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Abstract: In this paper, the boundary layer flow of a 

viscous incompressible fluid across a stretching cylinder 

has been considered to investigate the flow field. Because 

the dynamic region is nonlinear, the velocity function has 

been calculated numerically using the non-polynomial 

quartic spline method. The expression of skin friction was 

also obtained. Graphs have been used to analyze the 

velocity profile on the dimensionless parameter. 
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1. INTRODUCTION 

In fiber technology and extrusion operations, the 

boundary layer flow caused by stretching flat plates or 

cylinders is theoretically as well as practically 

significant and fascinating. This method is used to 

produce plastic films and polymer sheets. Examples 

include the aerodynamic extrusion of plastic sheets, the 

cooling of an infinite metallic plate in a cooling bath, 

the boundary layer in condensation processes along a 

liquid film, the blowing of glass, the spinning of metal, 

the drawing of plastic films, and the extrusion of 

polymers. It was Sakiadis (1961) who first brought the 

boundary layer flow on a moving continuous solid 

surface into consideration. Using a stretching sheet 

with linearly variable surface speed, Crane (1970) 

expanded this idea and provided an exact solution for 

the steady two-dimensional flow across a stretching 

surface in a quiescent fluid. A similarity solution is 

one that, typically through a coordinate 

transformation, reduces the number of independent 

variables by at least one. The concept is similar to 

dimensional analysis, except the coordinates 

themselves are reduced into dimensionless units that 

scale the velocities rather than parameters, such as the 

Reynolds number, see  F. M. White (2006). 

 

The works of Weyl (1942), Coppel (1960), Lin and 

Chen (1998), Liao (1999), Partha et al. (2005), 

Anderson (2005), Ishak (2009), Kudenatti (2012) and 

Rangi et al. (2012) have discussed the boundary layer 

flow caused by a stretching vertical surface in a 

quiescent viscous and incompressible fluid when the 

buoyancy forces are taken into account. The laminar 

boundary layer and heat transfer along horizontally 

and vertically moving cylinders with constant velocity 

were examined by Lin and Shih (1980, 1981) who 

discovered that the cylinder’s curvature effect 

prevented the similarity solutions from being reached. 

Because the primary differential equations governing 

fluid motion in hydrodynamics contain nonlinear 

components, an exact solution is necessary. It 

becomes challenging, if not impossible, to find the 

closed-form solution to such types of differential 

equations. This leads to the researchers arriving to 

obtain the solution for similarity. Researchers such as 

Chen and Char (1988), Wang (1981), Magyari and 

Keller (2000), Vajravelu and Cannon (2006), Ahmad et 

al. (2010), Bachok et al. (2012), Khan et al. (2012) and 

Begum et al. (2020) investigated these types of 

nonlinear problems using numerous numerical 

approaches such as Begum et al. (2023), Alam et al. 

(2020), Alam et al. (2021) and Alam et al. (2022) to find 

the solution. 

In this work, we determine the velocity component of 

boundary layer flow past a stretching cylinder moving 

continuously at velocity  𝑊(𝑥) =
𝑊0(𝑥)

𝑙
. Because of 

the nonlinearity present in the flow problem, we 

employ the numerical method known as finite 

difference method. Since the curvature parameter α = 

0.0, 0.25, 0.5, 0.75, 1 affects the lateral surface of the 

cylinder, we have investigated the impact of velocity. 

 

2. PROBLEM FORMULATION 

Consider an axisymmetric, continuous boundary layer 

flow of a viscous incompressible fluid past a 

continuously stretched cylinder. The stretching velocity 

𝑊(𝑥) is expressed as the relation 𝑊(𝑥) =
𝑊0(𝑥)

𝑙
, where 

l is the characteristic length and 𝑊0 ≻ 0 is a constant. 
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With these presumptions along with the boundary 

layer estimations, the model equation can be written as 

follows 

   
𝜕

𝜕𝑥
(𝑟𝑤) +

𝜕

𝜕𝑟
(𝑟𝑣) = 0                               (1) 

  𝑤
𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑟
=

𝜈

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑤

𝜕𝑟
),       (2)  

  with boundary conditions  (BCs)                              

   𝑟 = 𝑅,     𝑤(0) = 𝑤(𝑥),   𝑣(0) = 0,      (3)                                                     

  𝑟 → ∞,       𝑤(𝑟) → 0 ,        (4)                                                     

 where the velocity components in the x and r 

directions are represented by the variables w and 

v, respectively. By implementing a stream function, 

𝜒, such that 𝑢 =
1

𝑟

𝜕𝜒

𝜕𝑟
 and 𝑣 = −

1

𝑟

𝜕𝜒

𝜕𝑟
, the continuity 

equation (1) can be satisfied. We define 𝜆 and 𝜒 as 

𝜆 =
𝑟2 − 𝑅2

2𝑅
(

𝑈

𝜈𝑥
)

1
2

,  

                                                          

𝜒 = 𝑅(𝑈𝜈𝑥)
1

2⁄  𝑉(𝜆), 

so that the momentum equation becomes 

(1 + 2𝛼𝜆)𝑉′′′(𝜆) + 2𝛼𝑉′′(𝜆)+𝑉(𝜆)𝑉′′(𝜆) −

𝑉′2(𝜆)=0,      (5) 

with relevant BCs: 

 𝜆 = 0,      𝑉(𝜆) = 0,   𝑉′(𝜆) = 1,        (6)                                                     

𝜆 → ∞,     𝑉′(𝜆) = 0           (7)                                                    

A non-linear boundary-value problem (bvp) in an 

infinite domain is illustrated by Equations 

(5) with (6) and (7). We solve this nonlinear bvp 

numerically using the finite difference method for 

various curvature parameters α, since there are no 

conventional methods for handling such problems. 

 

3. SKIN FRICTION 

To compute the surface sheer stress, let 

  𝜏𝑤 = −𝜇 (
𝜕𝑢

𝜕𝑟
)

𝑟=𝑅
 ,     (8) 

   or,      𝜏𝑤 = −𝜇U (
m

𝛾
)

1
2

𝑉′′(0),     (9) 

Hence, for the given (bvp), the skin friction co-

efficient is 

 𝐶𝑉 = −(𝑅𝑒
−1) (

m

𝛾
)

1
2

𝑉′′(0).      (10) 

4. TRIGONOMETRIC QUARTIC SPLINE 

METHOD 

To obtain trigonometric quartic spline approximation 

of the equations (5)-(7), we divide the interval [𝑎, 𝑏] 

into M equal subintervals as follows 

𝜆𝑖 = 𝑖ℎ, 𝑖 = 0(1)𝑀, ℎ =
𝑏 − 𝑎

𝑀
  

 

Now, using the non-polynomial spline 𝐴𝑖 (𝜆) we 

construct a numerical algorithm to interpolate the 

unknown function 𝑉(𝜆) at the grid points 

{𝜆𝑖|𝑖 = 1,2,3 … , 𝑀} given as 

𝐴𝑖 (𝜆) = 𝐶1𝑖𝑠𝑖𝑛𝜔(𝜆 − 𝜆𝑖) + 𝐶2𝑖𝑐𝑜𝑠𝜔(𝜆 − 𝜆𝑖)

+ 𝐶3𝑖(𝜆 − 𝜆𝑖)
2 + 𝐶4𝑖(𝜆 − 𝜆𝑖)

+ 𝐶5𝑖,       (11) 

where  𝐶𝑗𝑖 , 𝑗 = 1,2,3,4,5, are real finite constants and 

𝐴𝑖 (𝜆) has been interpolated at the 

mesh points 𝜆𝑖 which depends on the parameter 𝜔.  

The coefficients 𝐶𝑗𝑖, 𝑗 = 1,2,3,4,5, have been obtained 

by using the following interpolation conditions:   

 𝐴𝑖 (𝜆𝑖) = 𝑉𝑖,  𝐴′𝑖 (𝜆𝑖) = 𝐸𝑖 ,  𝐴′′′𝑖 (𝜆𝑖) = 𝐹𝑖,      𝑖 =

0,1,2, … , 𝑀          (12) 

Using the conditions given in equation (12) in the 

equation (11), we obtain the values of the co-

efficients 𝐶𝑗𝑖, 𝑗 = 1,2,3,4,5. Further, following the 

continuity condition defined for spline as well as its 

derivatives, the relations have been obtained as: 

𝐸𝑖 + 𝐸𝑖+1

= −
2(𝑉𝑖−1 − 𝑉𝑖)

ℎ
+ 𝛼1𝐹𝑖−1

+ 𝛼1𝐹𝑖 ,                                                 (13)  

   𝐸𝑖 − 𝐸𝑖+1 =
(𝑉𝑖−1 − 2𝑉𝑖 + 𝑉𝑖+1)

ℎ
+ 𝛼2𝐹𝑖−1 + 𝛼3𝐹𝑖

+ 𝛼4𝐹𝑖+1                        (14) 

where 

𝛼1 =
2 − 2𝑐𝑜𝑠𝜔ℎ − ℎ𝜔 𝑠𝑖𝑛𝜔ℎ

ℎ𝜔3𝑠𝑖𝑛𝜔ℎ
, 

𝛼2 =
2𝑐𝑜𝑠𝜔ℎ + 2ℎ𝜔 𝑠𝑖𝑛𝜔ℎ − 2 − ℎ2𝜔2

2ℎ𝜔3𝑠𝑖𝑛𝜔ℎ
, 

𝛼3 =
2ℎ2𝜔2𝑐𝑜𝑠𝜔ℎ − 2ℎ𝜔 𝑠𝑖𝑛𝜔ℎ

2ℎ𝜔3𝑠𝑖𝑛𝜔ℎ
, 

𝛼4 =
2 − 2𝑐𝑜𝑠𝜔ℎ − ℎ2𝜔2

2ℎ𝜔3𝑠𝑖𝑛𝜔ℎ
. 

 

Solving the equations (13) and (14), we obtain the 

relation 

−𝑉𝑖−2 + 3𝑉𝑖−1 − 3𝑉𝑖 + 𝑉𝑖+1

= ℎ3(𝜉1𝐹𝑖−2 + 𝜉2𝐹𝑖−1 + 𝜉2𝐹𝑖

+ 𝜉1𝐹𝑖+1),   𝑖

= 2(1)𝑀 − 1   (15)     

where  
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𝜉1 =
2 − 2𝑐𝑜𝑠𝜔ℎ − ℎ2𝜔2

2𝜔3𝑠𝑖𝑛𝜔ℎ
, 

𝜉2 =
2ℎ2𝜔2𝑐𝑜𝑠𝜔ℎ + 2𝑐𝑜𝑠𝜔ℎ − ℎ2𝜔2 − 2

2ℎ𝜔3𝑠𝑖𝑛𝜔ℎ
. 

 

The equations in (15) yield (M − 2) linear equations 

involving M unknowns in 𝑉𝑖, 𝑖 = 1,2,3, … , 𝑀. 

In order to solve the system of equations, we need two 

additional equations, which can be obtained as: 

 

  ∑ 𝛽1𝑘

2

𝑘=0

𝑉𝑘 + 𝛽2ℎ𝑉0
′ + ℎ3 ∑ 𝛽3𝑘

3

𝑘=0

𝑉𝑘
′′′ − 𝑡1

= 0,         𝑖

= 1                                (16)   

∑ 𝛽4𝑘

𝑀

𝑘=𝑀−2

𝑉𝑘 + 𝛽5ℎ𝑉𝑀
′ + ℎ3 ∑ 𝛽6𝑘

𝑀

𝑘=𝑀−3

𝑉𝑘
′′′ − 𝑡𝑀

= 0,         𝑖 = 𝑀.                     (17)  

Now, implementing the above method in the equations 

(5)-(7), and with the help of Newton-Raphson method 

we find the approximate solution to (5)-(7), which is 

computed with the help of MATLAB. 

 

5. NUMERICAL EXPERIMENTS AND 

DISCUSSIONS 

Here, we study the results obtained by the proposed 

numerical method for the model prob- lem (5)-(7) at 

different grid points on the interval [0, 8]. MATLAB is 

used to produce a graphical depiction of the various 

components for different values of 𝛼. Figure 1 

displays the numeri- cal findings of 𝑉(𝜆) for various 

values of the parameter α. Additionally, Figure 3 

provides a graphical depiction of 𝑉′(𝜆) that illustrates 

the impact of the velocity component 𝑉′(𝜆) when 𝛼 

fluctuates. 

 

 
Figure 1: V ′(λ ) as the value of α varies . 

 

With reference to Figure 1, we observe that the 

horizontal velocity profile has not been affected by the 

curvature parameter inside the dynamic area [0, 1.5], 

following this, the velocity profile decreases as the 

curvature of the stretching cylinder reduces. The 

outside surface of the cylinder acts as a flat surface 

when we take 𝛼 → 0. This indicates that as 𝛼 → 0, the 

viscosity effect decreases because fluid-contact area of 

the surface moves toward the tangential position. 

 

 
Figure 2: V ′(λ ) as the value of α varies . 

 

 
Figure 3: V ′′(λ ) as the value of α varies . 

 

As we see in Figure 2, throughout the dynamic area [0, 

1], the curvature parameter has essentially negligible 

influence on the horizontal velocity profile of the 

velocity field. Within the region [1, ∞[ the velocity 

component asymptotically approaches to zero. The 

velocity within [1, ∞[ , in this case, is the free stream 

velocity and in this region as 𝛼 increases, the velocity 

profile increases. 

 

Figure 3 demonstrate the stress profile 𝑉′′(𝜆) as the 

parameters α varies. The coefficient 𝑉′′(0) for various 

values of 𝛼 is displayed in Table 1. According to this 

table, the skin friction coefficient obtained by FDM 

agrees with the values obtained from Rangi et al. 

(2012). It is observed that the results agree well with 

earlier findings and hence the authenticity of our 

method to this problem is justified. 
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Table 1: Skin friction coefficient V ′′(0) is compared 

using FDM with that of [26]. 

α Rangi et al. (2012) Our Method 

0.00 0.927680 0.927683 

0.25 1.232587 1.232587 

0.50 1.477233 1.477231 

0.75 1.232587 1.232587 

 

6. CONCLUSION 

In this chapter, we use finite difference approach to 

solve the boundary layer flow past a stretching 

cylinder. We employ finite difference method (FDM) 

is used to solve the problem for different values of 

parameter 𝛼. Furthermore, comparative study of the 

values of 𝑉′′(0) by FDM with that of values reported 

in Rangi et al. (2012) has been done in Table 1. 

Our approach produced a solution that is consistent 

with the one found in Rangi et al. (2012). Based on 

our approach, the results summarize that the curvature 

of the stretching cylinder is a crucial parameter that 

affects the flow. 
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