
© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169984 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2679

Design & Verification of Single Precision Floating

Point ALU

Nirmala S O 1, Leela G H2, G S Sunitha3 , Vanishree H V4
1234Dept., of E&CE BIET , Davangere, Karnataka

Abstract— A single precision floating-point arithmetic

logic unit (ALU) is considered as a part of the math

coprocessor. Summation, Subtraction, multiplication and

division are arithmetic functions in these calculations. In

this floating-point unit, input must be provided in IEEE-

754 format, which is 32-bit single precision floating point

values. The application of this arithmetic unit is located in

the math coprocessor. In a Reduced Instruction Set

Computation (RISC) processor, for signal processing, a

value with high accuracy is required and as it is an iterative

process, the calculation should be as fast as possible. The

floating-point representation can calculate very large or

very small process quickly and accurately. The system will

be designed, verified and implemented with Verilog

hardware description language using Cadence software

tool.

Index Terms— floating point, IEEE-754, Single Precision,

synthesis

I. INTRODUCTION

FPU is a math coprocessor which is designed specially

to carry out operations on floating point numbers. The

ALU can perform the arithmetic operation: addition,

subtraction, multiplication and division. It can also

perform some logical operations such as logical NOT,

logical NAND and shift right. Main function of FPUs

can execute different functions such as exponential or

trigonometric calculations. The logical method for

Addition and Subtraction operation is designed for

getting better performance which is required in signal

computation applications and Floating point ALUs are

used for high precision computing. The design of

floating point ALU is used to get the aim of small area.

This ALU uses 32 bit numbers, which is the common

computer word length. The numbers are represented in

IEEE 754 standard. This standard is widely used in

floating point arithmetic.

 Single precision number format consists of 32 bits and

the double precision number format consists of 64 bits.

The single-precision number format is 32 bits,

including 1-bit sign value, 8-bit exponent value, and

23-bit fraction value. For many algorithms that require

millions of calculations per second, floating-point

numbers are used because of their wide and dynamic

range. In applications with floating-point numbers, bit

lengths that are overused can lead to more usage and

lower speed.

In modern computing, floating-point arithmetic is

crucial for a wide range of applications, including

scientific simulations, graphics rendering, financial

calculations, and more. Efficient and accurate

floating-point operations are essential for achieving

reliable results in various computational domains.

II. LITERATURE SURVEY

The paper [1] provides the representation of floating

point number, IEEE Single precision format and IEEE

double precision format. It shows the advantages and

applications of floating point representation. The

proposed floating point arithmetic unit that supports

four arithmetic operations: Add, Subtract, Multiply

and Divide. All the basic mathematical arithmetic

operations have been carried out in four separate

modules one for addition, one for subtraction, one for

multiplication and one for division. This is a review

paper which employs different proposed techniques

for implementation of floating point ALU. The paper

[2] presents the floating point unit according to IEEE

754 Standard. Resolved floating point representation

concept which have large range of values as well as

accuracy. Hence hardware necessity is reduced,

thereby reducing power consumption and delay. So,

designing of power efficient 32-bit single precision

Floating point unit (FPU) based on IEEE-754 standard

based on FPGA is better. The paper [3] presents the

Design of 32-Bit floating point Arithmetic logic unit.

The methods of Addition, Subtraction, Multiplication

and Division are simulated by Verilog HDL using

Xilinx Software,14.7 Version. The logical method for

Addition and Subtraction operation is expanded in

order to decrease the no.of gates used. The results are

seen in the RTL view and Synthesis reports. The paper

[4] presents an implementation of addition and

subtraction for IEEE single precision floating point

numbers and their pipeline design. They implemented

trade-off between area and speed for accuracy.

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169984 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2680

Implementation of an adder and subtractor as a bit-

parallel adder. The algorithms are designed in VHDL

language and implemented on FPGA kit by use of

Xilinx ISE compiler. Floating point adder and

subtractor unit design using pipelining provides high

performance and increase the speed. It is used to

execute multiple instructions simultaneously.

III. METHODOLOGY

Fig1. Block Diagram

The components in the Floating Point ALU are

• Add/Sub: This block performs addition and

subtraction operations two single precision floating

point numbers. It handles the exponent alignment and

fraction addition or subtraction.

• Multiply: This component handles multiplication of

two single precision floating point numbers. It

multiplies the fractions and add the exponents.

• Round: This component rounds the result of

arithmetic operations according to the specified

rounding mode.

• Exception Handling: This part detects and handles

exceptional cases such as overflow, underflow,

division by zero and invalid operation. It generates

appropriate flags or signals to indicate these

conditions.

• Output: The final result of the arithmetic operation is

provided as output, along with any flags indicating

exceptions or overflow/underflow conditions.

Floating point addition/ subtraction

Fig.2 Architecture of floating point addition and

subtraction

Algorithm for ADD/SUB

1.Determine if either exponent (E1 or E2) is all ones,

indicating NaN or infinity. Set the Exception flag

accordingly.

2.Determine if either exponent (E1 or E2) is all zeros,

indicating denormalized numbers. Set appropriate

flags.

3. Calculate the difference between the exponents (E1

- E2) and handle the sign of the result.

4. Select the larger exponent (E) to

ensure correct alignment of mantissas.

5. Shift the smaller mantissa (M2) to align with the

larger one (M1) based on the exponent difference.

6. Determine the operation to be performed (addition

or subtraction) based on the sub input and the signs of

the operands.

7. Perform addition or subtraction of the mantissas

(M1 and M2) considering the operation and carry.

8. Adjust the sign of the result based on the operation

and the carry.

9. Increment the exponent by 1 if addition is performed

and a carry is generated.

10. Determine if the result is negative and calculate its

two's complement if necessary.

11. Normalize the result and calculate the shift

amount.

12. Subtract the shift amount from the exponent to

perform normalization.

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169984 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2681

13. Check for overflow and underflow conditions

based on the modified exponent.

14. Combine the sign, exponent, and mantissa to get

the final result.

Floating point multiplication

Fig.3 Architecture of floating point Multiplication

Algorithm for Multiplication:

1. Calculate the exponent part of both input numbers

n1 and n2.

2. Check if either exponent is all ones (indicating NaN

or infinity), in which case set Exception flag.

3.Calculate the sign of the result (final_sign) by

performing XOR operation on the signs of n1 and n2.

4. Determine if either input number is denormalized

by checking if all exponent bits are zero.

5. Multiply the mantissas of n1 and n2 using a 24-bit

multiplier (Multiplier24bit).

6. Determine if the product is normalized or

denormalized.

7. Calculate the rounding bit based on the product and

whether it needs to be rounded.

8. Normalize the product by shifting bits if necessary.

9. Add the exponents of n1 and n2 and subtract the bias

(127) to get the final exponent (final_E).

10. Adjust the exponent if necessary based on the

product's normalization.

11. Check for overflow and underflow conditions

based on the final exponent.

12.Concatenate the sign, exponent, and mantissa to get

the final result.

Floating point Division

Fig.4 Architecture of floating point Division

Algorithm for Division:

1. It is checked whether N1 and N2 have a special case

of being zero or infinity. If such a condition exists, the

result is sent directly to the output.

 2. Two numbers in 32-bit floating-point format are

input into the designed module.

3. The fraction values of numbers are normalized.

Thus, the new fraction lengths are 24 bits.

4. 24-bit fraction values obtained as a result of

normalization are divided.

5. The 24-bit number obtained from division is

rounded and the fraction value of the result is

generated.

6. To calculate sign bit of the result, the sign bits of the

two numbers taken as input are passed through xor

gate.

7. The exponent values of N1 and N2 are subtracted,

127 (bias value) is added to the difference. Exponent,

fraction, and sign values are placed in the required 32-

bit result, and the result is sent.

IV. RESULTS

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 169984 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2682

The results obtained for the different operations on

two set of data are as shown in Fig. 5 and 6.

Fig.5 Result of floating points 12.5 and -6.75

Fig.6 Result of floating points 5.75 and 3.25

Also the design were synthesized and area , timing and

power reports were generated

V. CONCLUSION

Floating point arithmetic unit has been designed to

perform arithmetic operations such as addition,

subtraction, multiplication and division on floating

point numbers. The unit has been coded in Verilog

HDL. Code has been synthesized using cadence tool

and verified on the software successfully.

Improvement is observed in terms of speed and power.

REFERENCES

[1] Naresh Kumar, Onkar Singh, Harjit Singh,

“Design and Analysis of Floating Point Arithmetic

Unit: A review” International Research Journal of

Engineering and Technology (IRJET) e-ISSN: 2395-

0056 Volume: 07 Issue: 10, Oct 2020.

[2] Mr. Ankit Trivedi, Mr. Apoorv Verma “A Review

on Single Precision Floating Point Arithmetic Unit of

32 bit Number” International Research Journal of

Engineering and Technology (IRJET) e-ISSN: 2395-

0056 Volume: 06 Issue: 04 | Apr 2019.

[3] M. Bhavani, G. Sirisha, K. Siva Kumari, B. Lalitha

Rani, A.Charishma “Design of Single Precision

Floating Point Arithmetic Logic Unit” M. Bhavani, et.

al. International Journal of Engineering Research and

Applications www.ijera.com ISSN: 2248-9622, Vol.

11, Issue 8, (Series-III) August 2021, pp. 18-24.

[4] Hariom Kumar , G. Sankara Rao “Design And

Implementation of Single Precision Floating Point

ALU” International Journal of VLSI System Design

and Communication Systems ISSN 2322-0929

Volume-07, Jan-Dec-2019, Pages:19-23.

