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Abstract— Predicting the severity of traffic accidents is 

crucial for improving road safety and developing 

effective intervention strategies. This review paper 

explores the application of Convolutional Neural 

Networks (CNNs) in predicting traffic accident severity. 

CNNs, with their ability to automatically learn spatial 

hierarchies of features, have shown promise in handling 

complex patterns within image and sensor data 

associated with traffic accidents. The paper provides a 

comprehensive analysis of various CNN architectures 

and their efficacy in predicting accident severity. It 

reviews existing literature, highlighting the strengths 

and limitations of different CNN-based approaches, 

and discusses the challenges in integrating CNNs with 

real-world traffic data. The review also identifies gaps 

in current research and suggests future directions for 

improving predictive accuracy and model 

generalizability. This paper aims to provide a 

consolidated view of the state-of-the-art in CNN-based 

traffic accident severity prediction and to guide future 

research efforts in this field. 

Index Terms— Traffic Accident Severity, 

Convolutional Neural Networks (CNNs), Deep 

Learning, Predictive Modeling, Image Analysis, Sensor 

Data, Traffic Safety, Accident Prediction etc. 

I. INTRODUCTION 

Traffic accidents are a significant global issue, 

resulting in severe injuries, fatalities, and substantial 

economic losses. The increasing number of vehicles 

on roads, coupled with complex driving 

environments, has made accident prediction and 

prevention a critical focus for researchers, 

policymakers, and urban planners. Understanding 

and predicting the severity of traffic accidents is vital 

for designing effective safety measures, optimizing 

emergency response, and ultimately reducing the 

impact of these incidents on society.[1] 

Traditional methods of predicting accident severity 

often rely on statistical models and historical data, 

which may struggle to capture the intricate 

relationships between various contributing factors, 

such as road conditions, driver behavior, weather, 

and vehicle dynamics. With advancements in 

technology, machine learning, particularly deep 

learning, has emerged as a powerful tool to overcome 

these limitations[2]. Among various deep learning 

techniques, Convolutional Neural Networks (CNNs) 

have gained significant attention due to their robust 

feature extraction capabilities, which are particularly 

well-suited for analyzing visual data and complex 

patterns. CNNs, originally designed for image 

recognition tasks, have shown tremendous potential 

in traffic accident severity prediction.[3] These 

models can automatically learn and extract relevant 

features from data, making them adaptable to a wide 

range of input types, including images, videos, and 

sensor data. By leveraging CNNs, researchers can 

build predictive models that not only consider the 

immediate visual context of an accident but also 

incorporate temporal and spatial information that is 

often critical in determining accident severity. This 

review aims to provide an in-depth analysis of CNN-

based approaches for predicting traffic accident 

severity[4-6].  

 

Figure: The structure of TASP-CNN 

It explores various CNN architectures, discusses their 

strengths and limitations, and evaluates their 

performance in different traffic scenarios. 

Additionally, the review highlights the challenges 

faced in integrating CNN models with real-world 

traffic data, such as data heterogeneity, model 

interpretability, and the need for large labeled 

datasets. By synthesizing the current state of 

research, this paper seeks to offer insights into the 

potential and future direction of CNN-based models 

in traffic safety applications.[7-9] 
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II. LITERATURE SURVEY 

The prediction of traffic accident severity has 

garnered significant attention in recent years, 

primarily due to the growing availability of data and 

advancements in deep learning techniques. 

Traditional models, such as logistic regression, 

decision trees, and random forests, have been widely 

used in accident severity prediction. However, these 

methods often struggle with capturing the complex, 

non-linear relationships present in traffic data, which 

limits their predictive accuracy. To address these 

limitations, researchers have increasingly turned to 

Convolutional Neural Networks (CNNs), which 

excel in feature extraction and pattern recognition, 

making them highly suitable for this task. 

1. Traditional Approaches to Accident Severity 

Prediction: 

Early research on traffic accident severity prediction 

predominantly utilized statistical and machine 

learning models that focused on structured data, such 

as weather conditions, road types, and driver 

demographics. For instance, Abdel-Aty and Pande 

(2007) employed logistic regression models to 

identify the significant factors influencing crash 

severity on highways. Similarly, Li et al. (2008) used 

decision trees to classify accidents based on their 

severity levels, highlighting the impact of road 

geometry and traffic conditions. While these models 

provided valuable insights, their inability to fully 

capture the spatial and temporal dynamics of traffic 

scenarios limited their predictive capabilities.[11] 

2. Emergence of Deep Learning Models: 

The advent of deep learning, especially CNNs, 

marked a significant shift in traffic accident severity 

prediction. CNNs, known for their ability to 

automatically learn hierarchical feature 

representations from raw data, have shown 

remarkable performance in image classification, 

object detection, and time-series analysis. These 

capabilities make CNNs ideal for processing 

complex traffic-related data, such as accident scene 

images, road conditions, and vehicle sensor 

outputs.[12] 

A notable study by Chen et al. (2016) introduced a 

CNN-based model to predict accident severity using 

dashcam footage and environmental data. Their 

approach demonstrated that CNNs could effectively 

identify critical visual cues, such as road obstructions 

and traffic density, that are often missed by 

traditional models. This study set the foundation for 

further exploration of CNNs in accident prediction 

tasks.[13] 

3. CNN Architectures for Traffic Accident Severity 

Prediction: 

Various CNN architectures have been explored in the 

literature to improve the accuracy and robustness of 

accident severity prediction. VGGNet, ResNet, and 

Inception models have been widely adopted due to 

their strong feature extraction capabilities. For 

example, Wang et al. (2019) used a modified ResNet 

architecture to analyze accident scene images, 

achieving superior accuracy compared to shallow 

neural networks and traditional models. The use of 

residual connections in ResNet allowed the model to 

learn deeper feature representations without the risk 

of vanishing gradients, making it highly effective in 

distinguishing between different severity levels.[14] 

In another study, Zhang et al. (2020) combined CNNs 

with Recurrent Neural Networks (RNNs) to capture 

both spatial and temporal patterns in traffic data. This 

hybrid model demonstrated enhanced performance 

by accounting for sequential dependencies in 

accident data, such as the progression of events 

leading to a crash. The integration of CNNs and 

RNNs allowed for a more comprehensive analysis of 

traffic scenarios, capturing both the visual and 

temporal aspects of accidents. 

4. Challenges in CNN-Based Severity Prediction: 

Despite their success, CNN-based models face 

several challenges in practical applications. One 

major issue is the requirement for large labeled 

datasets to train deep learning models effectively. 

Annotating accident data, particularly images and 

videos, is time-consuming and prone to 

inconsistencies, which can affect model 

performance. Additionally, CNNs often act as "black 

boxes," making it difficult to interpret their decision-

making processes. This lack of transparency can 

hinder their adoption in critical safety applications 

where explainability is crucial. 

Moreover, real-world traffic data is often 

heterogeneous, comprising various data types, such 

as images, sensor readings, and structured 

information. Integrating these diverse data sources 

into a unified CNN framework remains an ongoing 

research challenge. Recent studies, such as that by 

Liu et al. (2022), have attempted to address this issue 

by incorporating multi-modal CNN architectures that 

fuse data from different sensors, enhancing the 
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model's ability to learn from complex traffic 

environments. 

5. Future Directions: 

The literature indicates a growing interest in 

developing more sophisticated CNN-based models 

for traffic accident severity prediction. Future 

research is expected to focus on improving model 

interpretability through techniques such as Grad-

CAM and LIME, which provide visual explanations 

of CNN outputs. Additionally, the integration of 

generative models, like Generative Adversarial 

Networks (GANs), could be explored to augment 

training data and improve model robustness. 

Another promising direction is the incorporation of 

real-time data, such as live traffic feeds and 

connected vehicle information, to enable dynamic 

severity prediction. The continued evolution of CNN 

architectures, combined with advancements in edge 

computing and Internet of Things (IoT) technologies, 

will likely drive further innovations in this field. 

Paper 

& 

Year 

Proposed 

Technology 
Performance Research Gap 

Abdel-

Aty & 

Pande 

(2007) 

Logistic 

Regression 

Identified key 

factors in 

crash severity 

on highways 

Limited in 

capturing non-

linear and 

complex 

patterns in data 

Li et 

al. 

(2008) 

Decision Trees 

Classified 

severity levels 

based on road 

and traffic 

conditions 

Lacks spatial-

temporal 

dynamic 

understanding 

Chen 

et al. 

(2016) 

CNN with 

Dashcam & 

Environmental 

Data 

Improved 

identification 

of visual cues 

(e.g., 

obstructions) 

Requires large 

labeled 

datasets and 

lacks 

interpretability 

Wang 

et al. 

(2019) 

Modified 

ResNet for 

Accident 

Images 

High accuracy 

in 

distinguishing 

severity levels 

Struggles with 

heterogeneous 

data 

integration 

Zhang 

et al. 

(2020) 

CNN + RNN 

for Spatial-

Temporal 

Patterns 

Enhanced 

prediction 

accuracy by 

capturing 

sequential 

dependencies 

Computational 

complexity 

and data 

annotation 

challenges 

Liu et 

al. 

(2022) 

Multi-Modal 

CNN 

Fused diverse 

sensor data 

for improved 

accuracy 

Limited real-

time 

application; 

still 

challenging to 

fuse 

multimodal 

data 

effectively 

Xu et 

al. 

(2023) 

3D-CNN with 

Vehicle Sensor 

Data 

Superior 

performance 

on video-

based data 

Black-box 

nature reduces 

interpretability 

in decision-

making 

Kim et 

al. 

(2020) 

VGGNet with 

Weather and 

Road 

Conditions 

High feature 

extraction 

capability 

Requires better 

handling of 

imbalanced 

accident data 

Rao et 

al. 

(2021) 

Inception-

based CNN 

High 

precision in 

multi-class 

severity 

prediction 

Expensive 

computational 

resources 

required 

Singh 

& 

Gupta 

(2019) 

CNN + LSTM 

Hybrid Model 

Increased 

accuracy by 

capturing 

sequential 

events 

Challenges 

with 

scalability and 

generalization 

on diverse data 

Table: Research Gaps in Traffic Accident Severity 

Prediction Studies 

III. METHODOLOGY 

This review employs a systematic approach to 

evaluate the current state of CNN-based methods for 

predicting traffic accident severity. The methodology 

involves three primary steps: literature search, data 

extraction, and analysis. A comprehensive literature 

search was conducted using databases such as IEEE 

Xplore, Google Scholar, Scopus, and Web of 

Science, focusing on studies published in the past 

decade to capture recent advancements in deep 

learning and CNN architectures. The search terms 

included "traffic accident severity prediction," 

"CNN," "deep learning," "machine learning," and 

related keywords. Studies were selected based on 

their relevance, the novelty of the CNN architecture 

used, and the robustness of the methodologies 

applied. 

The inclusion criteria for selecting papers were 

studies that specifically utilized CNNs or CNN-based 

hybrid models for accident severity prediction, 

employed real-world data, and provided empirical 

results demonstrating model performance. Exclusion 

criteria involved studies that focused solely on 

traditional machine learning models, did not provide 

sufficient experimental details, or were limited to 

simulations without real-world validation. Data 

extraction involved gathering detailed information 

about each selected study, including the type of data 

used (e.g., images, videos, sensor data), CNN 

architecture employed, performance metrics, and key 

findings. Special attention was given to 

understanding how each model processed input data, 
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handled feature extraction, and integrated spatial and 

temporal information. 

The analysis focused on comparing the strengths and 

weaknesses of different CNN architectures, 

examining their effectiveness in various traffic 

scenarios, and identifying common challenges such 

as data requirements, model interpretability, and 

computational complexity. Statistical measures such 

as accuracy, precision, recall, F1-score, and Area 

Under the Receiver Operating Characteristic Curve 

(AUC-ROC) were used to evaluate the predictive 

performance of the models. Additionally, the review 

explored the data preprocessing techniques 

employed, such as data augmentation, normalization, 

and feature engineering, which play a critical role in 

enhancing CNN model performance. 

The methodology also included an examination of 

emerging trends and future directions in CNN-based 

severity prediction, such as the integration of multi-

modal data, real-time analytics, and explainable AI 

techniques. By synthesizing the insights gained from 

the reviewed studies, this review provides a 

comprehensive assessment of the current capabilities 

and limitations of CNN models in traffic accident 

severity prediction, offering valuable guidance for 

future research in this evolving field. 

This section outlines the methodology for predicting 

traffic accident severity using a comprehensive 

feature analysis approach. The methodology focuses 

on measuring the weight of traffic accident features 

and converting feature data into gray images for CNN 

processing, ultimately improving the predictive 

model's accuracy. 

A. Measuring the Weight of Traffic Accident’s 

Features 

To evaluate the combination relationships and 

contributions of traffic accident features, it is 

essential to measure the weights of both parent and 

child features. This process utilizes the Gradient 

Boosting Decision Tree (GBDT) method, where each 

feature's weight is calculated based on its 

contribution to the partitioning of decision tree nodes. 

Specifically, each feature's weight is the sum of 

squared improvements over the nodes where it serves 

as the splitting criterion. These weights are stabilized 

by averaging across multiple trees, yielding a reliable 

measure for feature importance. 

B. Converting Traffic Accident Feature Matrix to 

Gray Images (FM2GI) 

The FM2GI algorithm converts individual feature 

relationships into gray images to represent 

combination relationships of data features, 

leveraging the structure of Convolutional Neural 

Networks (CNNs). This transformation process 

involves defining a feature vector as a three-tuple, 

consisting of parent features, child features, and their 

associated weights. The algorithm categorizes the 

features, arranges them in descending order based on 

their weights, and organizes them into a structured 

matrix. This matrix is then reshaped into a gray 

image, capturing the combination relationships 

visually. 

Algorithm 1: Converting Feature Vectors to Gray 

Images 

1. The algorithm starts by identifying the parent 

feature with the maximum number of child 

features to initialize an all-zero matrix of 

appropriate size. 

2. Features are then filled into this matrix by 

ordering parent features and their corresponding 

child features based on descending weights. 

3. Finally, the matrix is reshaped into a gray image, 

representing the data's combination 

relationships. 

Algorithm 2: Parallel Conversion of Feature Matrices 

The FM2GI algorithm operates in parallel, 

converting each feature vector of the dataset into a 

gray image simultaneously. It allocates threads based 

on the dataset size and uses the gray image 

conversion process on each feature vector, storing the 

results in a linked list for CNN processing. 

This methodology effectively captures complex 

relationships between traffic accident features and 

enables the TASP-CNN architecture to better predict 

accident severity by using image representations of 

feature interactions. 

IV. TASP-CNN ARCHITECTURE 

The TASP-CNN (Traffic Accident Severity 

Prediction Convolutional Neural Network) 

architecture is designed specifically for predicting the 

severity of traffic accidents based on images of 

accident data. Here's a detailed explanation of its 

structure: 

Structure Overview: 
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The TASP-CNN consists of four main parts: model 

input, convolution layer, fully connected layer, and 

model output layer. 

1. Input: 

• The input to the TASP-CNN is a gray-scale 

image representation of traffic accident data sets. 

• The image includes five parent features and 

twelve child features of traffic accidents. 

• The input is mathematically represented as a 

matrix where: 

o N is the size of the data set. 

o PC is the number of parent features. 

o CC is the maximum number of child features 

among all parent features. 

2. Convolution Layer: 

• The convolution layer extracts abstract features 

from the traffic accident data sets using multiple 

filters. 

• Convolution operation: 

o Each pixel in the input image is indexed as Pc,i,j

, representing the pixel element in row i and 

column j of the channel c. 

o Each weight in the filter is represented by 

wc,m,n, where m and n are the row and column 

indices of the filter weights, respectively. 

o The convolution operation is defined as: 

ai,j=f(∑ ∑ 𝑊𝑐,𝐹
𝑚=1

𝐶
𝑐=1 m, nPc, i + m, j + n +

wb) 

o where: 

▪ ai,j is the element at column j in row i of the 

feature map. 

▪ C is the number of channels. 

▪ F is the filter size (both width and height). 

▪ wb is the bias term. 

▪ f is the activation function (ReLU). 

o The ReLU activation function used is defined as: 

f(x)=max(0,x) 

3. Fully Connected Layer: 

• After the final convolution layer, the extracted 

high-level features are flattened into a one-

dimensional vector. 

• The flattening process is represented as:  

𝑎𝑓𝑙𝑎𝑡𝑡𝑒𝑛 = [𝑎1, 𝑎2, … , 𝑎𝐶] 

• Where 

• C=total number of features 

• These features are then passed through fully 

connected layers, which compute outputs using 

weights and biases as follows: 

• 𝑦 = 𝑤𝑓𝑎𝑓𝑙𝑎𝑡𝑡𝑒𝑛 + 𝑏𝑓 

where: 

o wf is the weight matrix. 

o bf is the bias term. 

4. Output Layer: 

• The output layer uses the softmax activation 

function to classify the severity of the traffic 

accident into three categories: 

o Slight traffic accident 

o Serious traffic accident 

o Fatal traffic accident 

Batch Normalization: 

• Batch normalization is applied between 

convolution layers, between convolution and 

fully connected layers, and within the fully 

connected layers to accelerate training and 

prevent overfitting. This architecture enables the 

model to learn complex patterns in traffic 

accident data, effectively predicting the severity 

of accidents based on image data input. 

Paper & 

Year 

Algorithm(s) 

Used 
Results 

Abdel-

Aty & 

Pande 

(2007) 

Logistic 

Regression 

Achieved significant insights 

into crash factors, though 

limited by inability to capture 

complex non-linear 

relationships. 

Li et al. 

(2008) 

Decision 

Trees 

Demonstrated clear 

classification of accident 

severity but struggled with 

high-dimensional, multi-modal 

data. 

Chen et 

al. 

(2016) 

CNN for 

Dashcam and 

Environmental 

Data 

Achieved notable 

improvements in accident 

prediction through visual cue 

detection; showed higher 

accuracy than traditional 

models. 

Wang et 

al. 

(2019) 

Modified 

ResNet 

Achieved 90%+ accuracy in 

distinguishing severity levels; 

benefited from deeper feature 

extraction but faced data 

heterogeneity issues. 
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Zhang 

et al. 

(2020) 

CNN + RNN 

Hybrid Model 

Outperformed standalone CNN 

and RNN models by capturing 

spatial-temporal dependencies; 

improved AUC-ROC scores. 

Kim et 

al. 

(2020) 

VGGNet with 

Weather and 

Road 

Condition 

Data 

Achieved high precision and 

recall rates, though imbalanced 

data affected performance on 

rare severe cases. 

Rao et 

al. 

(2021) 

Inception-

based CNN 

Improved multi-class severity 

prediction accuracy by 

leveraging inception modules 

for multi-scale processing. 

Singh & 

Gupta 

(2019) 

CNN + LSTM 

High accuracy due to sequential 

event processing; faced 

generalization challenges 

across varied traffic 

environments. 

Liu et 

al. 

(2022) 

Multi-Modal 

CNN for 

Sensor Fusion 

Showed enhanced accuracy by 

combining image, sensor, and 

structured data but required 

extensive computational 

resources. 

Xu et al. 

(2023) 

3D-CNN with 

Vehicle 

Sensor and 

Video Data 

Demonstrated high AUC-ROC 

and F1-scores; effective in 

video-based data but was 

computationally intensive and 

less interpretable. 

Table: Comparative Analysis of Algorithms Used in 

Traffic Accident Severity Prediction Studies 

V. CONCLUSION 

The TASP-CNN architecture demonstrates an 

effective approach to predicting the severity of traffic 

accidents by leveraging deep learning techniques 

tailored specifically for image-based data 

representation of traffic incidents. The model is 

structured with multiple convolution layers that 

extract critical features from the input data, followed 

by fully connected layers that refine these features to 

make precise predictions. By employing techniques 

such as batch normalization and ReLU activation, the 

TASP-CNN achieves improved training stability and 

prevents overfitting, enhancing its overall predictive 

performance. The use of the softmax function in the 

output layer allows the model to classify traffic 

accident severity into distinct categories, enabling 

timely and accurate assessment of accident impacts. 

This architecture shows significant potential in 

applications where rapid and reliable accident 

severity predictions are crucial for emergency 

response, traffic management, and enhancing road 

safety measures. Future work could further optimize 

the model and explore its integration with other data 

sources to improve prediction accuracy and 

robustness. 
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