of Information Technology (IT)
1,2NRI Institute Of Information Science And Technology, Bhopal (MP), India

Abstract— Secure and scalable data encryption and

decryption have become crucial for protecting

sensitive information. Traditional cryptographic

systems often face trade-offs between security,

efficiency, and scalability. This paper introduces a

hybrid cryptographic system that leverages the

strengths of both RSA and AES algorithms to address

these challenges. RSA, a public-key cryptographic

algorithm, offers robust security for key exchange,

while AES, a symmetric-key algorithm, provides high-

speed data encryption and decryption..The proposed

system uses RSA for secure transmission of the AES

session key, which is unique for each encryption

process. Once securely exchanged, AES is employed

for the actual encryption and decryption of files,

significantly enhancing performance compared to

purely asymmetric encryption. This hybrid approach

enables secure file storage and transmission, adaptable

to various data volumes and processing speeds.

Experimental results demonstrate that the hybrid

system achieves efficient encryption and decryption,

reducing computational overhead while maintaining

high levels of security. This solution is particularly

well-suited for cloud storage, secure file-sharing

platforms, and environments with high data volume

and user demand, addressing the modern needs of

scalable, secure file handling.

Keywords—AES (Symmetric Encryption), Chunk-Based

Encryption, Distributed Key Management, File

Encryption and Decryption, Hybrid Cryptography, RSA

(Asymmetric Encryption), Secure Key Exchange.

I. INTRODUCTION

The Hybrid Cryptographic System combines the

strengths of two powerful encryption methods, RSA

and AES, to provide a secure, scalable solution for

file encryption and decryption. RSA, an asymmetric

encryption technique, leverages two separate keys—

a public key for encryption and a private key for

decryption—to securely distribute AES keys to

intended recipients. AES, on the other hand, is a

symmetric encryption method known for its speed

and efficiency, particularly with large data volumes.

By first using RSA to securely encrypt the AES key

and then using AES for fast data encryption, this

hybrid approach ensures both high-level security

and practical performance. The system is designed

to protect sensitive information against unauthorized

access while also enabling scalability across diverse

file sizes and encryption needs. This blend of RSA

and AES addresses the limitations of each technique

on its own, achieving an ideal balance between

security and speed for modern data protection

requirements.

In a Hybrid Cryptographic System, RSA handles the

secure exchange of keys, mitigating the risk of key

interception during transmission. Once the AES key

has been securely shared via RSA, AES efficiently

encrypts and decrypts large volumes of data, making

it highly suitable for scalable applications, such as

cloud storage, secure file sharing, and large-scale

data processing. The combination also enhances

security by separating the key management process

from data encryption, reducing the chance of

exposing critical information.

This layered security model reinforces the system’s

robustness, as any compromise in one layer requires

breaching the other to access the underlying data.

Consequently, hybrid cryptographic systems

leveraging RSA and AES meet both security and

scalability demands, making them ideal for

environments where data privacy and speed are

paramount.

The versatility of hybrid cryptography extends

further by enabling flexible integration with existing

systems and protocols. With RSA managing secure

key exchanges and AES offering fast, high-

throughput encryption, the hybrid approach ensures

that secure data transmission is possible even over

potentially insecure networks, such as the internet.

In practice, the process typically begins with the

sender encrypting the AES key using the recipient's

RSA public key, ensuring only the recipient with the

corresponding private RSA key can access it. The

data itself is encrypted with AES and transmitted

alongside the encrypted AES key.

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169894 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2707

Fig 1 Hybrid Cryptography Model

The system's design also allows for updating or

replacing either RSA or AES components

independently, making it future-proof and resilient

against evolving cryptographic standards and

threats. This flexibility has led hybrid cryptographic

systems to become widely adopted in industries such

as finance, healthcare, and government, where data

protection is essential.

II. LITERATURE SURVEY

Chidi Ukamaka Betrand etal [1] Cloud is used in

various fields for storage of big data with the major

challenge regarding this storage being security.

Existing conventional encryption systems can be

vulnerable to brute-force attacks. The goal of this

project was to develop a hybrid encryption scheme

that will only allow authorized users to access and

download files stored online, thus enhancing file

storage security in the cloud. Rapid Application

Development (RAD) methodology was used to

create the proposed system, allowing for

modifications to be made to the system as it was

being developed. The hybrid encryption scheme

employs both symmetric and asymmetric

encryption. The AES (Advanced Encryption

Standard) algorithm and RSA (Rivest–Shamir–

Adleman) algorithm were combined to develop the

proposed hybrid encryption system. PHP, JavaScript

and Laravel were the programming languages and

web framework used to implement the system. The

proposed system was tested and evaluated by users.

The experimental results show that the proposed

hybrid encryption scheme was fast and provided a

high level of security but had some drawbacks

which include increase in file size after it was

encrypted and inability to sort files in the web app.

Overall, the proposed system enhances

confidentiality and data protection in cloud

environments, guarding against potential breaches

and unauthorized access.

Renuka Shone Durge et al [2] The integration of

deep learning with encryption algorithms signifies a

groundbreaking advancement in digital security,

offering a promising pathway to fortify cyber

security measures against the complexity of

contemporary cyber threats. This research elucidates

the potent synergy between the predictive

capabilities of deep learning and the robust security

offered by advanced encryption techniques.

Through our methodological approach, we

demonstrate a dual-layer encryption system that not

only enhances data security but also maintains

efficiency in data transfer and computational

resource allocation. This model presents a

significant leap forward in securing sensitive textual

data across vulnerable digital channels. Our findings

indicate a substantial enhancement in cyber security,

suggesting a pivotal shift towards more dynamic and

resilient security architectures. This research

contributes to both the academic sphere and

practical field, laying the groundwork for future

innovations in cyber security strategies. It

underscores the critical role of emerging

technologies in crafting a secure digital ecosystem,

capable of withstanding the evolving landscape of

cyber threats.

Rajesh Gundla et al [3] The "Hybrid Approach to

Cloud Storage Security Using ECC-AES Encryption

and Key Management Techniques" algorithm holds

the potential to significantly enhance the security,

efficiency, and reliability of cloud storage systems.

It offers a comprehensive solution that balances

cryptographic strength with practical

implementation, making it a promising avenue for

organizations seeking to secure their cloud-stored

data. The proposed hybrid approach combines the

strengths of Elliptic Curve Cryptography (ECC) and

the Advanced Encryption Standard (AES) to

enhance the security of cloud storage systems. By

encrypting the AES key using ECC and

implementing key splitting and rotation techniques,

the algorithm offers a robust solution to protect

sensitive data stored in the cloud. Additionally,

access control mechanisms and two-factor

authentication ensure that only authorized users can

access the encrypted data.

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169894 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2708

Samson Michael Khamis Wani et al [4] The main

target of this system is to safely store and recoup

data on the cloud that's only controlled by the

proprietor of the data. Cloud storage problems of

data security are answered using cryptography and

steganography ways. Data security is attained using

RC6, 3DES, and AES algorithms. Crucial

information is efficiently stored using the LSB

fashion (Steganography). less time is consumed for

the encryption and decryption process using the

multithreading fashion. With the help of the

proposed security medium, we've fulfilled better

data integrity, high security, low detention,

authentication, and confidentiality.

III. PROPOSED METHOD

A. System Architecture Overview:

The secure file storage system is designed to offer a

robust and efficient mechanism for users to upload,

encrypt, store, and later decrypt and restore files. It

employs the Flask web framework to create a

seamless front-end interface, allowing users to

interact with the system intuitively. A key feature of

this architecture is its hybrid encryption mechanism,

which combines the strengths of both asymmetric

and symmetric encryption to safeguard data

throughout its lifecycle.

B. File Upload and Handling:

The first step in the secure file storage process is the

user uploading a file through the web interface.

Users interact with a straightforward and user-

friendly interface, enabling them to select files for

upload effortlessly. The system performs file

validation to check for permissible file types, such

as .pem and .txt. This validation ensures that only

safe and suitable files are processed, mitigating

potential security risks. Once a file is validated, it is

temporarily stored in a designated upload directory

on the server, which is essential for managing files

prior to encryption.

C. File Splitting and Chunk-Based Encryption:

Once the file is uploaded, it undergoes a process of

splitting into smaller segments or chunks. This

chunking enhances security and improves

manageability during encryption and decryption.

Large files are divided into smaller, fixed-size

chunks, allowing for efficient processing of data.

Each chunk can be handled independently,

facilitating parallel processing and minimizing

memory usage. Additionally, the system creates a

metadata file that contains vital information about

the original file, including its name and the number

of chunks produced. This metadata is crucial for

accurately reassembling the file during the

decryption phase.

D.Hybrid Cryptography:

The system’s security framework relies on a hybrid

cryptographic approach, which utilizes both

asymmetric and symmetric encryption techniques.

RSA (Rivest-Shamir-Adleman) is implemented for

the secure transmission of symmetric encryption

keys. RSA employs a public-private key pair, where

the public key encrypts the AES key, ensuring that

only the holder of the corresponding private key can

access it. In parallel, the Advanced Encryption

Standard (AES) algorithm is used to encrypt each

chunk of the file. AES is preferred due to its high

speed and robust security features, making it well-

suited for handling large datasets. Each file benefits

from a unique AES key, further bolstering security.

E. Encryption Process:

The encryption process is meticulously designed to

uphold the highest standards of data security. A

random AES key is generated for each file upload,

which is essential for the encryption and decryption

of the file chunks. Each chunk is then encrypted

using this AES key, ensuring that unauthorized

access to the chunks does not compromise data

integrity, as the chunks cannot be decrypted without

the correct AES key. The AES key itself is

subsequently encrypted with the RSA public key,

ensuring that it can only be decrypted by an

individual with the associated RSA private key. This

layered encryption approach enhances overall

security significantly.

F. Decryption Process:

The decryption process is essentially the inverse of

the encryption steps, allowing for the restoration of

the original file. To initiate decryption, the system

retrieves the RSA-encrypted AES key, which

requires the user to provide the private key linked to

the public key used during encryption. Once the

AES key is decrypted, the system decrypts each

encrypted chunk of the file, ensuring that the order

of the chunks is preserved as indicated in the

metadata. After all chunks have been decrypted, the

system reconstructs the original file by combining

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169894 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2709

the chunks in the correct order, restoring it to its pre-

encrypted state.

G. Security Protocols:

The secure file storage system incorporates multiple

security measures to protect the integrity and

confidentiality of the files. Confidentiality is

ensured through the use of AES for chunk

encryption, which keeps data unreadable even if

intercepted. The additional RSA encryption of the

AES key provides an extra layer of security during

key transmission. Each chunk is encrypted

independently, making any tampering detectable

during decryption, as tampered chunks will fail to

decrypt properly. The system enforces strict key

management practices, keeping private keys secure

and avoiding their transmission over the network to

minimize interception risks.

H. Error Handling and Logging:

To maintain operational efficiency and facilitate

troubleshooting, robust error handling mechanisms

are integrated into the system. The system is

designed to detect and respond to potential errors,

such as unsupported file types or incorrect

decryption keys, providing users with informative

feedback through the web interface to assist in

resolving issues. Additionally, detailed logging

mechanisms track all actions within the system,

including uploads, downloads, encryption, and

decryption attempts. These logs serve critical

auditing purposes and are instrumental in

identifying any security anomalies or breaches.

I. Testing and Performance Evaluation:

Thorough testing is essential to validate the

functionality and performance of the secure file

storage system. Performance metrics assess the

system's efficiency based on encryption and

decryption speed, as well as memory utilization. The

implementation of chunk-based processing ensures

that performance remains optimal, even when

handling large files. Security testing is conducted

rigorously to uncover potential vulnerabilities,

including unauthorized access attempts to encrypted

files and verification of robust encryption measures.

The system is designed with scalability in mind,

enabling it to efficiently manage increasing data

volumes without compromising performance.

J.User Documentation and Training:

To empower users to effectively utilize the system,

comprehensive documentation is provided. Detailed

user manuals guide users on how to upload files,

access encrypted files, and perform decryption

processes, ensuring easy navigation within the

system. Additionally, training sessions may be

organized to familiarize users with the system’s

features and best practices for maintaining security.

This educational component is vital for fostering

user confidence and promoting secure file handling

practices.

Fig 2 Hybrid Cryptography Model Flow

Algorithm

User Interface

File Chunking

File Upload

File Validation

Temporary Storage

Encrypt File Chunks

Save Metadata

User Download

Retrieve Metadata

Decrypt File Chunks

Present File to User

(Download)

 |

User

(Download)

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169894 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2710

Start: Initiate program execution.

User Upload Process: Display the file upload

interface.

File Validation: Check if the file type is allowed.

Temporary Storage: Save the valid file temporarily

on the server.

File Chunking: Split the uploaded file into smaller

chunks.

Key Generation: Generate a random AES key for

encryption.

Encrypt File Chunks: Encrypt each chunk using the

AES key.

Secure Key Handling: Encrypt the AES key with the

RSA public key.

File Download Process: Wait for the user to request

the file download.

Retrieve the RSA-encrypted AES key: Access the

encrypted AES key for decryption.

Request Private Key: Ask the user to provide their

RSA private key.

Decrypt the AES key: Use the private key to retrieve

the original AES key.

Decrypt Chunks: Decrypt each encrypted chunk

with the AES key.

Reassemble the File: Combine decrypted chunks in

the correct order.

Display Download Option: Present the user with the

option to download the restored file.

Error Handling: Log errors and display messages for

issues encountered.

End: Conclude program execution.

IV. SIMULATION AND RESULT

Fig 3 Web-Based File Upload Interface for Secure

Submission

A. System Initialization and User Interface

Upon execution, the system initializes the Flask

server, exposing a web-based front-end for user

interaction. The File Upload Interface is designed to

handle multipart form data, enabling users to

securely submit files for encryption. The front-end

uses Flask's templating engine to render the interface

dynamically and handles various file formats (e.g.,

.txt, .pem).

Fig 4 Validation and Temporary Storage of User

Files

B. File Validation and Pre-Processing

Once the user selects a file, it is passed through a

validation pipeline where MIME types are verified.

This step ensures only permissible file types are

accepted, preventing potential exploitation of the

file handling process. If valid, the file is temporarily

stored on the server using Flask's secure file-

handling utilities

Fig 5 Asymmetric RSA Key Exchange Mechanism

for Securing AES Keys

C. File Chunking and AES Encryption

The system splits the validated file into fixed-size

chunks using a predefined chunk size parameter

(e.g., 1MB). Each chunk is encrypted using the AES

symmetric encryption algorithm. For each file

upload, a unique AES key is generated and

associated with the file metadata. This chunking

process allows for parallel encryption, optimizing

performance and reducing memory overhead.

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169894 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2711

D. RSA Key Pair Generation and Key Encryption

The AES encryption key generated during the file

chunking stage is encrypted using RSA with a 2048-

bit public-private key pair. The RSA-encrypted AES

key is stored securely within the system, ensuring

that only the corresponding private key can be used

to decrypt the AES key, which is crucial for later

decryption of the file chunks.

Fig 6 Download of Encrypted File Chunks and

RSA-Secured AES Key

E. Encrypted File Download and Metadata

Storage

After encryption, the system creates a metadata file

containing critical information about the original file

and chunk structure. The user is then presented with

a download link for the encrypted file, which

includes both the encrypted file chunks and the

RSA-encrypted AES key. The metadata file ensures

accurate reconstruction during decryption.

F. Decrypt method

Fig 7 Web-Based File Upload Interface for decrypt

Fig 8 Decrypting AES Key Using RSA Private Key

and Decrypting File Chunks

G. Decryption Process Initialization

To initiate decryption, the user uploads the

encrypted file and provides the RSA private key.

The system retrieves the RSA-encrypted AES key

and decrypts it using the provided private key. The

AES key is then used to decrypt each encrypted file

chunk in sequence, with the original chunk order

maintained based on metadata.

 Fig 9 Click on download button to decrypted file

download

Fig 10 Reassembling Decrypted Chunks and

Providing Original File for Download

H. File Reconstruction and Final Decrypted

Output

After successfully decrypting the file chunks, the

system reassembles the chunks into their original

sequence as specified by the metadata. This process

restores the file to its original state, which is then

presented for download through the web interface.

All decryption steps are logged for auditing

purposes, ensuring traceability and error handling in

case of failure.

V. CONCLUSION

The secure file storage system developed using a

hybrid cryptographic approach successfully

provides a robust mechanism for secure file

encryption, storage, and retrieval. By combining the

efficiency of symmetric encryption (AES) for bulk

data handling with the security of asymmetric

encryption (RSA) for key exchange, the system

ensures both high-performance processing and

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169894 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2712

strong data protection. The architecture, which splits

files into chunks for independent encryption,

enhances manageability and performance,

particularly for large files. Additionally, chunk-

based encryption with associated metadata enables

precise reassembly during the decryption process,

further ensuring the integrity of the restored file.

The system’s modular design and use of Flask as the

front-end framework ensure scalability and

usability, offering an intuitive interface for users to

encrypt and decrypt files with ease. With efficient

memory management and chunk-based processing,

the system is also optimized for scalability, handling

large datasets while maintaining performance

REFERENCES

[1] Chidi Ukamaka Betrand, Chinwe Gilean

Onukwugha, Mercy Eberechi Benson-

Emenike, Christopher ifeanyi Ofoegbu, Nneka

Martina Awaji “File Storage Security in Cloud

Computing Using Hybrid Encryption” ISSN:

2376-7731,2024; 12(1): 1-9.

[2] Renuka Shone Durge, Vaishali M. Deshmukh

“Advancing cryptographic security: a novel

hybrid AES-RSA model with byte-level

tokenization”Vol. 14, No. 4, August 2024, pp.

4306~4314,ISSN: 2088-8708.

[3] Rajesh Gundla, Dr. Sunil Gupta,Dr.R Basheer

Mohamed “Hybrid Approach To Cloud Storage

Security Using ECC- AES Encryption And Key

Management Techniques” ISSN: 2832-2754

(Online), Volume-2 Issue-6, Nov-Dec

2022,pp.15-20.

[4] Samson Michael Khamis Wani, Abhay Kumar

“Secure File Storage on Cloud Using a Hybrid

Cryptography Algorithm”Volume 5, Issue 5,

May 2022.

[5] Narendra Shyam Joshi, Kuldeep P. Sambrekar ,

Abhijit J. Patankar , Archana Jadhav and

Prajakta Khadkikar. "Optimizing Encrypted

Cloud Data Security and Searchability through

Multi-Keyword Ranking Search Methods."

ISSN (2210-142X) (2024) Int. J. Com. Dig.

Sys. , No. (Mon-20..).

[6] Narendra Shyam Joshi, Kuldeep P. Sambrekar ,

Abhijit J. Patankar , Archana Jadhav and

Prajakta Khadkikar. "Optimizing Encrypted

Cloud Data Security and Searchability through

Multi-Keyword Ranking Search Methods."

International Journal of Computing and Digital

Systems, ISSN (2210-142X) (2024).

[7] Le Li 1 , Dong Zheng 1,2, Haoyu Zhang 1 , And

Baodong Qin. "Data Secure De-Duplication

and Recovery Based on Public Key Encryption

With Keyword Search." VOLUME 11, 24

March 2023.

[8] M. Suganya1 and T. Sasipraba. "Comparison

and Analysis of Transformer-less Topologies

for Grid-Connected PV Systems." Stochastic

Gradient Descent long short-term memory

based secure encryption algorithm

for cloud data storage and retrieval

in cloud computing environment, 09 May

2023.

[9] Bijeta Seth, Surjeet Dalal, Vivek Jaglan, Dac-

Nhuong Le, Senthilkumar Mohan, Gautam

Srivastava. "Integrating encryption techniques

for secure data storage in the cloud." Citations:

27,Volume33, Issue404 September 2022.

[10] Udochukwu Iheanacho Erondu, Nehemiah

Adebayo, Micheal Olaolu Arowolo, Moses

Kazeem Abiodun. "Different Encryption and

Decryption Approaches for Securing

Data."2022.

[11] Muhammad Bilal Qureshi, Muhammad Shuaib

Qureshi , Saqib Tahir , Aamir Anwar, Saddam

Hussain, Mueen Uddin and Chin-Ling

Chen, Volume 14,Issue 4 ,28 March 2022.

[12] Sultan Almakdi, Brajendra Panda,Mohammed

S. Alshehr "An Efficient Secure System for

Fetching Data From the Outsourced Encrypted

Databases.Volume 9" June 4, 2021.

[13] Chin-Chen Chang and Chao-Wen Chan, A

database record encryption scheme using the

RSA public key cryptosystem and its master

keys,ICCNMC ’03: Proceedings of the 2003

International Conference on Computer

Networks and Mobile Computing (Washington,

DC, USA), IEEE Computer Society,2003.

[14] Luc Bouganim and Philippe Pucheral, Chip-

secured data access:confidential data on

untrusted servers, VLDB ’02: Proceedings of

the 28th international conference on Very Large

Data Bases, VLDB Endowment, 2002, pp. 131–

142.

[15] BalaIyer, Sharad Mehrotra2,Einar

Mykletun,GeneTsudik, and Yonghua Wu, A

Framework for Efficient Storage Security in

RDBMS,Advances in Database Technology -

EDBT 2004 Volume 2992 of the series Lecture

Notes in Computer Science pp 147-164

[16] Tingjian Ge and S. Zdonik, Fast, secure

encryption for exing in a column-oriented

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169894 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2713

DBMS, Data Engineering, 2007. ICDE 2007.

IEEE 23rd International Conference on, 2007,

pp. 676–685.

[17] Berent, A. (2013). Advanced Encryption

Standard by Example. Document available at

URL http://www. networkdls.

com/Articles/AESbyExample. pdf (April 1

2007) Accessed: June.

[18] Nadeem, H (2006). A performance comparison

of data encryption algorithms," IEEE

Information and Communication Technologies,

(pp. 84- 89).

[19] Curtmola, R., Garay, J. A., Kamara, S., &

Ostrovsky, R. (2006). Searchable symmetric

encryption: Improved definitions and efficient

constructions. In Proceedings of the 13th ACM

conference on Computer and communications

security (pp. 79-88). ACM. doi:

10.1145/1180405.1180418.

[20] Naveed, M., Kamara, S., & Wright, C. V.

(2010). Inverted index for encrypted databases:

beyond the cloud. In Proceedings of the 2010

ACM SIGMOD International Conference on

Management of data (pp. 801-812). ACM.

