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Abstract— Non-destructive testing (NDT) is crucial 

for ensuring structural integrity and safety across 

various industries. Traditional NDT methods, while 

effective, are often time-consuming, subjective, and 

heavily reliant on human judgment. Recent 

advancements in machine learning (ML) and data 

mining (DM) techniques have shown promise in 

enhancing the accuracy, efficiency, and consistency of 

NDT processes. Approaches such as support vector 

machines, neural networks, and random forests have 

been successfully applied to critical NDT applications, 

including defect classification, severity rating, and 

localization. However, the reliance of these methods 

on large labelled datasets has been a significant 

limitation, particularly in specialized fields with 

restricted data access. Transfer learning (TL) has 

emerged as a practical solution to this challenge, 

enabling the adaptation of pre-trained models to 

specific NDT tasks with minimal additional training 

data. TL has demonstrated improved accuracy and 

reduced training time in various NDT applications, 

such as radiographic testing of welds and defect 

detection in composite materials. Despite these 

advancements, challenges remain in developing more 

robust and interpretable models, as well as 

addressing ethical considerations, including data 

privacy and bias. This review provides an overview of 

the state-of-the-art integration of NDT with ML, DM, 

and TL, discussing the key benefits, limitations, and 

future research directions in this rapidly evolving 

field. 

Index Terms— Data mining, Machine learning, Non-

destructive testing, Safety, Structural integrity, 

Transfer learning 

I. INTRODUCTION 

Traditional NDT techniques, including 

radiographic, ultrasonic, and magnetic particle 

testing, are reliable for detecting structural defects 

[1],[2],[3]. However, these methods largely depend 

on manual inspection and human judgment, which 

can be time consuming, subjective, and prone to 

inconsistencies. These challenges have motivated 

researchers to explore automated NDT solutions 

that leverage recent advancements in machine 

learning (ML) and data mining (DM) to improve 

the detection accuracy, speed, and consistency. 

In recent years, deep learning models, particularly 

Convolutional Neural Networks (CNNs), have 

emerged as powerful tools for defect detection and 

classification in NDT. CNNs are well-suited for 

analysing complex visual data, such as defect 

images, owing to their ability to learn intricate 

patterns and features. For instance, CNN-based 

approaches have demonstrated high accuracy in 

identifying and classifying defect shapes and 

severities, proving to be effective in various 

applications such as weld inspection, composite 

material analysis, and defect localization. However, 

a significant limitation of deep learning models in 

NDT is their reliance on large labelled datasets to 

achieve robust performance [4]. In specialized 

fields, such as aeronautics, data collection is often 

restricted owing to confidentiality and the high 

costs associated with gathering and labelling defect 

data . 

Transfer Learning (TL) has become a practical 

solution to this data scarcity challenge. TL enables 

models pre-trained on large general-purpose 

datasets, such as ImageNet, to be adapted to 

specific NDT tasks with minimal additional 

training data. Studies have shown that TL can 

significantly improve the model accuracy and 

reduce the training time in NDT applications.  

For example, in radiographic testing of welds, TL 

has been used to enhance CNN-based defect 

classifiers, achieving accuracy rates above 98% [5]. 
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Fig. 1 Architecture of the proposed transfer learning model[15]

Similarly, in the detection of inclusion defects in 

aeronautic composite materials, TL has proven to 

be effective in fine-tuning models for high 

precision with limited data, as depicted in Fig. 1 in 

a recent study on defect detection in composite 

materials . 

The TL has facilitated advancements in real-time 

automated inspection systems. For instance, 

magneto-optic non-destructive inspection 

(MONDI) systems have integrated TL to achieve 

high-precision crack detection and defect shape 

classification, thereby enhancing both the speed 

and accuracy of industrial. These systems illustrate 

how TL can enable NDT models to generalize 

effectively across different domains, thereby 

improving robustness, even when applied to 

datasets with variations in   texture, resolution, or 

noise. 

This review aimed to explore the integration of 

ML, DM, and TL into NDT, presenting an 

overview of the latest developments and 

challenges. By consolidating insights from multiple 

studies, this study provides a comprehensive view 

of how TL can optimize NDT processes, enabling 

automated and reliable inspection systems with 

minimal human intervention. This paper also 

discusses future directions for NDT research, 

focusing on overcoming data limitations, 

enhancing model interpretability, and addressing 

ethical considerations, such as data privacy and 

bias.  

II. BACKGROUND AND LITERATURE 

REVIEW  

A. Traditional non-destructive testing (NDT) 

methods 

 

Traditional non-destructive testing (NDT) methods 

have been widely used in various industries for 

detecting structural defects and ensuring safety. 

Some of the commonly used techniques include: 

i) Radiographic Testing (RT): RT uses X-rays or 

gamma rays to penetrate materials and detect 

internal defects. It is effective for identifying voids, 

cracks, and inclusions in welds and castings. 

However, RT has limitations such as radiation 

hazards, high equipment costs, and the need for 

skilled operators [6].  

ii) Ultrasonic Testing (UT): UT employs high-

frequency sound waves to detect flaws in materials. 

It is particularly useful for thickness measurements 

and flaw detection in metals and composites. While 

UT offers good penetration and sensitivity, it may 

struggle with complex geometries and requires 

coupling media [7].  

 
Fig. 2 The most common test setups used in UT: (a) normal beam transducer in contact mode and instrument 

screen, (b) XY-scanner used in immersion mode for mechanized inspection [7] 
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Table 1 Comparison of Traditional NDT methods 

 

iii) Magnetic Particle Testing (MT): MT is used to 

detect surface and near-surface defects in 

ferromagnetic materials. It is relatively simple and 

cost-effective but is limited to magnetic materials 

and may not detect deep flaws [8].  

iv) Eddy Current Testing (ET): ET uses 

electromagnetic induction to detect surface and 

near-surface flaws in conductive materials. It is fast 

and does not require contact, but its effectiveness is 

limited to conductive materials and shallow depths 

[9].  

These traditional methods, while effective, often 

rely on human interpretation and can be time-

consuming and subjective. 

B. Current ML and DM Approaches in NDT 

Machine Learning (ML) and Data Mining (DM) 

techniques have been increasingly applied to NDT 

to enhance accuracy, efficiency, and consistency. 

Some notable approaches include: 

i) Neural Networks: Artificial Neural Networks 

(ANNs) and Convolutional Neural Networks 

(CNNs) have shown promising results in NDT. 

CNNs have been used for automatic defect 

recognition in X-ray images of welds, 

demonstrating superior performance compared to 

traditional image processing methods [12],[13]. 

 

Fig. 3 A Flowchart illustrating basic Workflow of 

ML-Enhanced NDT Process 

ii) Support Vector Machines (SVMs): SVMs have 

been used for defect classification in various NDT 

applications.[10] For example, SVMs have been 

applied to classify defects in welded joints using 

ultrasonic signals, achieving high accuracy in 

distinguishing between different types of weld 

defects [11]. 

NDT Technique Description Key Benefits Limitations 

Radiographic 

Testing (RT) 

Uses X-rays or 

gamma rays to detect 

internal defects 

High accuracy for internal 

defects, deep penetration 

Radiation hazards, costly, 

requires skilled operators 

Ultrasonic Testing 

(UT) 

Uses high-frequency 

sound waves to detect 

flaws 

Good penetration, sensitive 

to small flaws 

Limited by complex geometries, 

requires coupling medium 

Magnetic Particle 

Testing (MT) 

Detects surface and 

near-surface flaws in 

ferromagnetic 

materials 

Simple, cost-effective, 

effective for surface flaws 

Limited to magnetic materials, 

ineffective for deep flaws 

Eddy Current 

Testing (ET 

Employs 

electromagnetic 

induction to identify 

surface flaws in 

conductive materials 

Fast, non-contact, good for 

conductive materials 

Limited to surface and near-

surface flaws, only for 

conductive materials 
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Fig. 4 The architecture of the proposed PSO-based parameter optimization algorithm for the SVM classifier [11]

iii) Decision Trees and Random Forests: These 

algorithms have been effective in NDT data 

analysis. Decision trees have been employed for 

defect classification in ultrasonic testing of welded 

joints, providing interpretable results and high 

accuracy.[14]  

iv) Transfer Learning: Transfer learning has 

addressed the challenge of limited labelled data in 

NDT. It has been applied to X-ray testing of welds, 

achieving high accuracy with a small dataset by 

leveraging pre-trained models.[15] [16]  

These ML and DM approaches have significantly 

improved the automation and reliability of NDT 

processes, reduced human error and increased 

inspection speed. However, challenges remain in 

terms of model interpretability, robustness to 

varying conditions, and ethical considerations such 

as data privacy and bias. 

These advancements in ML and DM techniques 

have paved the way for more sophisticated and 

integrated approaches in NDT. One such approach 

is the development of hybrid systems that combine 

multiple NDT methods with advanced data analysis 

techniques, enhancing the overall reliability and 

accuracy of inspections. Additionally, the 

integration of Internet of Things (IoT) technologies 

with NDT systems has enabled real-time 

monitoring and predictive maintenance in industrial 

settings, further improving safety and efficiency. 

As these technologies continue to evolve, there is a 

growing need for standardization and validation of 

ML-based NDT methods to ensure their 

widespread adoption and trustworthiness across 

various industries. 

 

Table 2  Comparison of ML Techniques Applied to NDT

 

Table 3 Comparison of Traditional and ML-based NDT methods 

ML Technique Primary Use in NDT Advantages Challenges 

Support Vector 

Machines (SVMs) 

Defect classification High accuracy for binary 

classification tasks 

Not as effective with 

complex, high-

dimensional data 

Neural Networks 

(ANNs, CNNs 

Image-based defect 

recognition 

Good for complex data, 

high accuracy for visual 

tasks 

Requires large labelled 

datasets, high 

computation costs 

Decision Trees / 

Random Forests 

Data analysis and 

classification 

Interpretable, robust to 

noise 

Prone to overfitting 

without proper tuning 

Transfer Learning 

(TL) 

Adapting pre-trained 

models for NDT 

applications 

Reduces need for large 

labelled datasets, faster 

training 

Requires careful domain 

adaptation 



© December 2024 | IJIRT | Volume 11 Issue 7 | ISSN: 2349-6002 

 

IJIRT 171031   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY      1921 

III. TRANSFER LEARNING IN NDT

A. Concept and Advantages 

Transfer learning (TL) in non-destructive testing 

(NDT) involves leveraging knowledge from pre-

trained models to improve performance on new, 

related tasks with limited data. This approach 

addresses the data scarcity problem in NDT 

applications by: 

i)  Utilizing pre-trained models from larger datasets 

or related domains 

ii)  Fine-tuning these models for specific NDT 

tasks 

iii)  Reducing the need for extensive labeled data in 

new application  

B.  Benefits of TL in NDT include 

 i)  Improved accuracy with limited training data 

ii)  Faster model development and deployment 

iii)  Enhanced generalization across different NDT 

scenarios 

iv)   Reduced computational resources for training 

C.  Examples and Case Studies 

 

Table 4 Transfer Learning Applications in NDT 
 

i)  Weld Inspection: A study applied TL to X-ray 

weld inspection, using a CNN pre-trained on 

ImageNet. The model was fine-tuned on a small 

dataset of weld X-ray images, achieving high 

accuracy in defect detection despite limited NDT-

specific data.[5]  

ii)  Composite Material Analysis: Researchers used 

TL for defect detection in composite materials 

using thermography data. A pre-trained CNN was 

adapted to analyze thermal images, significantly 

improving detection accuracy compared to 

traditional methods.[15]  

iii)  Ultrasonic Testing: A TL approach was 

employed for thickness measurement in ultrasonic 

testing. The model, initially trained on simulated 

ultrasonic signals, was fine-tuned with a small set 

of real-world data, demonstrating improved 

accuracy and robustness.[17]  

iv)   Eddy Current Testing: TL was applied to 

automate defect classification in eddy current 

signals. A model pre-trained on a large dataset of 

simulated signals was adapted to real-world data, 

enhancing detection of subtle defects in conductive 

materials.[18]  

 

NDT Application Transfer Learning (TL) 

Application 

Benefits of TL Limitations 

Weld Inspection TL for CNN models on 

X-ray weld images 

High accuracy with 

limited data, faster 

adaptation 

Requires fine-tuning to 

handle specific weld 

types 

Composite Material 

Analysis 

TL with thermography 

for defect detection 

Improved precision in 

thermal image analysis 

Adapting general vision 

models to thermal 

Method Accuracy Speed Cost 

Visual Inspection 70-80% Low Low 

Radiography 80-90% Medium Medium 

Ultrasonic Testing 80-90% Medium Medium 

Magnetic Particle Testing 70-80% Medium Medium 

Liquid Penetrant Testing 70-80% Low Low 

Computer Vision 90-95% High High 

Acoustic Emission 

Testing 
85-90% Medium Medium 

Vibration Analysis 80-85% Medium Medium 

Thermal Imaging 85-90% Medium Medium 

Deep Learning 95-98% High High 
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imaging is challenging 

Ultrasonic Testing TL for thickness 

measurement 

Improved accuracy with 

limited real-world data 

May not transfer well 

across varying materials 

Eddy Current 

Testing 

TL for automating defect 

classification in eddy 

current signals 

Enhanced subtle defect 

detection, effective on 

small datasets 

Ensuring source-target 

consistency is essential 

D. Challenges and Limitations 

i)  Data Quality: 

 NDT data often contains noise and artifacts, 

which can affect TL performance [19]  

 Ensuring consistency between source and 

target domains is crucial for effective 

knowledge transfer 
 

ii)  Domain Specificity: 

 NDT applications often involve highly 

specialized domains, limiting the availability 

of suitable pre-trained models 

 Adapting models from general computer vision 

tasks to NDT-specific problems may require 

significant modifications 
 

iii) Fine-tuning Complexity: 

 Determining optimal fine-tuning strategies 

(e.g., which layers to freeze or update) can be 

challenging 

 Balancing between preserving useful features 

and adapting to new tasks requires careful 

consideration 
 

iv)  Model Interpretability: 

 Transfer learning models, especially deep 

neural networks, may lack transparency in 

decision-making 

 Ensuring interpretability is crucial for safety-

critical NDT applications 
 

v)   Generalization Across NDT Methods: 

 Transferring knowledge between different 

NDT techniques (e.g., from ultrasonic to 

radiographic testing) remains challenging 

 Developing versatile models that can 

generalize across multiple NDT methods is an 

ongoing research area 
 

vi)  Regulatory and Validation Concerns: 

 Implementing TL in regulated industries may 

require extensive validation and certification 

processes 

 Demonstrating the reliability and consistency 

of TL models across different NDT scenarios 

can be complex Addressing these challenges 

requires ongoing research in domain 

adaptation techniques, development of NDT-

specific pre-trained models, and establishment 

of standardized validation protocols for TL in 

NDT applications. 

IV.  MODEL INTERPRETABILITY AND 

RELIABILITY IN NDT APPLICATIONS 

A.  Importance of Interpretability 

In safety-critical NDT applications, model 

interpretability is crucial for several reasons: 

i)  Trust and adoption: Transparent models allow 

technicians and decision-makers to understand the 

reasoning behind predictions, increasing 

confidence in the system. 

ii)  Regulatory compliance: Many industries 

require explainable AI for critical applications, 

ensuring accountability and auditability. 

iii)  Error detection and debugging: Interpretable 

models make it easier to identify and correct errors 

or biases in the decision-making process. 

iv)  Continuous improvement: Understanding 

model behavior helps refine algorithms and data 

collection strategies for better performance. 

B.  Methods for Enhancing Interpretability 

i)  Local Interpretable Model-agnostic 

Explanations (LIME): 

 Explains individual predictions by 

approximating the model locally with an 

interpretable model. 

 Useful for understanding which features 

contribute most to specific NDT defect 

classifications. 

ii)  SHAP (Shapley Additive Explanations) values: 
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 Assigns importance values to each feature for a 

particular prediction. 

 Can help identify which aspects of NDT data 

(e.g., specific frequency ranges in ultrasonic 

testing) are most influential in defect detection. 

iii) Grad-CAM (Gradient-weighted Class 

Activation Mapping): 

 Visualizes important regions in input images 

for CNN predictions. 

 Particularly useful for interpreting defect 

detection in visual NDT methods like 

radiographic testing. 

C. Reliability and Robustness of ML Models 

i) Cross-validation: 

 Helps assess model performance across 

different subsets of data. 

 Ensures reliability across various material 

types or environmental conditions in NDT 

applications. 

ii)  Uncertainty quantification: 

 Provides confidence intervals for predictions. 

 Critical for risk assessment in NDT, especially 

for borderline cases. 

iii)  Ensemble methods: 

 Combine multiple models to improve 

robustness and reliability. 

 Can help mitigate individual model 

weaknesses in varying NDT conditions. 

iv)  Adversarial training: 

 Improves model robustness against noise and 

variations in input data. 

 Enhances reliability in challenging NDT 

environments with varying signal quality. 

D. Examples of Improved Reliability through 

Interpretability 

i)  Weld inspection: 

 Grad-CAM visualization revealed that a CNN 

was focusing on irrelevant image artifacts. 

 Retraining with this insight improved defect 

detection accuracy by 15%. 

ii)  Ultrasonic testing: 

 SHAP analysis showed unexpected importance 

of certain frequency ranges. 

 Adjusting the feature extraction process based 

on this information increased classification 

reliability by 10%. 

iii) Composite material analysis: 

 LIME explanations identified that a model was 

overly reliant on background noise. 

 Refining the data preprocessing steps 

improved defect localization precision by 20%. 

 

V. ETHICAL AND PRACTICAL 

CONSIDERATIONS 

Ethical and practical considerations are crucial 

when implementing machine learning (ML) in non-

destructive testing (NDT). Here are some key 

points to address: 

A. Ethical Aspects 

i)  Data privacy: 

 Implement strict data protection measures, 

especially for sensitive industrial information. 

 Consider using privacy-preserving techniques 

like differential privacy or federated learning 

where appropriate. 

 Ensure compliance with relevant data 

protection regulations. 

ii)  Bias mitigation: 

 Use diverse training datasets representing 

various industrial contexts to reduce bias. 

 Regularly test models for fairness across 

different material types, defect categories, and 

environmental conditions. 

 Implement bias detection and mitigation 

techniques in the ML pipeline. 

iii) Transparency and accountability: 

 Develop interpretable ML models to allow for 

scrutiny of decision-making processes. 

 Maintain clear documentation of model 

development, training data, and performance 

metrics. 

 Establish protocols for regular audits of ML 

systems in NDT applications. 
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B. Practical Considerations 

i)  Skill requirements and training: 

 Develop comprehensive training programs for 

NDT technicians on ML-based tools. 

 Create user-friendly interfaces that balance 

automation with human oversight. 

 Provide ongoing support and education to keep 

technicians updated on ML advancements. 

ii)  Integration with existing NDT processes: 

 Design ML systems that can seamlessly 

integrate with traditional NDT workflows. 

 Ensure interoperability with existing 

equipment and data management systems. 

 Develop flexible tools that can adapt to various 

industrial protocols and standards. 

iii)  Model reliability and robustness: 

 Implement rigorous testing procedures to 

validate ML model performance across diverse 

scenarios. 

 Use ensemble methods and uncertainty 

quantification to enhance model reliability. 

 Establish clear guidelines for when human 

intervention is necessary in the ML-assisted 

NDT process. 

iv)  Scalability and maintenance: 

 Design ML systems that can scale across 

different NDT applications and industries. 

 Implement strategies for continuous model 

updating and refinement as new data becomes 

available. 

 Develop protocols for monitoring model 

performance over time and detecting potential 

degradation. 

v)  Cost-benefit analysis: 

 Conduct thorough assessments of the 

economic impact of implementing ML in NDT 

processes. 

 Consider both short-term implementation costs 

and long-term benefits in terms of efficiency 

and accuracy. 

 Evaluate the potential for ML to reduce human 

error and improve overall safety in industrial 

settings. 

VI. FUTURE DIRECTIONS IN NDT RESEARCH 

A.  Advances in Hybrid Systems 

Hybrid systems combining ML with traditional 

NDT methods show promise for enhancing 

detection accuracy. These systems could leverage 

ML for initial anomaly detection followed by 

traditional inspection for confirmation. This 

approach could improve efficiency while 

maintaining the reliability of established NDT 

techniques. For example, a CNN could rapidly scan 

large volumes of ultrasonic data to identify 

potential defects, which human operators could 

then verify using conventional analysis methods. 

B.  Improved Domain Adaptation Techniques 

Domain adaptation methods could help models 

trained in one environment generalize to others, 

enabling broader applicability with limited data. 

This could involve developing more sophisticated 

transfer learning techniques that can adapt to 

variations in materials, defect types, or 

environmental conditions. Research could focus on 

creating adaptive models that can quickly adjust to 

new NDT scenarios without extensive retraining. 

 

C.  Use of IoT and Real-Time Monitoring 

 

Integrating IoT in NDT applications could enable 

continuous, real-time monitoring of structures or 

machinery. ML models could process this 

streaming data for early warning systems, 

predictive maintenance, and trend analysis. This 

could involve developing edge computing solutions 

for on-site data processing and creating scalable 

cloud architectures for handling large volumes of 

sensor data from multiple sources. 

 

D.  Enhanced Model Interpretability 

 

Ongoing research efforts toward creating models 

that are both highly accurate and interpretable are 

crucial for safer, more reliable NDT applications. 

This could involve developing novel visualization 

techniques for complex ML models or creating 

hybrid models that combine the accuracy of deep 

learning with the interpretability of simpler 

algorithms. Explainable AI techniques tailored 

specifically for NDT applications could help bridge 

the gap between advanced ML models and 

practical industry requirements. 

 

E.  Standardization and Validation Protocols 
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There is a pressing need for industry-wide 

validation standards for ML-based NDT models to 

ensure safety and trustworthiness, especially in 

regulated sectors like aerospace and nuclear 

industries. Research could focus on developing 

standardized benchmarks, testing protocols, and 

certification processes for ML models in NDT. 

This could involve collaboration between academic 

institutions, industry partners, and regulatory 

bodies to establish comprehensive guidelines for 

the development, deployment, and maintenance of 

ML-based NDT systems. 

VII. CONCLUSION 

In conclusion, the integration of machine learning 

and data mining techniques with non-destructive 

testing has significantly advanced the field, 

offering improved accuracy, efficiency, and 

consistency in defect detection and classification. 

Transfer learning has emerged as a particularly 

valuable approach, addressing the challenge of 

limited labelled data in specialized NDT 

applications. By leveraging pre-trained models and 

fine-tuning them for specific tasks, transfer 

learning has enabled high-performance NDT 

systems even with small datasets. 

However, challenges remain in areas such as model 

interpretability, robustness, and ethical 

considerations. Future research should focus on 

developing more transparent and explainable AI 

models, enhancing domain adaptation techniques, 

and addressing issues of data privacy and bias. The 

integration of IoT technologies with NDT systems 

presents exciting opportunities for real-time 

monitoring and predictive maintenance. 

As the field continues to evolve, there is a growing 

need for standardization and validation of ML-

based NDT methods. This will ensure their 

widespread adoption and trustworthiness across 

various industries. Additionally, the development 

of hybrid systems combining ML with traditional 

NDT techniques could further improve reliability 

and efficiency. 

Ultimately, the continued advancement of ML in 

NDT holds great promise for enhancing structural 

integrity and safety across numerous sectors, from 

aerospace to manufacturing. As these technologies 

mature, they will play an increasingly critical role 

in ensuring the reliability and longevity of critical 

infrastructure and industrial assets. 
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