
© October 2015 | IJIRT | Volume 2 Issue 5 | ISSN: 2349-6002 

 

IJIRT 171053   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY      244 

Some P-Q eta function identities 
 

 

Dr. Madhusudhan H. S. 

Assistant Professor Government First Grade College, Bannur, Mysore 

 

Abstract: In unorganized portion of his second note book 

[3], Ramanujan recorded twenty-three results on P-Q eta 

function identities or modular equations. These are the 

identities involving the quotients of eta-function which are 

designated by P or Q by Ramanujan. Berndt [2] established 

proof of 18 of these identities by employing theory of theta 

functions in the spirit of Ramanujan and remaining 5 by 

employing the theory of modular forms. These modular 

equations play important role in the explicit evaluations of 

continued fractions and Class Invariants. In this paper we 

deduce certain P-Q modular equations and using these 

modular equations we obtain the values of Class 

Invariants.  
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1.  INTRODUCTION 

Let, as usual,  

(𝑎; 𝑞)∞ ≔ ∏(1 − 𝑎𝑞𝑛),    |𝑞| < 1,

∞

𝑛=0

 

and  

𝜒(𝑞) ≔ (−𝑞; 𝑞2)∞. 

Ramanujan first introduced the Class Invariants 

𝐺𝑛 =  2
−1
4 𝑒−

𝜋√𝑛
24 𝜒(𝑒−𝜋√𝑛) 

and  

g𝑛 =  2
−1

4 𝑒−
𝜋√𝑛

24 𝜒(−𝑒−𝜋√𝑛), 

in his famous paper, “Modular equations and 

approximation to 𝜋” [5].  In his first notebook [4], 

Ramunajan recorded the values for 107 Class 

Invariants or the polynomials satisfied by them.  On 

pages 294 to 299 in his second notebook [3], 

Ramanujan gave a table of values of 77 Class 

Invariants, three of which are not found in his first 

notebook.  

Motivated by these, in this paper we establish further 

evaluations of the class invariant g𝑛.  In the next 

section, we establish some eta-function identities 

employing which we give in next section some general 

theorems for evaluating g𝑛 .  Using these general 

formulas, we derive many numerical Class Invariants. 

 

Ramanujan's general theta function f(a, b) is defined 

by 

𝑓(𝑎, 𝑏) ≔ ∑ 𝑎
𝑛(𝑛+1)

2 𝑏
𝑛(𝑛−1)

2 ,      |𝑎𝑏| < 1.∞
𝑛=−∞   

Furthermore, define 

𝜑(𝑞) ≔ 𝑓(𝑞, 𝑞) = ∑ 𝑞𝑛2

∞

𝑛=−∞

= (−𝑞; 𝑞2)∞
2 (𝑞2; 𝑞2)∞, 

𝜓(𝑞) ≔ 𝑓(𝑞, 𝑞3) = ∑ 𝑞
𝑛(𝑛+1)

2

∞

𝑛=−∞

=
(𝑞2; 𝑞2)∞

(𝑞; 𝑞2)∞

, 

and  

𝑓(−𝑞) ≔ 𝑓(−𝑞, −𝑞2) = ∑ (−1)𝑛 𝑞
𝑛(3𝑛−1)

2

∞

𝑛=−∞

= (𝑞; 𝑞)∞. 

We require the following definition of modular 

equation. 

Definition: A modular equation of degree n is an 

equation relating 𝛼 and 𝛽 that is induced by  

𝑛
𝐹2 1 (

1
2

,
1
2

; 1; 1 − 𝛼)

𝐹2 1 (
1
2

,
1
2

; 1; 𝛼)
=

𝐹2 1 (
1
2

,
1
2

; 1; 1 − 𝛽)

𝐹 (
1
2

,
1
2

; 1; 𝛽)
, 

where 

𝐹2 1(𝑎, 𝑏; 𝑐; 𝑥) = ∑
(𝑎)𝑘(𝑏)𝑘

(𝑐)𝑘𝑘!

∞

𝑛=−∞

𝑥𝑘 ,     |𝑥| < 1 

with 

(𝑎)𝑘 =
𝛾(𝑎 + 𝑘)

𝛾(𝑎)
. 

𝛽 is said to have degree n over  𝛼. 

 

2. P-Q ETA FUNCTION IDENTITIES 

Theorem 2.1.  If 

𝑃 = 𝑞−
1
3𝜒2(−𝑞)𝜒2(−𝑞3) and  𝑄

= 𝑞−
2
3𝜒2(−𝑞2)𝜒2(−𝑞6) 

then  

𝑄2 − 𝑃2𝑄 − 4𝑃 = 0. 

 (2.1)  

Proof: We have from [1, p.223] 

𝑞𝜓(𝑞2)𝜓(𝑞6) =
𝑞

1 − 𝑞2
−

𝑞5

1 − 𝑞10
+

𝑞7

1 − 𝑞14

−
𝑞4

1 − 𝑞22
+ ⋯ 

and 𝜑(𝑞)𝜑(𝑞3) = 1 + 2 (
𝑞

1−𝑞
−

𝑞2

1+𝑞2 +
𝑞4

1+𝑞4 −

𝑞5

1−𝑞5 + ⋯ ). 
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From the above two identities, Berndt [1] established 

that 

𝑞𝜓(𝑞2)𝜓(𝑞6) = 𝜑(𝑞)𝜑(𝑞3) − 𝜑(−𝑞)𝜑(−𝑞3). 

(2.2) 

It is easy to verify that 

𝜓(𝑞) =
𝑓(−𝑞2)

𝜒(−𝑞)
, 𝜑(𝑞) = 𝑓(−𝑞)𝜒(−𝑞), 

𝜑(𝑞) =
𝜒2(−𝑞2)

𝜒2(−𝑞)
𝑓(−𝑞2)  and  𝜒(−𝑞) =

𝑓(−𝑞)

𝑓(−𝑞2)
. 

(2.3) 

Using (2.3) in (2.2), we deduce the required result. 

Theorem 2.2. If 

𝑃 = 𝑞−1𝜒(−𝑞)𝜒(−𝑞5) and  𝑄

= 𝑞−2𝜒4(−𝑞2)𝜒4(−𝑞10) 

(2.4) 

then 

𝑄2 − (𝑃2 + 8𝑃)𝑄 − 16𝑃 = 0. 

Proof : If  𝑦 =
𝐹2 1(

1

2
,
1

2
;1;1−𝑥)

𝐹2 1(
1

2
,
1

2
;1;𝑥)

   and 𝑞 = 𝑒−𝑦 

we find that [1, p.124, entry 12, (vi), (vii)]; 

𝜒(−𝑞) = 2
1
6(1 − 𝑥)

1
12𝑥−

1
24𝑞

1
24, 

and 

𝜒(−𝑞2) = 2
1

3(1 − 𝑥)
1

24𝑥−
1

12𝑞
1

24. 

Using the above two identities, we deduce that 

(1 − 𝑥)
1
8 =

𝜒2(−𝑞)

𝜒(−𝑞2)
 

(2.5) 

and 

𝑥
1

8 = √2𝑞
1

8
𝜒2(−𝑞)

𝜒(−𝑞2)
. 

 (2.6) 

Let 𝛽 is of degree 5 over  𝛼. If 

𝛼
1
2 = 4𝑞

1
2

𝜒4(−𝑞)

𝜒8(−𝑞2)
 

then from (2.5) and (2.6), it follows that 

𝛽
1

2 = 4𝑞
5

2
𝜒4(−𝑞5)

𝜒8(−𝑞10)
,  (1 − 𝛼)

1

2 =
𝜒8(−𝑞)

𝜒4(−𝑞2)
, 

and 

(1 − 𝛽)
1

2 =
𝜒8(−𝑞5)

𝜒8(−𝑞10)
. 

From [1, p.280, Entry 13(i)], we see that 

(𝛼𝛽)
1

2 + [(1 − 𝛼)(1 − 𝛽)]
1

2 + 2[16𝛼𝛽(1 − 𝛼)(1 −

𝛽)]
1

6 = 1. 

Substituting above values, we deduce that 

16𝑞3 𝜒4(−𝑞)𝜒4(−𝑞5)

𝜒8(−𝑞2)𝜒4(−𝑞10)
+

𝜒8(−𝑞)𝜒8(−𝑞5)

𝜒4(−𝑞2)𝜒4(−𝑞10)
+

8𝑞
𝜒4(−𝑞)𝜒4(−𝑞5)

𝜒4(−𝑞2)𝜒4(−𝑞10)
= 1. 

Thus 

𝑄2 − (𝑃2 + 8𝑃)𝑄 − 16𝑃 = 0. 

Hence the proof. 

Theorem 2.3.  If 

𝑃 = 𝑞−
1
3𝜒(−𝑞)𝜒(−𝑞5) and  𝑄

= 𝑞−
2
3𝜒(−𝑞2)𝜒(−𝑞14), 

Then 

𝑄2 − 𝑃2𝑄 − 2𝑃 = 0. 

(2.7) 

Proof:  We have from [1, p.315] 

𝜑(𝑞)𝜑(𝑞7) = 2𝑞𝜓(𝑞)𝜓(𝑞7) + 𝜑(−𝑞2)𝜑(−𝑞14). 

(2.8) 

Using (2.3) in (2.8), we find that 

2𝑞

𝜒(−𝑞)𝜒(−𝑞7)
+ 𝜒(−𝑞2)𝜒(−𝑞14)

=
𝜒2(−𝑞2)𝜒2(−𝑞14)

𝜒2(−𝑞)𝜒2(−𝑞7)
 

and then after doing some algebraic manipulation, we 

obtain 

𝑄2 − 𝑃2𝑄 − 2𝑃 = 0. 

 

3. CLASS INVARIANTS 

In this section, we give many interesting general 

formulas for evaluating the product of class invariants. 

Employing general formulas so obtained we give 

further values of g𝑛. 

Theorem 3.1 We have 

g2𝑛 g2 𝑛⁄ = 1 

(3.1) 

Proof: From entry 27 (iii) of chapter 16 of 

Ramanujan’s second notebook [4], [1, p.124], we 

have, if 𝛼𝛽 = 𝜋2 then 

𝑒−𝛼 12⁄ √𝛼
4

𝑓(−𝑒−2𝛼) =  𝑒−𝛽 12⁄ √𝛽4 𝑓(−𝑒−2𝛽). 

(3.2) 

Consider 

g2𝑛 g2 𝑛⁄

= 2−1 2⁄  𝑒
−𝜋
24

[√2𝑛+√2
𝑛

]
 𝜒(𝑒−𝜋√2𝑛)𝜒 (𝑒−𝜋√2 𝑛⁄ ) 

                 

= 2−1 2⁄  𝑒
−𝜋
24

[√2𝑛+√
2
𝑛

]
 

𝑓(−𝑒−𝜋√2𝑛)

𝑓(−𝑒−2𝜋√2𝑛)
.
𝑓 (−𝑒−2𝜋√2 𝑛⁄ )

𝑓 (−𝑒−2𝜋√2 𝑛⁄ )
  

= 2−1 2⁄  𝑒
−𝜋

24
[√2𝑛+√

2

𝑛
]
 

𝑓(−𝑒−𝜋√2𝑛)

𝑓(−𝑒−2𝜋√2𝑛)
.

𝑓(−𝑒−𝜋√2 𝑛⁄ )

𝑓(−𝑒−2𝜋√2 𝑛⁄ )
. 

Using (3.2) in the above, we find that 
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g2𝑛 g2 𝑛⁄ = 2−1 2⁄  𝑒
−𝜋
24

[√2𝑛+√
2
𝑛

]
𝑒

1
12

[𝜋√
𝑛
2

−𝜋√
2
𝑛

]
(

2

𝑛
)

1 4⁄

× 𝑒
1

12
[

𝜋

√2𝑛
−𝜋√2𝑛]

(2𝑛)1 4⁄  

Hence the proof. 

Theorem 3.2. We have 

             g4𝑛
4  g36𝑛

4 − 2g𝑛
4  g9𝑛

4  g4𝑛
2  g36𝑛

2 − 2g𝑛
2  g9𝑛

2 = 0                                                                             

(3.3) 

Proof: Setting 𝑞 = 𝑒−𝜋√𝑛 in Theorem 2.1 and then 

using the definition of g𝑛 we find that  

𝑃 = 2g𝑛
2  g9𝑛

2  and = 2g4𝑛
2  g36𝑛

2  , where P and Q are as 

in Theorem 2.1. Employing these in (2.1), we obtain. 

             g4𝑛
4  g36𝑛

4 − 2g𝑛
4  g9𝑛

4  g4𝑛
2  g36𝑛

2 − 2g𝑛
2  g9𝑛

2 = 0. 

Theorem 3.3. We have 

g4𝑛
8  g100𝑛

8 − 4g𝑛
4  g25𝑛

4  g4𝑛
4  g100𝑛

4 (g𝑛
4  g25𝑛

4 + 2) −

4g𝑛
4  g25𝑛

4 = 0                                      

(3.4) 

Proof: Setting 𝑞 = 𝑒−𝜋√𝑛 in Theorem 2.2 and then 

using the definition of g𝑛 we find that       𝑃 =

4g𝑛
4  g25𝑛

4  and = 4g4𝑛
4  g100𝑛

4  , where P and Q are as in 

Theorem 2.2. Employing these in (2.4), we obtain. 

             g4𝑛
8  g100𝑛

8 − 4g𝑛
4  g25𝑛

4  g4𝑛
4  g100𝑛

4 (g𝑛
4  g25𝑛

4 +

2) − 4g𝑛
4  g25𝑛

4 = 0. 

Theorem 3.4. We have 

 g4𝑛
2  g196𝑛

2 − √2gn g49n(gn g49n g4n g196n +

1) = 0.                                                             

(3.5) 

Proof: Setting 𝑞 = 𝑒−𝜋√𝑛 in Theorem 2.3 and then 

employing the definition of g𝑛 we find that 𝑃 =

√2gn g49n and = √2g4n g196n , where P and Q are as 

in Theorem 2.3. Employing these in (2.7), we obtain 

G4𝑛
2  g196𝑛

2 − √2gn g49n(gn g49n g4n g196n + 1) = 0. 

Hence the result. 

Corollary 3.1. We have 

g3
2⁄ g1

6⁄ = √
−1 + √3

2
 

Proof: Setting 𝑛 = 1
6⁄  in (3.3), we deduce that 

2g1
6⁄

4  g3
2⁄

4  g2
3⁄

2  g6
2 + 2g1

6⁄
2  g3

2⁄
2 −  g2

3⁄
4  g6

4 = 0. 

Setting 𝑛 = 3 in (3.1) we have  g6g2
3⁄ = 1. Using this 

in the above identity, we find that 

 2g1
6⁄

4  g3
2⁄

4 + 2g1
6⁄

2  g3
2⁄

2 −  1 = 0. 

Solving the above equation for g1
6⁄ g3

2⁄ , we obtain 

               g1
6⁄ g3

2⁄ = √−1±√3

2
 

Since g𝑛 is positive for all rational n,  

  g1
6⁄ g3

2⁄ = √−1+√3

2
. 

Corollary 3.2. We have 

 g8 g72 =  
√1+√2+√3+√6

√√3−√2
6  

Proof: Putting 𝑛 = 2 in (3.3), we obtain  

g8
4 g72

4 − 2g2
4 g18

4  g8
2 g72

2 − 2g2
2 g18

2 = 0 

From [3, P.200], we have g2 = 1 and g18 =

 (√2 + √3)
1

3⁄
. Employing these in the above identity, 

we find that 

g8
4 g72

4 − 2(√2 + √3)
4

3⁄
g8

2 g72
2 − 2(√2 + √3)

2
3⁄

= 0 

On solving the above equation for g8g72, we deduce 

that 

g8
4 g72

4 = (√2 + √3)
1

6⁄
(√2 + √3 ± √7 + 2√6)

1
2⁄

. 

Using the fact that is positive for all rational n and after 

some algebraic manipulation we find that 

 g8g72 =
√1+√2+√3+√6

√√3−√2
6  

Corollary 3.3. We have 

 g1
2⁄ g9

2⁄ =
√−1+2√2+√3

√2 √√2+√3
3 . 

Proof: Setting 𝑛 = 1 2⁄  in (3.3), we obtain 

2g1 2⁄
4  g9 2⁄

4  g2
2 g18

2 + 2g1 2⁄
2  g9 2⁄

2 −  g2
4 g18

4 = 0 

From [3, P.200], we have g2 = 1 and g18 =

(√2 + √3)
1

3⁄
.  Using these in the above identity we 

find that 

2(√2 + √3)
2

3⁄
g1 2⁄

4  g9 2⁄
4 + 2g1 2⁄

4  g9 2⁄
2

− (√2 + √3)
4

3⁄
= 0 
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On solving the above equation for g1
2⁄ g9

2⁄  we find 

that 

g1
2⁄ g9

2⁄ =
√−1 ± √11 + 4√6

√2 √√2 + √3
3

 

Since g𝑛 is positive for all rational n and after some 

algebraic manipulation we find that 

g1
2⁄ g9

2⁄ =
√−1 + √11 + 4√6

√2 √√2 + √3
3

 

Corollary 3.4. We have 

g5
2⁄ g45

2⁄ = (
−1+√1+2𝑎6𝑏6

2𝑎2𝑏2 )

1

2

. 

where 

𝑎 = √1+√5

2
, 

and 

𝑏 = {(2 + √5)(√5 + 6)}
1

6⁄
(√

3 + √6

4

+ √√6 − 1

4
). 

Proof: Putting 𝑛 = 5 2⁄  in (3.3), we obtain 

2 g10
2  g90

2  g5 2⁄
4  g45 2⁄

4 + 2 g5 2⁄
2  g45 2⁄

2 − g10
4  g90

4 = 0. 

From [3, P.200, 202] we have g10 = √1+√5

2
 and 

g90 = {(2 + √5)(√5 + 6)}
1

6⁄
(√3+√6

4
+ √√6−1

4
). 

Employing these in the above identity, we find that 

2𝑎2𝑏2 g5 2⁄
4  g45 2⁄

4 + 2 g5 2⁄
2  g45 2⁄

2 − 𝑎4𝑏4 = 0. 

On solving the above equation for g5 2⁄  g45 2⁄ , we 

deduce that 

 g5 2⁄  g45 2⁄ = (
−1±√1+2𝑎6𝑏6

2𝑎2𝑏2 )

1
2⁄

. 

Since g𝑛 is positive for all rational n, we find that 

g5 2⁄  g45 2⁄ = (
−1 + √1 + 2𝑎6𝑏6

2𝑎2𝑏2
)

1
2⁄

 

Corollary 3.5 we have 

g5 2⁄  g45 2⁄ = (
−1 + √1 + 2𝑎6𝑏6

2𝑎2𝑏2
)

1
2⁄

 

where 

𝑎 = √1 + √2 + √2√2 − 1

2
 

and 

𝑏 = √√3 + √7

2
(√6 + √7)

1 6⁄
(√

3 + √2

4

+ √√2 − 1

4
)

2

 

Proof: setting 𝑛 = 7 2⁄  in (3.3), we deduce that 

2 g14
2  g126

2  g7 2⁄
4  g63 2⁄

4 + 2 g7 2⁄
2  g63 2⁄

2 − g14
4  g126

4 = 0 

From [3, P.200, 202], we have 

g14 = √1 + √2 + √2√2 − 1

2
 

and  

g126 = √√3 + √7

2
(√6 + √7)

1 6⁄
(√

3 + √2

4

+ √√2 − 1

4
)

2

 

Using these in the above identity, we find that 

2 𝑎2𝑏2  g7 2⁄
4  g63 2⁄

4 + 2 g7 2⁄
2  g63 2⁄

2 − 𝑎4𝑏4  = 0. 

Solving the above equation for g7
2⁄  g63

2⁄ , we find that  

g7 2⁄  g63 2⁄ = (
−1±√1+2𝑎6𝑏6

2𝑎2𝑏2 )

1
2⁄

. 

Since g𝑛 is positive for all rational n, we find that 

g7 2⁄  g63 2⁄ = (
−1+√1+2𝑎6𝑏6

2𝑎2𝑏2 )

1
2⁄

. 

Corollary 3.6 we have 

g1 10⁄  g5 2⁄ = (
−3 + √10

2
)

1
4⁄

. 
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Proof: Setting 𝑛 =
1

10
 in (3.4), we obtain  

2g2
5⁄

8  g10
8 − 4 g1

10⁄
8  g5

2⁄
8  g2

5⁄
4  g10

4 −

8g1
10⁄

4  g5
2⁄

4  g2
5⁄

4  g10
4 − 4g1

10⁄
4  g5

2⁄
4 = 0. 

Setting 𝑛 = 5 in (3.1) we have g10 g2
5⁄  = 1.  Using 

this in the above identity, we find that 

4 g1
10⁄

8  g5
2⁄

8 + 12g1
10⁄

4  g5
2⁄

4 − 1 = 0. 

Solving the above equation for g1
10⁄ g5

2⁄  , we obtain 

g1
10⁄ g5

2⁄  = (
−3 ± √10

2
)

1
4⁄

 

Since g𝑛 is positive for all rational n, we find that 

g1
10⁄ g5

2⁄  = (
−3+√10

2
)

1
4⁄

. 

Corollary 3.7 we have 

g1 2⁄  g25 2⁄

=
1

𝑎
(

−1 − 2𝑎4 + √1 + 4𝑎4 + 4𝑎8 + +𝑎12

2
)

1
4⁄

, 

where  

𝑎 =
1

3
(1 + (

5 + √5

4
)

1 3⁄

( √1 + 7√5 + 6√6
3

+ √1 + 7√5 − 6√6
3

)). 

Proof:  Setting 𝑛 = 1 2⁄  in (3.4), we deduce that 

4g1
2⁄

8  g25
2⁄

8 g2
4  g50

4 + 8 g1
2⁄

4  g25
2⁄

4  g2
4 g50

4 +

4g1
2⁄

4  g25
2⁄

4 − g2
8 g50

8 = 0. 

From [3, P.200, 201], we have g2 = 1 and 

g50 =
1

3
(1 + (

5 + √5

4
)

1 3⁄

( √1 + 7√5 + 6√6
3

+ √1 + 7√5 − 6√6
3

)). 

Employing these in above identity, we find that 

4𝑎4g1
2⁄

8  g25
2⁄

8 + 4(2𝑎4 + 1)g1
2⁄

4  g25
2⁄

4 − 𝑎8 = 0. 

Solving the above equation for g1 2⁄  g25 2⁄  , we find that 

g1 2⁄  g25 2⁄

=
1

𝑎
(

−1 − 2𝑎4 ± √1 + 4𝑎4 + 4𝑎8 + +𝑎12

2
)

1
4⁄

 

Since g𝑛 is positive for all rational n, we find that 

g1 2⁄  g25 2⁄ =
1

𝑎
(

−1−2𝑎4+√1+4𝑎4+4𝑎8+𝑎12

2
)

1
4⁄

. 

Corollary 3.8: We have 

g8 g200

= √𝑎 √2𝑎2(𝑎4 + 2) + √1 + 4𝑎4 + 4𝑎8 + 𝑎12
4

, 

where 

𝑎 =
1

3
(1 + (

5 + √5

4
)

1 3⁄

( √1 + 7√5 + 6√6
3

+ √1 + 7√5 − 6√6
3

)). 

Proof: Setting 𝑛 = 2 in (3.4), we deduce that 

 g8
8 g200

8 − 4g2
8 g50

8  g8
4 g200

4 −

8g2
4 g50

4  g8
4 g200

4 − 4g2
4 g50

4 = 0. 

From [3, P.200, 201], we have g2 = 1 and 

g50 =
1

3
(1 + (

5 + √5

4
)

1 3⁄

( √1 + 7√5 + 6√6
3

+ √1 + 7√5 − 6√6
3

)) 

Using these in above identity, we find that 

g8
8 g200

8 − 4(𝑎4 + 2)g8
4 g200

4 − 4𝑎4 = 0. 

Solving the above equation for g8 g200 , we find that 

g8 g200

= √𝑎 √2𝑎2(𝑎4 + 2) ± √𝑎12 + 4𝑎8 + 4𝑎4 + 1
4

 

Since g𝑛 is positive for all rational n, we find that 

g8 g200 =

√𝑎 √2𝑎2(𝑎4 + 2) + √𝑎12 + 4𝑎8 + 4𝑎4 + 1
4

. 
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Corollary 3.9 we have 

g1
14⁄  g7

2⁄ = (
−2 + √2 + 4√2

2√2
). 

Proof: Setting 𝑛 = 1
14⁄  in (3.5), we deduce that 

√2g1
14⁄

2  g7
2⁄

2 g2
7⁄ g14 + √2g1

14⁄ g7
2⁄ − g2

7⁄
2  g14

2 = 0. 

On setting 𝑛 = 7 in (3.1) we have g14g2
7⁄  = 1. 

Using this in the above identity, we find that 

√2g1
14⁄

2  g7
2⁄

2 + √2g1
14⁄

2  g7
2⁄

2 − 1 = 0. 

Solving the above relation for g14g7
2⁄  , we obtain 

g1
14⁄  g7

2⁄ = (
−2 ± √2 + 4√2

2√2
) 

Since g𝑛 is positive for all rational n, we find that 

g1
14⁄  g7

2⁄ = (
−2+√2+4√2

2√2
). 

Corollary 3.10 we have 

g8 g392 =
𝑎2 + √𝑎4 + 2√2𝑎

√2
, 

where 

𝑎 = (√4 + √2 + √14 + 4√14

8

+ √√2 + √14 + 4√14 − 4

8
)

4

. 

Proof: Putting 𝑛 = 2 in (3.5), we deduce that 

g8
2 g392

2 − √2g2
2 g98

2 g8 g392 − √2g2 g98 = 0. 

From [3, P.200, 202], we have g2 = 1 and 

g98 = (√4+√2+√14+4√14

8
+ √√2+√14+4√14−4

8
)

2

. 

Employing these in the above identity, we find that 

g8
2 g392

2 − √2𝑎2g8 g392 − √2𝑎 = 0. 

Solving the above relation for g8 g392, and after doing 

some algebraic manipulation we obtain 

g8 g392 =
𝑎2±√𝑎4+2√2𝑎

√2
. 

Since g𝑛 is positive for all rational n, 

g8 g392 =
𝑎2+√𝑎4+2√2𝑎

√2
. 
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