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INTRODUCTION 

 

The proliferation of computers and communication 

systems in the 1960s brought with it a demand from 

the private sector for means to protect information in 

digital form and to provide security services. In this 

age of universal electronic connectivity, of viruses and 

hackers, of electronic eavesdropping and electronic 

fraud, there is indeed no time at which security does 

not matter. Two trends have come together to make the 

topic of vital interest. First, the explosive growth in 

computer systems and their interconnections via 

networks has increased the dependence of both 

organizations and individuals on the information 

stored and communicated using these systems. This, in 

turn, has led to a heightened awareness of the need to 

protect data and resources from disclosure, to 

guarantee the authenticity of data and messages, and 

to protect systems from network-based attacks. 

Second, the disciplines of cryptography and network 

security have matured, leading to the development of 

practical, readily available applications to enforce 

network security. 

 

 

Security attacks: The following figure shows 4 types of typical security attacks. 
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• Interruption: An asset of the system is destroyed 

or becomes unavailable or unusable. This is an 

attack on availability.  Examples include 

destruction of a piece of hardware, such as hard 

disk, the cutting of a communication line etc., 

• Interception: An unauthorized party gains access 

to an asset.  This is an attack on confidentiality.  

Examples include wiretapping to capture data in a 

network, and the illicit copying of files or 

programs 

• Modification: An unauthorized party not only 

gains access to but tampers with an asset.  This is 

an attack on integrity.  Examples include 

changing values in a data file, altering a program 

so that it performs differently etc., 

• Fabrication:  An unauthorized party inserts 

counterfeit objects in the system.  This is an attack 

on authenticity.  Examples include the insertion of 

spurious message in a network or the addition of 

records to a file.  

 

CRYPTOGRAPHY 

 

Definition 1:  Cryptography is the study of methods of 

sending messages in disguised form so that only the 

intended recipients can remove the disguise and read 

the message. The message we want to send is called 

the plaintext and the disguised message is called the 

ciphertext. The plaintext and ciphertext are written in 

some alphabet (usually, but not always, they are 

written in the same alphabet) consisting of a certain 

number N of letters. The term “letter” (or “character”) 

can refer not only to the familiar A-Z, but also to 

numerals, blank, punctuation marks, or any other 

symbols that we allow ourselves to use when writing 

the messages.  The process of converting a plaintext to 

a ciphertext is called enciphering or encryption, and 

the reverse process is called deciphering or decryption. 

  The plaintext and ciphertext are broken up 

into message units. A message unit might be a single 

letter, a pair of letters (digraph), a triple of letters 

(trigraph), or a block of 50 letters.  An enciphering 

transformation is a function that takes any plaintext 

messages unit and gives us a ciphertext message unit. 

In other words, it is a map f from the set P of all 

possible plaintext message units to the set C of all 

possible ciphertext message units.We shall always 

assume that f is a 1-to-1 correspondence. That is, given 

a ciphertext message unit, there is one and only one 

plaintext message unit for which it is the encryption. 

The deciphering transformation is the map f -1 which 

goes back and recovers the plaintext from the 

ciphertext. We can represent the situation 

schematically by the diagram      

𝑃
𝑓
→𝐶

𝑓−1

→  𝑃. 

Any such set-up is called a cryptosystem. 

The first step in inventing a cryptosystem is to “label” 

all possible plaintext message units and all possible 

ciphertext message units by means of  mathematical 

objects from which functions can be easily 

constructed. These objects are often simply the 

integers in some range. For example, if our plaintext 

and ciphertext message units are single letters from the 

26- letter alphabet A-Z, then we can label the letters 

using the integers 0, 1, 2,…, 25, which we call their 

“numerical equivalents”. Thus, in place of A we write 

0, in place of S we write 18, in place of X we write 23, 

and so on. As another example, if our message units 

are digraphs in the 27- letter alphabet consisting of A-

Z and a blank, we might first let the blank have 

numerical equivalent 26 (one beyond Z), and then 

label the digraph whose two letters correspond to x, y 

∈  {0,1, … . ,728}. 

Thus, we view the individual letters as digits to the 

base 27 and we view the digraph as a 2-digit integer to 

that base. For example, the digraph “NO” corresponds 

to the integer 27. 13 + 14 = 365. Analogously, if we 

were using trigraphs as our message units, we could 

label them by integers 729x+27y+z ∈

 {0,1, … . ,19682}. In general, we can label blocks of k 

letters in an N-letter alphabet by integers between 0 

and N k – 1 by regarding each such block as a k-digit 

integer to the base N. 

Examples. Let us start with the case when we take a 

message unit (of plaintext or of ciphertext) to be a 

single letter in an N-letter alphabet labeled by the 

integers 0, 1, 2,…, N – 1. Then, by definition, an 

enciphering transformation is a rearrangement of those 

N integers. 

To facilitate rapid enciphering and deciphering, it is 

convenient to have a relatively simple rule for 

performing such a rearrangement. One way is to think 

of the set of integers {0, 1, 2,⋯ ,𝑁 − 1} as Z/NZ, and 

make use of the operations of addition and 

multiplication modulo N. 

Suppose we are using the 26–letters alphabet A – Z 

with numerical equivalents 0 – 25. Let the letter P ∈
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 {0, 1,⋯ ,25}, stand for a plaintext message unit. 

Define a function f from the set {0, 1,⋯ ,25} to itself 

by the rule 

 f(P) = {
𝑃 + 3,    𝑖𝑓 𝑥 < 23,
𝑃 − 23,    𝑖𝑓 𝑥 ≥ 23.

 

In other words, f simply adds 3 modulo 26: f (P) ≡

 𝑃 + 3 𝑚𝑜𝑑 26. The definition using modular 

arithmetic is easier to write down and work with. Thus, 

with this system, to encipher the word “YES” we first 

convert to numbers: 24 4 18, then add 3 modulo 26: 1 

7 21, then translate back to letters: “BHV.” To 

decipher a message, one subtracts 3 modulo 26. For 

example, the ciphertext “ZKB” yields the plaintext, 

“WHY.” This cryptosystem was apparently used in 

ancient Rome by Julius Caesar, who supposedly 

invented it himself. 

The above example can be generalized as follows. 

Suppose we are using an N-letter alphabet with 

numerical equivalent 0, 1,··· , N – 1. Let b be a fixed 

integer. By a shift transformation we mean the 

enciphering function f defined by the rule C = f (P) ≡ 

P + b mod N. Julius Caesar’s cryptosystem defined by 

the rule  C = f (P) ≡ P + b mod N. Julius Caesar’s 

cryptosystem was the case N = 26, b = 3. To decipher 

a ciphertext message unit C ∈ {0, 1,⋯ ,𝑁 − 1}, we 

simply compute P = f -1(C) ≡ 𝐶 − 𝑏 𝑚𝑜𝑑 𝑁.  Here b is 

the encryption key and is usually deonated by e and N 

– b is the decryption key and is denoted by d.   

 

Definition 2: A cryptosystem is called a block cipher 

if its plaintext space and its ciphertext space are the set 

all possible message units of a fixed length n.  The 

block length n is a positive integer. A simple example 

of a block cipher is the Caesar cipher. It has block 

length 1. In general, block ciphers with block length 1 

are called substitution ciphers. 

 

SYMMETRIC AND ASYMMETRIC 

CRYPTOSYSTEMS 

 

We briefly explain the difference between symmetric 

and asymmetric cryptosystems. If Veena wants to send 

an encrypted message to Varun, then she uses an 

encryption key e and Varun uses the corresponding 

decryption key to recover the plaintext.  If in a 

cryptosystem the encryption key e is always equal to 

the decryption key d, or if d can be easily computed 

from e, then the cryptosystem is called symmetric. If 

Veena and Varun use a symmetric cryptosystem, they 

must exchange the secret key e before they start their 

communication. Secure key exchange is a major 

problem. The key e must be kept secret since anybody 

who knows e can determine the corresponding 

decryption key d. The Caesar cipher is an example of 

a symmetric cryptosystem. The keys for encryption 

and decryption are equal in this system. 

In asymmetric cryptosystems, the keys d and e are 

distinct, and the computation of d from e is infeasible. 

In such systems, the encryption key can be made 

public. If Varun wants to receive encrypted messages, 

he publishes an encryption key e and keeps the 

corresponding decryption key d secret. Anybody can 

use e to encrypt messages for Varun. Therefore, e is 

called the public key. But only Varun can decrypt the 

messages, so d is called the private key. Asymmetric 

cryptosystems are also called public-key 

cryptosystems.   

 

 Definition 3:  An encryption scheme is said to be 

breakable if a third party, without prior knowledge of 

the key pair (e, d), can systematically recover plaintext 

from corresponding ciphertext within some 

appropriate time frame. 

 

Cryptanalysis: Cryptanalysis deals with the attacks on 

cryptosystems. In this section, we classify those 

attacks. 

To make attacks on cryptosystems more difficult, one 

can keep the cryptosystem secret. However, it is not 

clear how much security is really gained in this way 

because an attacker has many ways of finding out 

which cryptosystem is used. He can try to tell from 

intercepted ciphertexts which system is used. He can 

also try to get information from people who have 

information about the encryption scheme in use.  

Modern cryptanalysis therefore assumes that an 

attacker knows which cryptosystern is used. Only the 

(private) keys and the plaintexts are assumed to be 

secret. The attacker tries to recover plaintexts from 

ciphertexts or even tries to find out which keys are 

used.  There are the following types of attacks: 

• Ciphertext-only attack. The attacker knows 

ciphertexts and tries to recover the corresponding 

plaintexts or the key. 

• Known-plaintext attack: The attacker knows a 

plaintext and the corresponding ciphertext or 

several such pairs. He tries to find the key used or 

to decrypt other ciphertexts. 
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• Chosen-plaintext attack:. The attacker is able to 

encrypt plaintexts but does not know the key. He 

tries to find the key used or to decrypt other 

ciphertexts. 

• Adaptive chosen-plaintext attack: The attacker is 

able to encrypt plaintexts. He is able to choose 

new plaintexts as a function of the ciphertexts 

obtained but does not know the key. He tries to 

find the key used or to decrypt other ciphertexts. 

• Chosen-ciphertext attack: The attacker can 

decrypt but does not know the key.  He tries to 

find the key.   

 

There are many ways to mount these attacks. A simple 

ciphertext-only attack consists of decrypting the 

ciphertext with all possible keys. This attack is called 

exhaustive search. The correct plaintext is among the 

few sensible texts that the attacker obtains. Given the 

speed of modern computers, this attack is successful 

for many cryptosystems. It works, for example, for the 

DES (Data Encryption Standard) system, which until 

recently was the U.S. encryption standard. A known-

plaintext attack may use the statistical properties of the 

plaintext language. For example, if we apply the 

Caesar cipher, then for a fixed key any plaintext 

symbol is replaced by the same ciphertext symbol. The 

most frequent plaintext symbol is encrypted to the 

most frequent ciphertext symbol. Since we know the 

most frequent symbol of the plaintext language, we 

have a good guess how to decrypt the most frequent 

ciphertext symbol. Analogously, the frequency of 

other individual symbols, of pairs, triplets, etc., in the 

plaintext may be reflected in the ciphertext and can be 

used to decrypt the ciphertext or to recover the key.  

Let us cryptanalyse the the Caesar cipher.  The most 

frequently occurring letter in the ciphertext correspond 

to those in the plaintext.  For example, E is the most 

frequently occurring letter in an arbitrary text, 

occurring about 12.5% of the time; the next three 

letters are T, A, and O, occurring about 9%, 8%, and 

8% of the time, respectively. 

Consider the ciphertext message:   

SLABZ   ULCLY  ULNVA   PHALV  BAVMM  LHYIB 

ASLAB   ZULCL   YMLHY   AVULN   VAPHAL  

The most frequently occurring letter in the ciphertext 

is L, so our best guess is that it must correspond to the 

plaintext letter E.  Since their ordinal numbers are 11 

and 4, this implies  11 ≡ 4 + 𝑘(𝑚𝑜𝑑 26); that is, k = 

7.  Then 𝐶 ≡ 4 + 𝑘(𝑚𝑜𝑑 26).  Using this congruence, 

we can determine the ordinal number of each letter in 

the plaintext.  After obtaining the ordinal number of 

each plaintext letter, the plaintext message reads as 

LET US NEVER NEGOTIATE OUT OF FEAR BUT 

LET US NEVER FEAR TO NEGOTIATE  

 

Affine Ciphers:   Shift ciphers belong to a large family 

of affine ciphers defined by the formula 

𝐶 ≡ 𝑎𝑃 + 𝑘(𝑚𝑜𝑑 26) 

where a is a positive integer ≤ 25 and (a, 26) = 1.  Since 

(a, 26) = 1, inverse of a exists and so 

𝑃 ≡ 𝑎−1(𝐶 − 𝑘)(𝑚𝑜𝑑 26). 

Since (a, 26) = 1, there are 𝜙(26) = 12 choices for a, 

so there are 12·26 = 312 affine ciphers.  One of them 

is the  𝐶 ≡ 𝑃(𝑚𝑜𝑑 26) identity transformation 

corresponding to a = 1 and k = 0. 

When a = 5 and k = 11, 𝐶 ≡ 5𝑃 + 11(𝑚𝑜𝑑 26) .  If P 

= 8, then ≡ 5 ∙ 8 + 11 ≡ (𝑚𝑜𝑑 26) , so under the 

affine cipher  𝐶 ≡ 5𝑃 + 11(𝑚𝑜𝑑 26), the letter I is 

transformed into Z and letter Q into N.  Table shows 

the plaintext letters and the corresponding ciphertext 

letters created by this affine cipher, which shifts A to 

L and in which each successive letter is paired with 

every fifth letter. 

 

Plaintext letter A    B    C    D   E    F   G   H    I     J   K    L   M   N   O   P    Q    R   S   T   U    V   W   X   Y   Z 

 00  01  02   03  04  05  06  07  08  09  10  11  12  13  14  15  16   17  18  19  20  21  22  23  24   25   

Ciphertext letter 11  16  21  00  05  10  15  20  25  04  09  14  19  24  03  08  13   18  23  02  07  12  17   22  01  06 

  L    Q   V   A   F    K    P   U    Z   E    J     O   T   Y   D   I    N    S    X    C   H   M   R    W  B   G 

 

Hence, under the above affine transformation, the 

plaintext message THE MOON IS MADE OF 

CREAM CHEESE will be transformed into THEMO 

ONISM ADEOF CREAM CHEES E (grouping into 5  

letters). 

To decipher the message, we use the congruence 𝑃 ≡

5−1(𝐶 − 11) ≡ 21(𝐶 − 11) ≡ 21𝐶 + 3(𝑚𝑜𝑑 26). 

 

Let us cryptanalyze the ciphertext BYTUH NCGKN 

DUBIH UVNYX HUTYP QNGYV IVROH GSU that 

was generated by an affine cipher. 
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First make the frequency analysis of the letters in the 

ciphertext.  According to it U occurs 5 times, H, N, and 

Y occurs 4 times each.  It is reasonable to assume that  

the letter U corresponds to the letter E in the plaintext 

message, that is, 20 ≡ 4𝑎 + 𝑘(𝑚𝑜𝑑 26).  If we 

assume H corresponds to T, then 7 ≡ 19𝑎 +

𝑘(𝑚𝑜𝑑 26).  Solving this linear system, we get 𝑎 ≡

13(𝑚𝑜𝑑 26) and  𝑘 ≡ 20(𝑚𝑜𝑑 26), so 𝐶 ≡ 13𝑃 +

20(𝑚𝑜𝑑 26).  But (13, 26) ≠ 1, so this is not a valid 

cipher.  Thus, our guess that H corresponds to T was 

not a valid one. 

So let us assume that N corresponds to T.  This yields 

the linear system 20 ≡ 4𝑎 + 𝑘(𝑚𝑜𝑑 26) and 13 ≡

19𝑎 + 𝑘(𝑚𝑜𝑑 26).  Solving this system, 𝑎 ≡

3(𝑚𝑜𝑑 26) and  𝑘 ≡ 8(𝑚𝑜𝑑 26).  Since (3, 26) = 1, 

this yields a valid cipher 𝐶 ≡ 3𝑃 +

8(𝑚𝑜𝑑 26).  Then  𝑃 ≡ 9𝐶 + 6(𝑚𝑜𝑑 26).   

 

Ciphertext letter A    B    C    D   E    F   G   H    I     J   K    L   M   N   O   P    Q    R   S   T   U    V   W   X   Y   Z 

 00  01  02   03  04  05  06  07  08  09  10  11  12  13  14  15  16   17  18  19  20  21  22  23  24   25   

Plaintext letter 06  15  24  07  16  25   08  17  00  09  18  01  10  19  02  11  20   03  12  21  04  13  22  05  14  23 

  G   P   Y   H    Q   Z     I     R   A   J    S    B   K   T   C     L   U    D   M  V   E    N   W   F    O  X  

 

Using this table, we can translate the given ciphertext 

message as POVER TYIST HEPAR ENTOF REVOL 

UTION ANDCR IME, that is, POVERTY IS THE 

PARENT OF REVOLUTION AND CRIME. 

 

Vigenere Ciphers:  The Vigenere cryptosystem 

employs a keyword w1w2 … wn of length n and n shift 

ciphers 𝐶 ≡ 𝑃𝑖 + 𝑘𝑖(𝑚𝑜𝑑 26) to each block length n, 

where ki is the ordinal number of the letter wi and 1 ≤ 

i ≤ n.  

For example, using the keyword CIPHER  and a 

Vigenere cipher, let us encrypt the message 

CRYPTOGRAPHY IS FUN.  Since the ordinal 

numbers of the letters C, I, P, H, E, and R are 02, 08, 

15, 07, 04 and 17, respectively, they serve as the shift 

factors for each shift cipher for every block.  So the six 

shift ciphers are 𝐶 ≡ 𝑃 + 𝑘(𝑚𝑜𝑑 26), where k = 2, 8, 

15, 7, 4 and 17. 

Since the keyword is a six-letter word, first we group 

the letters of the plaintext into blocks of length six: 

CRYPTO GRAPHY ISFUN. 

Now apply the ith cipher to the letter wi in each block, 

where 1 ≤ i ≤ n.  For instance, consider the first 

CRYPTO.  Since the ordinal number are 02, 17, 24, 

15, 19 and 14, respectively, add to them the key values 

2, 8, 15, 7, 4 and 17 in that order modulo 26.  The 

resulting numbers are 4, 25, 13, 22, 23 and 4, and the 

corresponding letters are E, Z, N, W, X, and F, 

respectively, so the first ciphertext block is EZNWXF.  

Thus the resulting ciphertext is EZNWXF IZPWLP 

KAUBR. 

 

Hill Cipher:  The above cryptosystems are very weak in the sense they can be easily cryptanalyzed.  Let us try block 

ciphers of length 2 and they are called digraphs.  In such a system, we group the letters of the plaintext into blocks of 

length 2, adding a dummy letter X at the end, if necessary, to make all blocks of the same length, and then replace 

each letter with its ordinal number.   Each plaintext block P1P2 is then replaced by a numeric ciphertext block C1C2, 

where C1 and C2 are different linear combinations of P1 and P2 modulo 26: 

     𝐶1 ≡ 𝑎𝑃1 + 𝑏𝑃2(𝑚𝑜𝑑 26)   

     𝐶2 ≡ 𝑐𝑃1 + 𝑑𝑃2(𝑚𝑜𝑑 26)                  (1) 

where (ad – bc, 26) = 1.  This condition is necessary to uniquely solve the linear system of P1 and P2.  Then we 

translate each number into a ciphertext letter, the resulting text is the ciphertext. 

 The following example illustrates this algorithm. 

Using the 2 x 2 linear system 

     𝐶1 ≡ 5𝑃1 + 13𝑃2(𝑚𝑜𝑑 26)   

     𝐶2 ≡ 3𝑃1 + 18𝑃2(𝑚𝑜𝑑 26).     (2) 

encipher the message SLOW AND STEADY WINS THE RACE. 

 

SOLUTION  
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Step 1  Assemble the plaintext into blocks of length two: 

    SL OW AN DS TE AD YW IN ST HE RA CE 

Step 2  Replace each letter by its cardinal number: 

    18 11   14 22   00 13   03 18   19 04   00 03 

    24 22   08 13   18 19   07 04   17 00   02 04 

Step 3  Using the linear system (2), convert each block into a ciphertext numeric block: 

When P1 = 18 and P2 = 11, we have 

    𝐶1 ≡ 5·18 + 13·11 ≡ 25(𝑚𝑜𝑑 26)   

    𝐶2 ≡ 3·18 + 18·11 ≡ 18(𝑚𝑜𝑑 26) 

So the first block 18 11 is converted into 25 18. Transforming the other blocks in a similar fashion yields the numeric 

string. 

    25 18   18 22   13 00   15 21   17 25   13 02 

    16 00   01 24   25 06   09 15    07 25   10 00 

Step 4  Translate the numbers into letters. 

The resulting ciphertext is ZS SW NA PV RZ NC QA BY ZG JP HZ KA. 

Matrices are useful in the study of Hill cryptosystems. For example, that the linear system can be written as   

    [
𝐶1
𝐶2
] ≡ [

5 13
3 18

] [
𝑃1
𝑃2
]  (𝑚𝑜𝑑 26). 

Since Δ = |
5 13
3 18

| = 51 and (51, 26) = 1, the matrix [
5 13
3 18

] is invertible modulo 26, with inverse [
8 13
3 21

] modulo 

26.  So the deciphering procedure can be effected using the congruence 

    [
𝑃1
𝑃2
] ≡ [

8 13
3 21

] [
𝐶1
𝐶2
]  (𝑚𝑜𝑑 26)                           (3) 

as the following example demonstrates. 

Using congruence (3), let us decipher the ciphertext 

    ZS SW NA PV RZ NC QA BY ZG JP HZ KA 

Translating the ciphertext letters into numbers, we get 

    25 18   18 22   13 00   15 21   17 25   13 02 

    16 00   01 24   25 06   09 15    07 25   10 00 

The plaintext numbers corresponding to the block 25 18 are given by 

    [
𝑃1
𝑃2
] ≡ [

8 13
3 21

] [
25
18
] ≡  [

18
11
] (𝑚𝑜𝑑 26) 

So P1 = 18 and P2 = 11.  The other blocks can be converted similarly. 

It is obvious from the preceding two examples that the size of a block can be any size n ≥ 2, and that the enciphering 

and deciphering tasks can be accomplished by choosing an nxn enciphering matrix A modulo 26 such that (|A|, 26) = 

1, where |A| denotes the determinant of A.  Let P1, P2, …, Pn be the ordinal numbers of an arbitrary plaintext block 

and C1, C2, …, Cn the corresponding ciphertext numbers.  Let  

    𝑃 = [

𝑃1
𝑃2
⋮
𝑃𝑛

]   and  𝐶 = [

𝐶1
𝐶2
⋮
𝐶𝑛

]. 

The congruence 𝐶 ≡ 𝐴𝑃(𝑚𝑜𝑑 26) providing the enciphering transformation. 

 

The RSA Public Key Crypto-System 

Let p and q be distinct large primes and let n be their product. Assume that we also have two integers, d (for decryption) 

and e (for encryption) such that 

    d × e ≡ 1 (𝑚𝑜𝑑 𝜙(𝑛)). 

The integers n and e are made public, while p,q and d are kept secret. 

Let M be the message to be sent where M is a positive integer less than and relatively prime to n. If we keep M less 

than both p and q, then we will be safe. In practice, it is enough to keep M less than n for the probability than a random 
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M is divisible by p or q is so small as to be negligible. A plaintext message is easily converted to a number by using, 

say, 

Blank = 99, A = 10,        B = 11,     ⋯,       Z = 35, 

So that HELLO becomes 1714212124. If necessary, the message can be broken into blocks of smaller messages: 

17142 12124. 

The encoder computes and sends the number 

   E = Me  MOD n. 

To decode, we simply compute 

   Ed  MOD n. 

By Theorem 3.4 and our equation (4.1) we have that 

 Ed ≡ (Me)d ≡ Me x d ≡ M(multiple of ϕ(n)) + 1  (mod n) 

     ≡ 1 x M ≡ M    (mod n). 

Since M and Ed MOD n both lie between 0 and n, they must be equal. 

If e has been chosen relatively prime to 𝜙(𝑛), then  we know that there exists d, uniquely such that   

   e × d ≡ 1 (mod 𝜙(𝑛)). 

As we shall prove later in this chapter, if we know the factorization of n, namely n = p x q where p and q are distinct 

primes, then we can easily compute 𝜙(𝑛) by 

   𝜙(𝑛) = (p – 1) x (q – 1).  

There is no simpler way of computing (𝑛). In fact, knowing ϕ (n) equivalent to knowing the factorization becase we 

can find p + q: 

 𝑝 + 𝑞 = 𝑛 − 𝜙(𝑛) + 1 = 𝑝 × 𝑞 − (𝑝 × 𝑞 − 𝑝 − 𝑞 + 1) + 1, 

and the p – q is  

 𝑝 − 𝑞 = √(𝑝 + 𝑞)2 − 4𝑛 = √𝑝2 + 2𝑝 × 𝑞 + 𝑞2 − 4𝑝 × 𝑞 

    = √𝑝2 − 2𝑝 × 𝑞 + 𝑞2 , 

and finally:  

𝑝 =
[(𝑝 + 𝑞) + (𝑝 − 𝑞)]

2
, 𝑞 =

[(𝑝 + 𝑞) − (𝑝 − 𝑞)]

2
  

The problem of finding d, the decryption key, has been 

reduced to finding the factorization of n. 

For this example, the keys were generated as follows: 

1. Select two prime numbers, p = 17 and q = 11. 

2. Calculate n = pq = 17 × 11 = 187. 

3. Calculate 𝜙(𝑛)= (p – 1)(q – 1) = 16 × 10 = 160. 

4. Select e such that e is relatively prime to 𝜙(𝑛)= 160 

and less than 𝜙(𝑛); we choose e = 7. 

5. Determine d such that de ≡1 (mod 160) and d < 160.  

 

The correct value is d = 23, because 23 × 7 = 161 = (1 

× 160) + 1; d can be calculated using the extended 

Euclid’s algorithm. The resulting keys are public key 

PU = {7, 187} and private key PR = {23, 187}. The 

example shows the use of these keys for a plaintext 

input of M= 88.  

For encryption, we need to calculate C = 887 mod 187. 

Exploiting the properties of modular arithmetic, we 

can do this as follows: 

887 mod 187 = [(884 mod 187) × (882 mod 187) × (881 

mod 187)] mod 187 

881 mod 187 = 88 

882 mod 187 = 7744 mod 187 = 77 

884 mod 187 = 59,969,536 mod 187 = 132 

887 mod 187 = (88 × 77 × 132) mod 187 = 894,432 

mod 187 = 11 

 

For decryption, we calculate M = 1123 mod 187: 

1123 mod 187 = [(111 mod 187) × (112 mod 187) × (114 

mod 187) × (118 mod 187) × (118 mod 187)] mod 187 

111 mod 187 = 11 

112 mod 187 = 121 

114 mod 187 = 14,641 mod 187 = 55 

118 mod 187 = 214,358,881 mod 187 = 33 

1123 mod 187 = (11 × 121 × 55 × 33 × 33) mod 187 = 

79,720,245 mod 187 = 88 

 

The Security of RSA 
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Four possible approaches to attacking the RSA 

algorithm are 

• Brute force: This involves trying all possible 

private keys. 

• Mathematical attacks: There are several 

approaches, all equivalent in effort to factoring 

the product of two primes. 

• Timing attacks: These depend on the running time 

of the decryption algorithm. 

• Chosen ciphertext attacks: This type of attack 

exploits properties of the RSA algorithm. 

The defense against the brute-force approach is, to use 

a large key space. Thus, larger the number of digits in 

d, the better. However, because the calculations 

involved, both in key generation and in 

encryption/decryption, are complex, the larger the size 

of the key, the slower the system will run.   

THE FACTORING PROBLEM We can identify three 

approaches to attacking RSA mathematically. 

1. Factor n into its two prime factors. This enables 

calculation of 𝜙(𝑛) = (p - 1) × (q - 1), which in 

turn enables determination of d ≡ e-1 (mod 𝜙(𝑛)). 

2. Determine 𝜙(𝑛) directly, without first 

determining p and q. Again, this enables 

determination of d ≡ e-1 (mod 𝜙(𝑛)). 

3. Determine d directly, without first determining 

𝜙(𝑛). 
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