New Mathematical Physics

Souravlal Singha IPGME & R

Abstract – In this paper, we propose a novel approach to understanding energy changes using a new algebraic framework where 1^0 represents "false", 1^1"true", 1 represents "unknown". This framework allows us to explore the manipulation of static energy states in a more flexible manner.

INTRODUCTION

Energy, a fundamental concept in physics, is often regarded as a static quantity. However, the notion of changing this energy state can be reinterpreted through a new algebraic lens. This paper illustrates how we can manipulate the static energy of a body, using numerical representation that correspond to true, false and unknown values.

Static energy example

Let us consider a body (body A) with an initial static energy of 76 calories. Our goal is to adjust this energy to 78 calories.

> Current energy state : Ea=76 calories Target energy state ETarget =78calories

Algebraic Representation:

To transform 78 calories, we utilise our new algebraic definitions: 78 calories $=1^0(1^0=false)$ Energy Manipulation: we can express this transformation as follows:

78calories=1^0 =1^1(1^1=true) 78cal=1^0 ×1^0 =1^1 78cal=1^0/1^0 =1^1 etc

Through this representations, we demonstrate that it is feasible to conceptualization changes in energy states using our algebraic framework.

CONCLUSIONS

This analysis shows that we can effectively manipulate the static energy of a body by leveraging The definition of 1^0=false 1^1=true and 1=unknown By adopting this algebraic approach, we gain insights into the potential for energy transformation, challenging traditional views on static energy states.