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Abstract: The present paper we give numerical solution 

of the Falkner-Skan equation for the study of two-

dimensional permeable steady boundary-layer viscous 

flow over a flat plate in the presence of non-Newtonian 

power law fluid which is represented by a power law 

model. The outer free stream velocity is defined in the 

form of a power-law manner i.e., it varies as a power of 

a distance from the leading boundary-layer. Generalized 

similarity transformations are used to convert the the 

governing boundary layer equations in to a third order 

nonlinear differential equation which is famous Falkner- 

Skan equation for non-Newtonian fluid. This equation 

contains three flow parameters that is the Stream-wise 

pressure gradient (  ), the porous parameter ( ), and 

)(m  is the power law relation parrameter. The 

governing equations (nonlinear partial differential 

equations) have been converted to an equivalent 

nonlinear ordinary differential equation along with 

boundary conditions by means of which is solved using 

the Keller-box method. The results are obtained for 

velocity profiles, viscosity profiles and skin friction for 

various values of physical parameters and are discussed 

in detail. It is also found that the drag force is reduced 

for dilatant fluids compared to pseudo-plastic fluids. The 

Physical significance of the flow parameters are also 

discussed in detail. 

 

Index terms: Boundary-layer equations; Falkner-Skan 

equation; Numerical solution; porous media; non-

Newtonian fluid; power-law fluid, Permeable wedge, 

suction/injection 

 

I. INTRODUCTION 

 

The study of the boundary-layer flow of the 

Newtonian and non-Newtonian fluids provides 

valuable insights into industrial and technological 

applications. The Newtonian fluids such as air or water 

serve as a benchmark for most of the fluid flow 

behaviour. However, the behaviour of non-Newtonian 

fluids that are found many industrial applications is 

markedly different from those of the Newtonian fluids. 

Particulate slurries, coal in water, sewage sludge, inks 

and also multiphase mixtures i.e. oil-water emulsions, 

foams, gas-liquid dispersions are classified as non-

Newtonian fluids. Generally, these fluids have the 

property of a variable viscosity. One class of material 

of considerable interest is that the effective viscosity 

depends entirely on the rate of shearing on the total 

flow rate. For example the most commonly used 

models for the variable viscosity are Ostwald-de 

Waele, Carreau rheological fluid, Carreau-Yasuda, etc 

which form a relationship between shear-stress and 

shear ratio. Because of such applications Acrivos et al 

(1960) and Schowalter (1960) have obtained equations 

for the boundarylayer flow of a non-Newtonian fluid 

particularly the numerical simulations of Acrivos et al 

(1960) show that thickness of the boundary-layer for 

the shear-thinning fluids is rather large compared to 

the shear-thickening fluids. It is further shown by Wu 

and Thomson (1996) that for modirate values of the 

Reynolds number, the boundary-layer equations for 

shear-thinning fluids provide accurate solutions. 

However, it is common practice that the boundary-

layer forms when the Reynolds number is quite large. 

 

For shear-thickening fluids, Andersson and Irgens 

(1998) have shown that the boundary-layer equations 

predict finite-width of the boundary-layer. To support 

these results Filipuss et al (2001) gave rigorous 

mathematical analysis that also predicts that same 

finite-width of the boundary-layer. On the other hand, 

a self-similar solution of the boundary-layer equations 

results into a overshoot in the velocity profiles. In a 

small region in the boundary-layer, these velocity 

profiles exceeds the velocity of the mainstream flow. 

Denier and Dabrowiski (2004) have even shown that 

these are double solutions for the boundary-layer 

equations when a self-similar form is assumed. They 

further showed that mode 1 solution represents 
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forward flow while mode 2 or mode 3 solutions 

become increasingly oscillatory with alternatively 

forward and reverse regions of flows. Results of 

Griffiths (2017) shown that the effects of shear-

thinning are to stabilize the boundary-layer flow. 

 

In this paper, we consider the solutions of the Navier-

Stokes equations under the limit of large-Reynolds 

number flow that exhibiting a power-law rheological 

model. Among the many possible non-Newtonian 

fluids, we have chosen the Ostawald-de Waele fluid 

which has a sound theoretical basis represents the 

complex viscosity and also it is often adopted to 

describe the rheological phenomena of the pseudo 

plastic fluids. [The boundary-layer equations admit the 

self-similar solutions since the mainstream flow 

outside the boundary-layer is approximated in power 

of the distance along the wedge wall.]. To solve the 

transformed boundary-layer equation numerically, we 

use the Keller-box method which is second-order 

accurate (Keller 1971) is used for full non-linear 

problem. This enables us to precisely identify the 

behaviour of the boundary-layer flow of the Ostwald-

de Waele fluid. 

 

Rest of the paper is organized as follows. In section 2, 

we set-up the problem in question in which the Cauchy 

momentum equations for non-Newtonian fluid. These 

reduce to the boundary-layer equations with inclusion 

of a non-linear term in the equation which models the 

viscosity variations. The appropriate similarity 

transformations are also presented. Section 3 devotes 

the full numerical solution of the problem. Details of 

numerical Keller-box method are also presented. Final 

section presents important findings of the problem. 

Here we discuss all significant results for shear-

thinning and Shear-thickening fluids in terms the 

velocity and viscosity shapes. Interestingly, the 

governing equation exhibits solutions for some 

parameter ranges. 
 

2. FORMULATION OF THE PROBLEM 
 

 

We consider the two-dimensional laminar boundary-

layer flow of a viscous and incompressible fluid over 

a flat plate through porous media with a non-

Newtonian power-law fluid. The positive x-coordinate 

is measured along the surface and the positive 

coordinate is measured normal to the x-axis in the 

outward direction towards the fluid. The fundamental 

equations for the flow of an incompressible fluid are 

the conservation of mass, linear momentum. We 

express these equations in the absence of body forces 

as follows 

 

where   is the fluid density, p  is the pressure,  k  is 

the permeability of the porous medium and   is the 

deviatoric stress tensor and is defined as  

                                                                                

)(q =                                                 (3) 

where q is the second invariant of the strain-rate 

tensor. The shear rate q  is given by 

                                                                              

( )2

1

:
2

1
qq  =q                                       (4) 

with 

                                                                          

)( Tuu
 +=q                                 (5) 

The constitutive viscosity relation   for the Ostwald-

de Waele power-law model is given by 

                                                                                

mK )(q=                                    (6)  

 

where K  is the material constant and the index m
represents the degree of shear thickening or thinning. 

We note that the Newtonian viscosity relationship is 

recovered for 1=m . This parameter m  is an 

important index which subdivides the fluids into 

pseudo-plastic fluids or shear- thickening when 

1m  and dilatants or shear-thinning for 1m . 

Bird et al (1987) can be referred to the through account 

of the rheological data on m . The hydrodynamics of 

other values of m shall be discussed later. The velocity 

vector ),( vuq = where u  and v  are the velocity 

components in x  and y directions respectively, and 

thus from (4), we have that 
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using (5). We consider the problem of two-

dimensional, incompressible and steady state laminar 

boundary-layer flow over a wedge which moves with 

velocity )(0 xU w in a non-Newtonian power-law 

fluid. The positive x -coordinate is measured along 

the surface of the wedge with the apex as origin, and 

the positive y -coordinate is measured normal to the 
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x-axis in the outward direction towards the fluid. 

Under these approximations, the governing equations 

for the steady two-dimensional laminar viscous flow 

of a non-Newtonian fluid. It is considered that the 

wedge moves with velocity )(xU w  along or opposite 

to the mainstream flows )(xU . Using the standard 

boundary-layer approximations and for large eR we 

have that 
x

u

y

u


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
 and

x

p

y

p


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. Thus the 

system (1)-(2) can be written as 
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Similarely, we get 
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where 

 

                                                                             

y

u




=q                                                 (11)      

 

To this end, we consider the two-dimensional 

incompressible flow of the non-Newtonian Ostwald-

de Waele power-law fluid over a moving wedge which 

is moving wedge which is moving with velocity wU 0  

either along the mainstream flow with  0U  or opposite 

to it. The Cartesian co-ordinate system is adopted to 

the wedge wall the inviscid main stream velocity 0U is 

assumed in the form of power of a distance that is 

                                                                         
n

o xUxU *

0 )( =                                              (12) 

 

where U  is a non-negative constant and n  is a 

constant related to the pressure gradient defined later 

in this section. Now, in order to derive boundary layer 

conditions, the physical quantities and variables 

specified in (1) and (2) are non-dimensionlized 
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UL ,, and P  are certain reference values. These 

choices lead to define the Reynolds number for the 

Ostwald-de Waele power- law fluid as 
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Where  is the kinematic viscosity, for a large Re  the 

flow divides in to near-field (boundary- layer region) 

and far field regions In the boundary-layer region of 

thickness of  , a very large velocity gradient exists. 

The boundary layer equations can be derived based on 

the approximations concern the following 

measurements. Let )(0 xU  be the velocity of the 

mainstream flow along x-direction outside the 

boundary layer. The key idea involved in making the 

boundary layer approximation is that the viscosity 

effects are dominant in the adjacent to the surface. If 

 is the thickness of the boundary layer, then 

L . Hence V is much smaller than U . Also 

other basic approximation is  
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the pressure p  in the boundary layer is a function of 

x  only (to the approximation). With L   the 

term
2
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x
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2

2

y
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



. Velocity compared to the free stream velocity U  

with these assumptions, we have the number of 

component equations reduce to those in the flow 

directions. The number of viscous terms in the 

direction of flow can be reduced to only dominant 

term. This amounts viscous terms are measured in 

terms of the boundary-layer thickness. And the inertial 

terms of the characteristic length L. Thus, along with 

these boundary- layer approximations. Equations (8), 

(9) and (10) for steady case may be written as 
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where K  is called the consistency coefficient and m 

is non-dimensional, and the dimension of K  depends 

on the value of m . The two-parameter rheological 

equation (15) is known as the Ostwald-de-Waele 

model or more commonly, the power-law model. The 

parameter m is an important index to subdivide fluids 

into pseudo-plastic fluids )1( m  and dilatant fluids

)1( m . The extreme cases of the power-law model 

are )1( =m for Newtonian behaviour and )0( =m  

for plastic or solid behaviour. To determine the 

pressure distribution, the velocity at the edge of the 

boundary layer is equal to the mainstream flow 

)(0 xU  and by Bernoullis theorem, the pressure 

would be constant in the inviscid flow influenced by 

the applied magnetic field. In order that equations (14) 

and (15) reduce to similarity form, we assume that the 

boundary conditions for these equations are of the 

following form 

at )(,0:0 xVvuy w===  

as →→ 0: Uuy                                     (17) 

where )(0 xwU is the stretching surface velocity 

which obeys the power-law relation 

mxUxwU = 00 )( .. The conditions on the velocity 

at infinity mean that the velocity approaches the 

mainstream flow far-away from the wedge surface. 

Thus, the main boundary layer effects are restricted to 

the immediate neighbourhood of the surface. System 

(14) and (15) allows reducing both dependent and 

independent variables to one each by the following 

similarity transformations. This is further evidenced 

by the similar velocity profiles existing in the 

boundary layer for any x  in the stream wise direction. 

The pressure change across the boundary layer is 

negligible (i.e., constant) and pressure can be treated 

as function of only flow direction. Since the pressure 

is uniform throughout the flow field from the 

Burnoullis equation, with = 0Uu outside the 

boundary layer, we have 
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It is clearly observed that the system (14) and (15) with two unknown functions u  and v  are easily reduced to 

an equation with one unknown function by defining the stream function ),( yx as 
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with boundary conditions 
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The similar solutions of equation (21) can be obtained by using similarity transformation 
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where   
1

)1)(13(*

+

−−
=

m

mn
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Substituting (23) in to (21) we get the following ordinary differential equation 
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and a new set of boundary conditions, 

                        ,)0( =f               ,0)0(' =f           and     1)(' =f                                                  (25) 

 

where 
1

0 )('')(
−

=
m

fm  where primes denote 

differentiation with respect to   and 



=
0

0

U

U w is the 

ratio of the wall velocity to the free stream fluid 

velocity .And 
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n
  is the pressure gradient 

variable parameter. The system (24)-(25) describes the 

two-dimensional permeable laminar boundary layer 

flow of a viscous fluid through porous media. Hence    
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injection parameter  > 0, represents suction and 
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is the permeability. For == 0 , the above 

problem reduces to the Blasius flow that describes a 

two-dimensional flow over a flat plate with mass 

transfer and stretch of the plate, and is studied by 

several investigators with different cases. The system 

(24)-(25) describes the flow of Ostwald-de-Waele 

fluid in the two-dimension boundary-layer flow. Since 

any analytical solution is usually not possible because 

of high non-linearity, we solve the system (24) and 

(25) numerically using the Keller-box method which 

is employed in most of boundary-layer simulations. 

 

3.   NUMERICAL SOLUTION 

We solve (24) with the boundary conditions (25) using 

Keller-box method for different values of m,   and 

 . We briefly give about two-point Keller-box 

method for the solution of (24). This scheme is very 

efficient and fast, and can be used to solve the 

boundary-layer problems. A detailed description about 

the method is given in Cebeci and Bradshaw (1977), 

Kudenatti et al (2013), and in the review paper given 

by Keller (1978).By using this method we are able to 

obtain approximations to the solutions of the original 

differential equation at each grid point. This method is 

unconditionally and has quadratic convergence even 

for non-uniform mesh points (Cebeci and Cousteix 

(1999)). To describe this method, the equation (24) 

with the boundary conditions (25) are rewritten in the 

form of system of first order ordinary differential 

equations and aregiven by 
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The above system necessarily produces a nonlinear algebraic system of equations for each grid. We 

linearize the above system by introducing, 
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Using the above boundary conditions (30) in (31) - (33) we get a block tridiagonal matrix wherein each element 

is again 33  matrix, in the form 
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                                                                RAD =                                                                       (35)                              

is essentially a linear system 
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where  ....4,3,2=j  The tridiagonal structure (35)  

can be solved using LU decompositionmethod. The 

velocity equation for similar for each pressure gradient 

and permeable parameters the Keller-box code also 

given other required derived quantities such as the 

velocity profiles. The numerical solution of equation 

(24) fordifferent parameters, , , and m has been 

obtained. Results for the skin friction coefficient, 

velocity profiles and numerical solutions are reported. 

The drag force is reduced for dilatant fluids compared 

to pseudo-plastic fluids. 

 

4.  RESULTS AND DISSCUTION 

 

The similarity solutions of the permeable Falkner-

Skan equation for non-Newtonian fluid are obtained 

for all physical parameters. This equation describes 

flow of a viscous fluid through porous media. The 

flow is governed by the nonlinear differential equation 

of order three and is solved by different approaches. 

The validity and efficiency of the solution method are 

tested for various parametric values of ,   and m   

are compared with the numerical solution of the 

permeability Falkner-Skan equation. We also 

investigated the nature of the distribution of velocity 

in the boundary layer region at which the effects of 

permeability taken into account. Numerical values for 

these parameters are taken which have been 

extensively used in the previous theoretical studies. In 

particular, we have taken the range of values for which 

the solutions are predicted and boundary layer flows 

are realized. Further, the direct numerical solutions of 

the permeability Falkner-Skan equation are obtained 

via finite difference based Kellerbox method. This is a 

standard method for solving nonlinear boundary value 

problem on a closed interval, in which the Falkner-

Skan is converted into an equivalent system of first 

order equations. The outer boundary condition is taken 

at very large value of   that is 1max  The 

standard central difference schemes are used for the 

first order equations, and resulting nonlinear algebraic 

equations are linearized and solved. Our Keller-box 

code adapts a variable discretization step size to ensure 

the desired accuracyin a double precision which was 

set to 
810 −

 in all our computations. This is because a 

precise value of )0(''f  would be required to 

compare solution with the numerical ones.  

 

The values for  and m  are so chosen to be in the 

range of parameters that have been used in the 

previous studies  (Bird et al (1987)). Also, full 

numerical Keller-box results using ∆η = 0.01 are 

compared with those obtained with still- smaller  ∆η =

0.001  values and the velocity shapes between two are 

graphically matchable; thus, most of the simulations 

are performed with ∆η = 0.01 . Further, the value of 

N ( the number of grid points) depends on the value  

∆η of  η and the large values of integration-domain 

lengths (see figures for details). We discuss most of 

our results pertaining to 1m  which is regarded as 

a generic problem as 1=m  case has been fully 

discussed. The case 1=m   also serves as the bench-

mark of present study. 

 

In order to get the physical insight, numerical 

computations are carried out for various sets of 

physical parameters on skin friction coefficient, 
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pressure gradient variable parameter  , suction or 

injection parameter  and  permeability parameter  

to obtain the effects of those parameters on 

dimensionless velocity. The obtained computational 

results (variations in velocity and viscosity profiles) 

are presented graphically in from figures 1(a) to 4(b)  

Figures 1(a) and 4(b) depicts that the variation of 

velocity profiles )(' f  as a function of   for 

different values of permeability parameter. There have 

been simulated using the Keller-box numerical 

method that is described. This code starts to predict 

permeability effects on the boundary-layer flow. It is 

noticed that thickness of the boundary-layer thickness 

increases for increasing permeability. It is very clear 

that form the boundar-layer shear-thickening when 

1m (i.e.in dilatant fluids) and when 1m the 

boundary-layer shear- thinning (i.e. in pseuo-plastic 

fluids) for fixed values of   ,  and m .. The two 

extreme cases of the power-law model are 1=m  for 

Newtonian behaviour and 0=m  for plastic or solid 

behaviour.  

 

Figure 2 exhibits the nature of velocity profiles 

)(' f  as a function of   . It is very clear that for 

fixed ,  and   the boundary-layer decreases as 

increase  m  . The effect of non-Newtonian parameter 

m  for fixed values of ,  and on velocity fields 

are depicted.  When suction parameter 0.1=  

velocity increases exponentially as decrease in m  

increases monotonically as decrease in m for 

0.1−= . 

 It is worthwhile to note from the figure 4 that, varation 

of viscosity profiles )(o with   the suction 

parameter 0  and injection parameter 0  

visocity decreases as increases m in both case when 

46.0=  and 0.1=  for fixed values of  and 

 . 

 

     
Figure 1(a)                                                                Figure 1(b) 

 

Figure 1(a):  Variation of Velocity profiles )(' f with   for various various values of   , ,5.0=  ,1=  

and 6.0=m . 

 

Figure 1(b):  Variation of Velocity profiles )(' f with   for various various values of   , ,5.0=  ,1=  

and 2.1=m . 

 
Figure 2(a)                                                                           Figure 2(b)  
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Figure 2(a):  Variation of Velocity profiles )(' f with   for various various values of m  , 1= , ,1=  

and 5.1=  

 

Figure 2(b):  Variation of Velocity profiles )(' f with   for various various values of m  , 1−= , ,1=  

and 5.1=  

          
                                    Figure 3(a)                                                                              Figure 3(b)  

Figure 3(a):  Variation of Velocity profiles )(' f with   for various various values of   , 6.0=m , 

,6.1=  and 5.2=  

 

Figure 3(b):  Variation of Velocity profiles )(' f with   for various various values of   , 2.1=m , 

,6.1=  and 5.2=  

        
 

Figure 4(a):  Variation of Velocity profiles 0 with   for various various values of m  , 2.0= , ,46.0=  

and 5.0=  

Figure 4(b):  Variation of Velocity profiles 0 with   for various various values of m  , 2.1−= , 1=  

and 5.1=  
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