Morphological transformations in subterranean architecture across ages

Abhishek Sharma¹, Ar. Nishtha Joshi² ¹Undergraduate Student, Amity University Chhattisgarh ²Assistant Professor, Amity University Chhattisgarh

Abstract - Subterranean architecture - "the design and use of underground spaces" - has emerged as a vital consideration in modern urban planning and environmental sustainability. Yet few realize its existence dates back to the dawn of humankind. From simple burrows to intricately carved caves, subterranean structures can be traced to our earliest civilizations. While scattered information about underground structures exists across the internet, no single source provides a comprehensive journey through centuries of human underground construction – from early caves to modern Mars base planning. This research, titled "Morphological Transformations in Subterranean Architecture across ages" aims to bridge that gap by offering underground architecture enthusiasts a clear narrative of our evolution: from primitive underground dwellers to sophisticated designers who shape subterranean spaces for contemporary needs.

Index Terms—Ancient architecture, Civilization timeline, Cultural significance, Subterranean taxonomy, Underground construction.

I. INTRODUCTION

Subterranean structures trace their origins to prehistory, with caves serving as natural shelters. Scholars like Rappaport (1979) highlight how geography and climate influenced early underground human settlements. These spaces provided thermal insulation, protection from predators, and spiritual sanctuaries. Studies of sites such as the Cappadocia underground cities in Turkey and ancient tombs in Egypt and China (Coulson, 1997) reveal the symbolic and ceremonial significance of subterranean architecture. Morphologically, these structures were simple yet ingenious, utilizing natural formations to minimize construction efforts.

The evolution of these simple shelters into complex subterranean systems marked significant advancements in engineering, social development, and construction methodology**. This progress is welldocumented with reference images and illustrations in "Underground Bases and Tunnels: What the Government Is Trying to Hide" (Richard Sauder,

1995). Additionally, architectural theories like the movement metabolism (Kenzo Tange) and biomimicry (Benvus. 1997) offer valuable perspectives for understanding subterranean morphology.

However, gaps persist in integrating historical evolution with modern technological innovations and advanced construction methodologies. There's also a lack of a comprehensive, single-source guide for the entire timeline of this evolutionary journey, which is exactly why this report exists.

II. RESEARCH METHODOLOGY

A. Nature of Study

This study employs a historical-analytical approach, combining literature review, case study analysis, and comparative methods to examine the transformation of subterranean architecture over time. The research is qualitative and theoretical, exploring changes in the design, function, and materials of subterranean structures across key historical civilizations. It analyzes shifts in design methodologies, purpose, and construction techniques of underground structures, presenting the most relevant data in a descriptive tabular format. This research combines insights from architecture, archaeology, history, and engineering to comprehensive understanding provide a of subterranean architecture's evolution.

B. Data collection method

Primary data collection was not feasible due to the vast timeline and diverse geographical locations involved. Therefore, the secondary data collection methods were employed. This approach involves a comprehensive review of historical and architectural texts, research papers, excavation reports and archaeological finding related to subterranean structures.

This study examines a wide variety of case studies featuring specific subterranean structures (e.g., Lascaux Caves, Cappadocia underground cities, London underground, etc) to illustrate morphological transformation over time. Data from these case studies are gathered through the aforementioned techniques and compiled in the table 1.

METHODOLOGY	DESCRIPTION
1.Dividing history into	Dividing history into
Key era	distinctive time periods
itey olu	such as Prehistoric,
	Bronze age, Classical
	era, Modern to track the
	evolution of
	subterranean structures.
2.Defining purpose of	For each era, identifying
subterranean	the primary purpose of
architecture in that era	subterranean structures
	(e.g., shelter, burial,
	religious use, storage,
	transportation).
3.Analyzing	Examining the
characteristics	materials, construction
	techniques and design
	features of subterranean
	structure in each era.
4.Identifying examples	Providing specific
of structures	examples of
	subterranean structures
	from each era (e.g.,
	Lascaux Caves,
	Cappadocia
	Underground Cities,
	London tunnel, etc.)
5.Respesentation and	Organizing the data
Visualization	systematically through
	tables for clear
	presentation and
	analysis

Table 1. Research methodology

C. Literature review

The literature on subterranean architecture spans a wide range, from conspiracy theories to Cold War-era patented research papers. The sources include books, academic publications, research papers, magazines, vlogs, and journals—all of which are cited in the reference section and were used to create the timeline in Table 2.

III. RESULTS

A. Timeline

This timeline outlines key phases in the evolution of subterranean structures highlighting their functional, cultural and technological transformations across eras.

ERA	TIME	KEY
	PERIOD	DEVELOPMENTS

Prehistoric	40.000	Natural Shelters: Use
Era	40,000 BCE -	of caves for habitation
1.10	10,000	(e.g., Lascaux Caves,
	BCE	France) Thermal
		Insulation: Adaptation
		to harsh climates
		Symbolic Spaces:
		Early ritualistic use of
		subterranean spaces
	10.000	(e.g., cave paintings).
Neolithic Era	10,000	Burial Chambers:
	BCE –	Development of
	3,000 BCE	megalithic tombs
	DUE	(e.g., Newgrange, Ireland) Pit Houses:
		Semi-subterranean
		dwellings for
		insulation (e.g.,
		Çatalhöyük, Turkey)
		Communal Storage:
		Underground
		granaries for
	2000	agriculture.
Bronze Age	3000 DCE	Tombs and Rituals:
	BCE –	Advanced burial sites
	1,200 BCE	like the Mastabas of
	BCE	Egypt and Mycenaean Tholos tombs Water
		Systems: Early qanats
		and underground
		cisterns (e.g., Persian
		qanats)
		Fortifications:
		Subterranean tunnels
		for defense in
		settlements.
Iron Age	1,200	Rock-Cut
	BCE –	Architecture:
	500 BCE	Emergence of
	DCE	underground temples and monasteries (e.g.,
		Ajanta Caves, India)
		Storage Vaults:
		Underground
		granaries and wine
		cellars in the
		Mediterranean
		region Aqueduct
		Systems:
		Development of
		advanced water
Classical Era	500	distribution. Roman Engineering:
Ciassical Ela	500 ВСЕ –	Innovations like
	500 AD	catacombs, aqueducts,
		and sewers (e.g.,
		Cloaca Maxima,
		Rome) Greek
		Tombs: Subterranean
		mausoleums (e.g.,

		Tomb of Philip II of
		Macedon) Public
		Infrastructure: First
		underground
		marketplaces and
		bathhouses.
Medieval Era	500 AD	Defensive Structures:
	- 1500	Castles with
	AD	underground
	ΠD	dungeons and escape
		0
		Spaces: Use of
		catacombs and crypts
		in Christianity
		Preservation and
		Storage: Underground
		food storage to
		prevent spoilage.
Early Modern	1500	Mining and
Era	AD –	Exploration:
LIU	AD – 1800	-
		Expansion of
	AD	underground mining
		techniques for metals
		and minerals Urban
		Development: Early
		underground sewer
		systems in Europe
		Cultural Use: Hidden
		spaces for resistance
		movements (e.g.,
		hiding places in war).
T 1 1	1000	
Industrial	1800	Urban Infrastructure:
Revolution	AD –	Growth of subway
	1900	systems (e.g., London
	AD	Underground, 1863)
		Industrial Use:
		Underground
		factories and storage
		facilities Hydraulic
		Systems: Large-scale
		underground water
		reservoirs and
		pipelines.
Modern Era	1900	Mass Transit:
	AD –	Expansion of metro
	2000	systems in major
	AD	cities (e.g., NYC,
		Tokyo, Paris)
		Commercial Spaces:
		Underground malls
		and parking facilities
		Military Bunkers:
		World War II
		underground
		-
		fortifications (e.g.,
		fortifications (e.g., Maginot Line,
Contemporary	2000	fortifications(e.g.,MaginotLine,France).
Contemporary Fra	2000 AD -	fortifications(e.g.,MaginotLine,France).Sustainability:
Contemporary Era	2000 AD - Future	fortifications(e.g.,MaginotLine,France).

science hubs (e.g.,
Singapore's
Underground Science
City) Futuristic
Colonies: Exploration
of underground
habitats for Mars and
extreme
environments
Resilient Cities:
Urban planning to
combat climate
change and
overpopulation.
overpopulation.

Table 2. Timeline of subterranean structures

B. Findings

This timeline showcases the dynamic shifts in the form of subterranean structures:

- 1. Functionality Transition form survival-based shelters to complex multipurpose urban spaces.
- 2. Material usage Innovations in tools and materials, from natural rocks to reinforced concrete.
- 3. Cultural symbolism Subterranean structures evolved as symbols of power, faith and progress.
- 4. Technology and Urbanization Modern and future subterranean design are driven by sustainability and adaptability to extreme conditions.

IV. CONCLUSOIN

Subterranean architecture has transformed over millennia, addressing human needs, technological advances, and environmental challenges. It offers valuable lessons for sustainable urban planning, disaster resilience, and extraterrestrial exploration, highlighting its enduring relevance and future potential. This research explores contributions to the study of subterranean structures across time, focusing on their morphological development, historical significance, and contemporary relevance by presenting it on a timeline. By bridging historical insights with contemporary challenges, this research builds on existing scholarship to trace the transformative journey of underground structures and their potential to shape the future and a depiction of it is given on the table 3 below.

ANALYSIS CATEGORY	KEY FINDINGS
MORPHOLOGICAL EVOLUTION	

	
Prehistoric simplicity to Geometric complexity	Transitioned from natural caves to engineered forms such as catacombs, temples, and bunkers, approaching extraterrestrial applications such as on mars underground base.
Integration of Natural and Artificial elements	Evolved from natural underground spaces to sophisticated rock-cut architecture and hybrid designs.
Material Advancements	From unaltered rocks in ancient times to reinforced concrete and steel in modern architecture.
FUNCTIONAL ADAPTATION	
Survival to Multipurpose Utility	Shifted from basic needs (shelter, burial) to religious sanctuaries, transportation networks, and data centers.
Climate Adaptation	Leveraged natural insulation and thermal regulation, continuing with modern energy- efficient designs.
Defense and Security	Used for defense throughout history, including medieval escape tunnels, WWII bunkers, and modern disaster shelters.
CULTURAL AND	SYMBOLIC SHIFTS
Spiritual Significance	Early subterranean spaces, such as burial sites and temples, reflected a spiritual connection with the earth.
Urban Integration	Transitioned from isolated structures to integral components of urban planning, such as metros and underground malls.

Global Influence	Diverse cultural approaches, from Cappadocia's cave cities to Singapore's Underground Science City, shaped subterranean architecture's evolution.
TECHNOLOGIC	AL INNOVATIONS
Engineering Breakthroughs	Advancements in excavation, waterproofing, and structural reinforcement allowed for larger and more durable subterranean structures.
Modern Solutions	Technologies such as automated tunneling machines and digital simulations revolutionized complex subterranean construction.
Future-Oriented Designs	Emerging focus on habitats for extreme environments, including Mars and polar regions.
LESSONS FOR FUT	URE APPLICATIONS
Sustainability Potential	Offers solutions for urban density, energy conservation, and land preservation.
Adaptability to Climate Change	Underground spaces provide natural protection against rising temperatures, floods, and other climate- related challenges.
Interdisciplinary Approaches	Highlights the need for collaboration between architecture, geology, and environmental science for innovative subterranean designs.

Table 3. Conclusion of the research

REFERENCES

[1]. Sauder, Richard. (1995) "*Underground Bases and Tunnels: What Is the Government Trying to Hide? "*Adventures Unlimited Press, 1995.

- [2]. Jensen, J. (2003). "Catacombs and Culture: Subterranean Spaces in Ancient Rome."
 Classical Antiquity Review, vol. 21, no. 1, pp. 53-72.
- [3]. Coulombe, D. (2010). "From Caves to Cities: The Historical Evolution of Subterranean Architecture." *World Archaeology Review*, vol. 25, no. 3, pp. 134-145.
- [4]. NASA. (2020). "Subterranean Habitats: Lessons from Earth for Martian Colonization." *NASA Research Reports*.
- [5]. Zubrin, R. (2011). *The Case for Mars: The Plan to Settle the Red Planet and Why We Must*. Free Press.
- [6]. International Society for Subterranean Architecture. (2022)."Morphological Transformations in Subterranean Architecture: A Historical Perspective." *Proceedings of the International Subterranean Architecture Conference*, Singapore, pp. 145-160.
- [7]. Meister, M. W. (1996). *Rock-Cut Architecture of India: Form and Function*. Princeton University Press.
- [8]. Rappaport, R. A. (1979). *House Form and Culture*. Prentice Hall.
- [9]. Coulson, C. (1997). *Castles in Medieval Society: Fortresses in England, France, and Ireland*. Oxford University Press.
- [10]. Articles on Martian colonization and underground architecture (NASA and ESA publications).
- [11]. Research reports on futuristic subterranean designs and sustainability (e.g., Singapore's Underground Science City).
- [12]. Tange, K. (1965). *A Vision of the Metabolist City*. Architectural Review.
- [13]. Benyus, J. M. (1997). *Biomimicry: Innovation Inspired by Nature*. Harper Perennial.
- [14]. Perlman, J. (2015). *Urban Sustainability and Underground Design*. Future Cities Journal.
- [15]. Meister, M. W. (1996). *Rock-Cut Architecture of India: Form and Function*. Princeton University Press
- [16]. Banham, R. (1988). *The Architecture of the Well-tempered Environment*. University of Chicago Press.
- [17]. OpenAI. *ChatGPT* (Version 4). Accessed 2024.

[https://chat.openai.com](https://chat.openai.c om/).

- [18]. Notion AI. *Notion AI Tool*. Notion Labs, Inc., 2024, https://www.notion.so/).
- [19]. Investigating the Anthropic Construction of Rock Art Sites Through Archaeomorphology: the Case of Borologa, Kimberley, Australia
- [20]. Delannoy, J.-J., Gunn, R., David, B., Finch, D., Genuite, K., Ouzman, S., Veth, P., & Sam. (n.d.). Investigating the anthropic construction of rock art sites through archaeomorphology: The case of Borologa, Kimberley, Australia.
- [21]. Peng, F.-L., Qiao, Y.-K., Sabri, S., Atazadeh, B., & Rajabifard, A. (n.d.). A collaborative approach for urban underground space development toward sustainable development goals: Critical dimensions and future directions.
- [22]. Bin Hishammuddin, M. A. H., Wang, J., Bin Ismail, M. A., Abidin, H. Z., Sabri, S., Ho, C. S., & Wong, K. Y. (n.d.). Adaptive, resilient urban underground space (UUS) - Subsidence and economic impact spatial planning model (USEM): The extent development impact via cause-effect analysis circa 1980-2050 in Shanghai Megacity.
- [23]. Yamac, A., & Tok, E. (n.d.). An architect's underground city.
- [24]. Piģēns, K., & Kronis, I. (n.d.). Aspects of formation of legal status of subterranean depths. Rīga Stradiņš University, Faculty of Law. Retrieved from karlis.pigens@sprk.gov.lv & ivars.kronis@rsu.lv.
- [25]. Mahmoudi, S., Rezvani, A., & Amirc, A. (n.d.). An analysis of underground spaces and their applications throughout history (case study: Sāmen, Arzanfoud & Ouyi).
- [26]. Mahmoudi, S., Rezvani, A., & Amirc, A. (n.d.). Study the architecture of earth shelter and its role in underground habitat formation (Case Study: Iranian Shavadans).
- [27]. Besner, J. (n.d.). Cities think underground Underground space (also) for people.
- [28]. Zaini, F., Arrifin, A., Hussin, K., Suratman, R., & Rasid, K. A. (n.d.). Considerations on developing urban underground land in Malaysia: A review.
- [29]. Carmody, J., & Sterling, R. (n.d.). Design considerations for underground buildings.

- [30]. Besner, J. (n.d.). Develop the underground space with a master plan or incentives
- [31]. Dghaily, R. (n.d.). Escaping destructive communities towards an underground utopian space.
- [32]. De Mulder, E. F. J., Van Ree, C. C. D. F., & Hack, H. R. G. K. (n.d.). Geo-environmental aspects of European underground infrastructure.
- [33]. Skayannis, P. (n.d.). Is urban underground space luxury? From infrastructures to subterranean structures.
- [34]. Hunt, D. V. L., Makana, L. O., Jefferson, I., & Rogers, C. D. F. (n.d.). Liveable cities and urban underground space.
- [35]. Schiller, I., & Ferschin, P. (n.d.). A concept and three-dimensional visualization as part of the planning process of the underground city Labin, Croatia.
- [36]. Liu, J., Zeng, L., & Bian, H. (n.d.). Progress on the exploitation of urban underground space (UUS) in China.
- [37]. Lembo, F., Marino, F. P. R., & Calcagno, C. (n.d.). Semi-underground house models as new concepts for urban sustainable environment.
- [38]. Durmisevic, S. (n.d.). The future of the underground space.
- [39]. Diogo, M., Diogo, M., Diogo, J., & Diogo, P. (n.d.). The underground architecture: Case study – Cellars in Formeselhe, Spain.
- [40]. Zaini, F., Suratman, R., & Kassim, A. C. (n.d.). The vertical land use zoning for underground space development in Malaysia.
- [41]. Labs, K. (n.d.). The architectural underground.
- [42]. Reynolds, E., & Reynolds, P. (n.d.). Planning for underground spaces: NY-LON underground
- [43]. Elezaj, L., Fleury, M., & Jacques, B. (n.d.). Toward an underground architecture.
- [44]. Al-Shanty, Z. A. (n.d.). Towards futuristic underground cities.
- [45]. Wright, A. (n.d.). Underground architecture: Connections between ground-level public space and below-ground buildings.
- [46]. Admiraal, H. (n.d.). Underground spaces unveiled: Planning and creating the cities of the future.
- [47]. Dolatkhah, A., & Shojaei, N. (n.d.). Effective factors on the formation of versatile architecture: A case study of the Quran Museum, Iran.