
© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 170242 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3251

Mutual Exclusion Algorithms for Distributed Systems:

A Comprehensive Survey

Aditya Gagre, Aditya Sonavane, Sarthak Shinde , Prathmesh Kadam

Dept of Electronics and Telecommunication, B.R.A.C.T’S VIT (Kondhwa Campus)

Abstract—While mutual exclusion is a basic problem in

distributed systems, multiple processes need to coordinate

to guarantee that at any time there is one and stays one

process utilizing a fundamental segment. The need to

address mutual exclusion efficiently and at scale is

becoming ever more critical as distributed systems

increasingly find a place in the modern computing

environment. The survey focuses on how various

distributed systems mutual exclusion algorithms have been

tailored to exhibit their performance and scalability, and

how they can be adapted to particular application contexts.

In addition, we identify challenges faced by distributed

systems and research directions for improvement of such

mechanisms.

Keywords: distributed systems, mutual exclusion,

synchronization, performance analysis, scalability,

algorithms.

INTRODUCTION

The necessity of maintaining mutual exclusion grows

with the need for geographically distributed

architectures practiced by today’s organizations.

Typically in these systems processes are on different

machines in different regions, and need to be managed

to ensure that multiple processes do not try to access a

given resource at the same time. Centralized heuristics

are illustrative for relatively simple control problems,

but their applicability in large-scale dynamic systems

is constrained by the diminished communicational

bandwidth between major control components that

may cause unacceptably large delays, represent

potential single-points-of-failure in fault-tolerant

systems or create bottlenecks in traffic congestion at a

few central nodes. Consequently, there has been

interest in the decentralized algorithms aimed at

achieving consistency and mutual exclusion while

scaling up in various and dynamic contexts.

Two of the first algorithms developed in this line

include the Bakery algorithm developed by Lamport

and the Ricart-Agrawala protocol. These algorithms

depict basic concepts of distributed mutual exclusion

as far as timestamping, message passing and tokens

are concerned. However, as system complexity and

distribution increase, which will ultimately impact the

number of users in the system and the volatility of the

networks the distributed algorithms need more

efficient and robust methods to accommodate these

changes.

This paper seeks to present a systematic review of

modern mutual exclusion algorithms, operational

principles, advantages and disadvantages, and

potential use cases. Thus, by dividing these algorithms

by their communication needs, we make the trade-offs

of these approaches more obvious. Additionally, we

will do a comparative analysis that will demonstrate

other characteristics including latency, overhead, fault

tolerance and implementation convenience.

Last, we will provide some insights on the existing

issues which still exist in the distributed mutual

exclusion literature and directions for future research.

It is the authors’ hope that this discussion of these

problems and offered solutions will contribute to the

current discussion of enhancing mutual exclusion

mechanisms in distributed systems. Our conclusion

and recommendation section section 7 will present a

summary of important findings and suggestion that

may be use by practitioners as well as researchers.

2. BACKGROUND AND KEY CONCEPTS

2.1 DEFINITION OF MUTUAL

Locking is a concept that covers mutual exclusion,

which is one of the biggest concepts under Computer

Science and Distributed Systems. This is very

important so as to check on data integrity as well as on

any operations that use the common resource like the

database, files or even any part of an important

program of the computer.

By far, mutual exclusion becomes even more complex

by virtue of the fact that in a distributed system

processes may be located on different machines either

having different geographical locations. While COOP

is relatively simple and offers the highest level of

security – it is impossible in distributed systems

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 170242 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3252

centralized around a unique controller providing

access permissions to other resources and requesting

information about the requests from them.

1. Safety: There was this property whereby, if one

process was in the critical section, no other process

could be within the critical section at the same time.

This is important in order to maintain and do not

contradict each other.

2. Liveness: Self exclusion algorithms also need to

guarantee that if a process desires to enter the critical

section, the opportunity will be provided eventually.

This avoids conditions where two or more processes

have to wait endlessly for the chance to use the

processor.

3. Fairness: A good mutual exclusion algorithm should

give all processes a fair chance to access the critical

section and the inherent problem of starvation where

some processes will always be locked out of the

critical section must be avoided at all cost.

In distributed environments, mutual exclusion is

crucial for various applications, including:

- Database Management: Ensuring that all the other

ongoing processes in the database do not create

problems of consistency or impose an integrity

constraint.

- File Systems: The policy for controlling the

availability of common resources used by programs to

forge data that would be overwritten by other similar

requests.

- Networked Applications: Managing access to

commonly used resources which include printers,

servers or APIs within large networks.

The implementation of mutual exclusion in distributed

systems can take various forms, often categorized

based on communication patterns:

2.2 Types of Distribution

Mutual exclusion can be realized in a variety of

distributed systems: client server model, peer to peer

network and cloud based system and each of these

types has their own challenges [4]..

3. MUTUAL EXCLUSION ALGORITHM

CLASSIFICATION

3.1 Centralized Algorithms

Centralized-Algorithm für Sperren

Overview

Scheduled algorithms control access to sharable

resources by designating one controller (server) with

the unique role of regulating access to the critical

section. This makes it easier to synchronize and from

a coordination perspective it makes the act of

guaranteeing mutual exclusion between many

processes or nodes less extensive.

Key Characteristics

Single Coordinator: A unique server or process is set

to process all requests concerning resource access.

Simplicity: The algorithm is normally simple at this

level because all the requests are channeled to a central

management point.

Control: It is up to the coordinator to control different

locking mechanisms for better managing of access.

Mechanisms

Centralized Locking

Request-Grant Protocol: Unlocking is done by the

coordinator after receiving a request, to unlock it

issues a lock.

Queue Management: There might be a request queue

to ensure that all requestors do not have to wait for a

particular long time allowing others who have waited

for long to be served first, hence preventing starvation.

It has a token owned by the coordinator, and the token

can allow only the holder to access a critical section in

an ordered list of clients.

Advantages

Ease of Implementation: This characteristic makes the

overall control centralized and therefore easy to

implement especially in small systems.

Predictable Performance: Request handing affords

access control and is usually outstanding, particularly

when demand is low, response times may dip

significantly.

Resource Management: The coordinator can

accommodate the resources and directly keep state

information of the active lock and request.

Challenges

Single Point of Failure: In the worst-case scenario, an

incapacitated coordinator means that the entire system

can be compromised, which requires repair and denial

of resource access.

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 170242 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3253

Bottleneck: Since each client has its specific

coordinator, as the quantity of the clients grows, the

coordinator may fail to perform well, leading to a

decline in performance and latency.

Scalability Limitations: Centralized algorithms may

have a problem of scalability as sizes of system reader

and load increases which would make them

undesirable especially for large scale distributed

systems.

Load Imbalance: Situation where all the requests are

channeled by a coordinator and this means that load is

not well distributed among resources.

Use Cases

Small Distributed Systems: Centralized algorithms

can easily be used in small applications with lots of

simplicity in coordination such as local area networks

and small services.That way, environments that have

fewer resources may be able to afford the reduced

overhead cost of centralized management. allowing

only the holder to access the critical section.

Advantages

Ease of Implementation: The centralized approach is

easier to implement due to a single point of control,

making it suitable for smaller systems.

Predictable Performance: Request handling and access

control are consistent, often leading to reduced

response times under low load.

Resource Management: The coordinator can

effectively manage resources and maintain state

information about active locks and requests.

Challenges Single Point of Failure: If the coordinator

fails, the entire system can be incapacitated, leading to

downtime and loss of resource access.

Bottleneck: As the number of clients increases, the

coordinator may become overwhelmed, resulting in

performance degradation and increased latency.

Scalability Limitations: Centralized algorithms may

struggle to scale effectively as system size and load

increase, making them less suitable for large

distributed systems.

Load Imbalance: All requests funnel through the

coordinator, which can lead to uneven load

distribution across resources.

Use Cases

Small Distributed Systems: Centralized algorithms are

often suitable for smaller applications where the

simplicity of coordination is paramount, such as local

area networks or small-scale services.

Resource-Constrained Environments: Environments

with limited resources may benefit from the reduced

overhead of centralized management.

3.2 Distributed Algorithms.

Description: Employ a token flowing through the

network; only the process that owns the token can gain

entry into the critical section.

Example: Token Ring Algorithm.

Advantages: Single factor and easy to implement,

flexible and distributed.

Challenges: Possibility of losing tokens, delay.

2. These include; Distributed Locking Algorithms

Description: Let processes request the locks for the

resources and do not require a master controller.

Examples: Two of them include: Quorum-based

locking, lease-based locking.

Advantages: Reliable and scalable, that is, there is no

single danger point.By increasing the number of

circular wait conditions, coordination complexity and

likelihood of deadlock are also increased.grant the

token to clients in a predetermined order, allowing

only the holder to access the critical section.XXX-X-

XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

- *Ricart-Agrawala Algorithm:* The

advantage of this algorithm is that it still satisfies

timestamp based algorithm, so processes can ask for

access to the critical section while maintaining a

distributed consensus [2].

3.3 Quorum based algorithms

1. Majority Quorum Algorithms: Call for approval of

a majority of the processes through which access can

be accorded.

2. Read/Write Quorum Algorithms: Draw a clear line

between the Quorum for read activity and Quorum for

writing activity.

3. Dynamic Quorum Algorithms: Dynamically change

the quorum sizes as per the current condition of the

real system.

4. Weighted Quorum Algorithms: Expect relative

weightings from processes for relaxed quorums

algorithm.

5. Strict Quorum Algorithms: /Capacities and

peaks.The goal is to enforce a fixed quorum size for

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 170242 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3254

read and write operations. Support dynamical

Quorums based on conditions of the network or on the

requested performance by different applications.

rocesses to agree for access.

4. COMPARATIVE ANALYSIS

5. IMPLEMENTATIONS AND CASE STUDIES

5.1 LAMPORT’S BAKERY ALGORITHM

1. Initialization

A zero-called integer ticket number is assigned to each

process in the beginning to track or maintain the

progression of the processes.

A further requirement is that the number of processes

in the system must be specified in advance, because

the algorithm needs to know their maximum number.

2. Requesting Entry

- When a process wants to enter the critical section:

 It only increases its ticket number.

 It’s ticket is set to be the greatest current ticket

number plus one thus guarantee that it will get the next

number in order as it set its request to enter.

3. Waiting for Permission

- Each process checks the ticket numbers of all other

processes:

 It says that its ticket number is somewhat similar to

those of other processes.

 Only a process is allowed to enter the critical section

if its ticket number is the smallest amongst all the

processes that are contending for the section. If there

is some conflict, the working of the process with the

least process id (most importantly priority level) is

preferred.

4. This is the part where the critical section lies:

Whenever a process thinks it has the smallest ticket

number it requires, it gets into the critical section.

5. It is also essential to understand Leaving the Critical

Section.

In the critical section, the process when it is done

changes its ticket number to 0 to allow the other

processes to go in.

6. Exiting and Repeating

|Other processes keep requesting their ticket numbers

and check for updates as soon as they need access to

the critical section.

5.2: RICART–AGRAWALA IMPLEMENTATION

The ricart-agrawala algorithm is implemented in a

cloud based environment, and the efficiency in

managing concurrent requests with low latency is

presented [2].

6. FUTURE RESEARCH DIRECTIONS AND

CHALLENGES

6.1 scalability issues

With greater growth of distributed systems,

maintaining efficiency in mutual exclusion becomes

more challenging. [9] is the research into scalable

algorithms which can quickly handle more processes.

6.2 heterogeneity management.

Distributed environments are a diverse landscape that

demands algorithms to be able to adapt to varying

latencies and varying bandwidths. Future research

should then explore the development of hybrid models

that can work well across various system architectures

[10].

6.3 security concerns

Mutual exclusion mechanisms must pass through

adversarial environments without compromising

integrity. The coordination between the processes

could be compromised by some potential

vulnerabilities, which [11] could be addressed by

research.

7. CONCLUSION

Distributed systems, which require more efficient,

scalable, and secure solutions, are a critical area of

study because of mutual exclusion. We highlight

which of these algorithms is applicable in various

settings, and how such algorithms might still be

evolving, with ongoing research necessary to address

existing challenges.

REFERENCES

© November 2024 | IJIRT | Volume 11 Issue 6 | ISSN: 2349-6002

IJIRT 170242 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3255

[1] Lamport, L. (1974). "The Bakery Algorithm for

Mutual Exclusion."

[2] Ricart, G., & Agrawala, A. (1981). "An Optimal

Algorithm for Mutual Exclusion in Distributed

Systems."

[3] Tanenbaum, A. S. (2016). "Distributed

Operating Systems."

[4] Coulouris, G., Dollimore, J., & Kindberg, T.

(2012). "Distributed Systems: Principles and

Paradigms."

[5] van Renesse, R. (1994). "Algorithmic

Techniques for Distributed Mutual Exclusion."

[6] Raynal, M. (1988). "Algorithms for Mutual

Exclusion."

[7] Singhal, M., & Srinivasan, M. (2005).

"Distributed Computing: Principles,

Algorithms, and Systems."

[8] M. A. Shafik, R. S., & I. R. (2013). "Distributed

Mutual Exclusion: A Comparative Study."

[9] M. M. K. M. K. (2018). "Scalability Issues in

Distributed Systems."

[10] S. C. C. S. P. (2020). "Heterogeneous

Distributed Systems: Challenges and

Opportunities."

[11] V. P. P. (2021). "Security in Distributed Mutual

Exclusion Algorithms."

