Energy Comparison of Unicyclic Graphs with Cycle C³

Ravikumar N.¹, Nanjundaswamy N.²

¹Department of Mathematics, Government First Grade College, Gundulpet - 571111, India. ²Department of Mathematics Sri Mahadeswara Government First Grade College, Kollegal-571 440, India

Abstract: **In this paper, we compare the energies of** unicycilc graphs with cycle C_3 (with k number of vertices, having the unique cycle C_3 denoted by $G'_{i,k}$), **using the coefficients of the characteristic polynomials and Coulson integral formula by establishing the quasiordering '≤' on the unicyclic graphs of same order** *k***.**

Keywords. **Energy; Characteristic polynomial;** Adjacency matrix $A(G)$; Coefficient of λ^i ; Unicyclic **graphs; Bipartite graphs.**

1. INTRODUCTION

Let *G* be a simple graph with *k* vertices and $A(G)$ be its adjacency matrix. Let $\lambda_1, \dots, \lambda_k$ be the eigenvalues

$$
E(G) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{x^2} \log \left[\left(\sum_{i=0}^{\lfloor \frac{\pi}{2} \rfloor} (-1)^i a_{2i}(G) \right) x^{2i} \right]
$$

We write $b_i(G) = |a_i(G)|$. Then clearly $b_0(G) = 1$, $b_1(G)$ $= 0$ and $b_2(G)$ equals the number of edges of *G*.

About the signs of the coefficients of the characteristic polynomials of unicyclic graphs, we have the following result:

Lemma 1.1: (Lemma 1 in [3]) Let *G* be a unicyclic graph and the length of the unique cycle of *G* be *`*. Then we have the following:

of
$$
A(G)
$$
. Then the *energy* of G , denoted by $E(G)$, is defined as $E(G) = \sum_{i=1}^{k} |\lambda_i|$.

The characteristic polynomial det($xI - A(G)$) of the adjacency matrix $A(G)$ of the graph G is also called the *characteristic polynomial* of *G* is written as

$$
\phi(G, x) = \sum_{i=0}^{k} a_i(G) x^{k-i}
$$

Using the coefficients $a_i(G)$ of $\phi(G, x)$, the energy $E(G)$ of the graph *G* with *k* vertices can be expressed by the following Coulson integral formula (Eq. (3.11) in [2]):

$$
^{2} + \left(\sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^{i} a_{2i+1}(G) x^{2i+1}\right)^{2} dx.
$$

(1) $b_{2i}(G) = (-1)^{i} a_{2i}(G),$

 \overline{L}

(2) $b_{2i+1}(G) = (-1)^i a_{2i+1}(G)$, if *G* contain a cycle of length *l* with $l \equiv 1 \pmod{4}$,

(3) $b_{2i+1}(G) = (-1)^{i+1} a_{2i+1}(G)$, if *G* contain a cycle of length l with $l \not\equiv 1 \pmod{4}$.

Thus, the Coulson integral formula for unicyclic graphs can be rewritten in terms of $b_i(G)$ as follows:

$$
E(G) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{x^2} \log \left[\left(\sum_{i=0}^{\lfloor \frac{k}{2} \rfloor} b_{2i}(G) \right)^2 + \left(\sum_{i=0}^{\lfloor \frac{k}{2} \rfloor} b_{2i+1}(G) \right)^2 \right] dx.
$$

Hence it follows that for unicyclic graphs *G*, *E*(*G*) is a strictly monotonically increasing function of $b_i(G)$, $i = 0, ..., k$. To make it more precise, we define a quasi-order \leq on graphs as follows:

Definition 1.2: Let *G*1 and *G*2 be two graphs of order *k*. If *b*_{*i*}(*G*₁) ≤ *b*_{*i*}(*G*₂) for all *i* with 1 ≤ *i* ≤ *k*, then we write $G_1 \leq G_2$.

Thus using Coulson integral formula, we have,

Theorem 1.3: For any two unicyclic graphs *G*1 and *G*² of order *k*, we have,

$$
G_1 \leq G_2 \Longrightarrow E(G_1) \leq E(G_2).
$$

Thus, for comparing the energies of any two unicyclic graphs of the same order, it is enough to establish the quasi-order.

Using this idea, in Section 2, we compare the energies of the *unicyclic graphs* $'_{1,k}$, $G'_{2,k}$, $G'_{3,k}$

and $G'_{4,k}$ (see Fig. 2.1 and Fig. 2.2) with *k* vertices having the

unique cycle C_3 by establishing the quasi-ordering:

$$
G_{2,k}' \leq G_{4,k}' \leq G_{3,k}' \leq G_{1,k}'
$$

This would imply, by above discussion,

$$
E(G'_{2,k}) \le E(G'_{4,k}) \le E(G'_{3,k}) \le E(G'_{1,k})
$$

We note that these graphs are *bipartite*. For a bipartite graph *G*, the characteristic polynomial is of the form

 \mathbf{r}

$$
\phi(G, x) = \sum_{i=0}^{k} a_i x^{k-i} = \sum_{j=0}^{\lfloor \frac{k}{2} \rfloor} a_{2j} x^{k-2j},
$$

as $a_{2j+1} = 0$ for $j = 1, ..., \left| \frac{k}{2} \right|$ $\left[\frac{\kappa}{2}\right]$. Also, $(-1)^j a_{2j} = b_{2j}$ and so

$$
\phi(G, x) = \sum_{j=0}^{\left[\frac{k}{2}\right]} (-1)^j b_{2j} x^{k-2j}
$$

Thus, for a bipartite graph *G*, the Coulson integral formula

reduces to

$$
E(G) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{x} \log \left[\left(\sum_{j=0}^{\lfloor \frac{k}{2} \rfloor} (-1)^j a_{2j}(G) \right) \right]
$$

from which the monotonicity of the *E*(*G*) with respect to the $b_i(G)$, $1 \le i \le k$, follows. i.e., if G_1 and G_2 are two bipartite graphs of order *k* such that $b_i(G_1) \leq$ *b*_{*i*}(*G*₂) for all *i*, $1 \le i \le k$, then $E(G_1) \le E(G_2)$. i.e., G_1 $\leq G_2$ implies $E(G_1) \leq E(G_2)$.

2. COMPARING THE ENERGIES OF THE GRAPHS $G'_{i,k}$

We note that in the following the binomial coefficient $\binom{a}{b}$ $\binom{a}{b}$ will be zero whenever the number *a* is not a positive integer or the number *b* is not a non-negative integer.

Theorem 2.1: Let $G'_{1,k} = (V, X)$ be the graph with *k* vertices given below:

Fig. 2.1 Graph $G'_{1,k}$

Let
$$
A(G'_{1,k}) = (a_{ij})
$$
 be the adjacency matrix of the graph $G'_{1,k}$. Then, for $k \ge 4$, its characteristic polynomial $\chi(G'_{1,k}; \lambda)$ is given by:

$$
= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{x} \log \left[\left(\sum_{j=0}^{\lfloor \frac{k}{2} \rfloor} b_{2j}(G) \ x^{k-2j} \right)^2 \right] dx,
$$

$$
\chi(G'_{1,k}; \lambda) = (\lambda^2 - 1) \ \chi(P_{k-2}) - 2(\lambda + 1) \ \chi(P_{k-3})
$$
 (1)

Also for $1 \le i \le k$, the coefficient of λ^i in $\chi(G'_{1,k}; \lambda)$ is

$$
(-1)^{\frac{k-i}{2}}\left[\binom{\frac{k+i-4}{2}}{\frac{k-i}{2}} + \binom{\frac{k+i-2}{2}}{\frac{k-i-2}{2}} + 2\binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}}\right] + 2(-1)^{\frac{k-i-1}{2}}\binom{\frac{k+i-3}{2}}{\frac{k-i-3}{2}} \tag{2}
$$

In the above, when $k - i \equiv 1 \pmod{2}$, the first sum vanishes and when $k \equiv i \pmod{2}$, second sum vanishes.

Proof: The adjacency matrix $A(G'_{1,k})$ is given by

$$
A(G_{1,k}^{'}) = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 1 & 0 \end{bmatrix}
$$

The characteristic polynomial of the adjacency matrix $A(G'_{1,k})$ is given by $\chi(G'_{1,k}; \lambda) = |\lambda I - A|$, where *I* is the identity matrix of order *k*. Thus, by expanding the following determinant and the subsequent determinants by their first column, we get,

$$
= \lambda^2 \chi(Pk-2) - \lambda \chi(Pk-3) - \chi(Pk-2) - \chi(Pk-3) - \chi(Pk-3) - \lambda \chi(Pk-3)
$$

= $(\lambda^2 - 1) \chi(P_{k-2}) - 2(\lambda + 1) \chi(P_{k-3}),$

where $\chi(P_{k-2})$ and $\chi(P_{k-3})$ are the characteristic polynomials of the paths P_{k-2} and P_{k-3} containing $k-2$ and $k-3$ vertices respectively.

In view of (1), to find the coefficient of λ^i in $\chi(G'_{1,k}; \lambda)$, we find the coefficients of λ^{i-2} and λ^i in $\chi(P_{k-2})$ and the coefficients of λ^{i-1} and λ^i in $\chi(P_{k-3})$. We make use of the following characteristic polynomial of the path P_n :

$$
\chi(P_n) = \sum_{t=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^t \binom{n-t}{t} \lambda^{n-2t} \tag{3}
$$

Put *n* = $k - 2$ in (3). If $t = \frac{k - i}{2}$ $\frac{-i}{2}$, then *n* − 2*t* = *i* − 2, and so the coefficient of λ^{i-2} in $\chi(P_{k-2})$ is $(-1)^{\frac{k-i}{2}}$ $k+i-4$ 2 $k-i$ 2), since, $n - t = k - 2 - \left(\frac{k - i}{2}\right)$ $\frac{(-i)}{2}$ = $\frac{k+i-4}{2}$ $\frac{1}{2}$. Again by putting *n* = *k* − 2 in (3), we obtain the coefficient of λ^{i} in $\chi(P_{k-2})$

to be
$$
(-1)^{\frac{k-i-2}{2}}\left(\frac{k+i-2}{\frac{k-i-2}{2}}\right)
$$
 by taking $t = \frac{k-i-2}{2}$ as $n-2t = k-2-2\left(\frac{k-i-2}{2}\right) = i$ and $n-t = k-2-2\left(\frac{k-i-2}{2}\right) = \frac{k+i-2}{2}$.
Similarly, by putting $n = k-3$ and taking $t = \frac{k-i-2}{2}$ in (3), we see that the

coefficient of λ^{i-1} in $\chi(P_{k-3})$ is $(-1)^{\frac{k-i-2}{2}}$ $k+i-4$ 2 $k-i-2$ 2) Further putting *n* = *k* − 3 in (3), we see that the coefficient of λ^i in $\chi(P_{k-3})$ is $(-1)^{\frac{k-i-3}{2}}$ $k+i-3$ 2 $k-i-3$) by taking

$$
t=\frac{k-i-3}{2}.
$$

Now by (1), we have,

{Coefficient of λ^i in $\chi(G'_{1,k}; \lambda)$ } = {Coefficient of λ^{i-2} in $\chi(P_{k-3})$ } - {Coefficient of λ^{i-2} in $\chi(P_{k-2})$ } - 2 {Coefficient of λ^{i-1} in $\chi(P_{k-3})$ } - 2 {Coefficient of *λ ⁱ*in *χ*(*Pk*−3)}.

2

Thus the coefficient of
$$
\lambda^{i}
$$
 in $\chi(G'_{1,k)}$ is given by
\n
$$
(-1)^{\frac{k-i}{2}} \left(\frac{\frac{k+i-4}{2}}{\frac{k-i}{2}} \right) - (-1)^{\frac{k-2-i}{2}} \left(\frac{\frac{k+i-2}{2}}{\frac{k-i-2}{2}} \right) - 2 \left[(-1)^{\frac{k-i-2}{2}} \left(\frac{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} \right) + (-1)^{\frac{k-i-3}{2}} \left(\frac{\frac{k+i-3}{2}}{\frac{k-i-3}{2}} \right) \right]
$$
\n
$$
= (-1)^{\frac{k-i}{2}} \left(\frac{\frac{k+i-4}{2}}{\frac{k-i}{2}} \right) + (-1)^{\frac{k-i}{2}} \left(\frac{\frac{k+i-2}{2}}{\frac{k-i-2}{2}} \right) + 2(-1)^{\frac{k-i}{2}} \left(\frac{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} \right) + 2(-1)^{\frac{k-i-1}{2}} \left(\frac{\frac{k+i-3}{2}}{\frac{k-i-3}{2}} \right)
$$
\n
$$
= (-1)^{\frac{k-i}{2}} \left[\left(\frac{\frac{k+i-4}{2}}{\frac{k-i}{2}} \right) + \left(\frac{\frac{k+i-2}{2}}{\frac{k-i-2}{2}} \right) + 2 \left(\frac{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} \right) \right] + 2(-1)^{\frac{k-i-1}{2}} \left(\frac{\frac{k+i-3}{2}}{\frac{k-i-3}{2}} \right).
$$

We make use of the following well known result for computing the characteristic polynomial of some graphs in Corollary 2.3.

Theorem 2.2: [1] Let v_1 be a vertex of degree 1 in the graph *G* and let v_2 be the vertex adjacent to v_1 . If G_1 be the induced subgraph obtained from *G* by deleting the vertex v_1 and let G_2 be the induced subgraph obtained from *G* by deleting the vertices v_1 and v_2 , then,

$$
\chi(G; \lambda) = \lambda \chi(G_1; \lambda) - \chi(G_2; \lambda)
$$
\n(4)

Proof: See Theorem 2.11 in [1].

Corollary 2.3: Let $G'_{2,k}$, $G'_{3,k}$ and $G'_{4,k}$ be the graphs with *k* vertices as given below:

Fig. 2.2 Graphs $G'_{2,k}$, $G'_{3,k}$ and $G'_{4,k}$

Then, we have,

$$
\chi(G'_{2,k}) = \lambda \chi(G'_{1,k-1}) - \chi(P_{k-2})
$$
\n(5)

$$
\chi(G'_{3,k}) = \lambda \chi(G'_{2,k-1}) - \chi(G'_{1,k-2})
$$
\n(6)

$$
\chi(G'_{4,k}) = \lambda \chi(G'_{3,k-1}) - \chi(G'_{2,k-2})
$$
\n(7)

Theorem 2.4: The coefficient of λ^i in $\chi(G'_{2,k})$ is

$$
(-1)^{\frac{k-i}{2}}\left[\binom{\frac{k+i-4}{2}}{\frac{k-i}{2}}+\binom{\frac{k+i-2}{2}}{\frac{k-i-2}{2}}+\binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}}+\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}}\right]+2(-1)^{\frac{k-i-1}{2}}\binom{\frac{k+i-5}{2}}{\frac{k-i-3}{2}} \quad \text{(8)}
$$
\nIn the above, when $k-i \equiv 1 \pmod{2}$, the first sum vanishes and when $k \equiv i \pmod{2}$, second sum vanishes.

Proof: By Corollary 2.3, we have $\chi(G'_{2,k}) = \lambda \chi(G'_{1,k-1}) - \chi(P_{k-2})$. Thus, the coefficient of λ^i in $\chi(G'_{2,k}) =$ {Coefficient of λ^{i-1} in $\chi(G'_{1,k-1})$ } - {Coefficient of λ^i in $\chi(P_{k-2})$ }*.*

By putting $i = i - 1$ and $k = k - 1$ in Theorem 2.1, we obtain the coefficient of of λ^{i-1} in $\chi(G'_{1,k-1})$ to be:

$$
(-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} + 2 \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} \right] + 2(-1)^{\frac{k-i-1}{2}} \binom{\frac{k+i-5}{2}}{\frac{k-i-3}{2}} + 2(-1)^{\frac{k-i-1}{2}} \binom{\frac{k+i-5}{2}}{\frac{k-i-3}{2}} \right]
$$

to f λ^i in $\chi(P_{k-2})$ is $(-1)^{\frac{k-i-2}{2}} \binom{\frac{k+i-2}{2}}{\frac{k-i-2}{2}}$.

Also, by (3), the coefficien 2

Therefore the coefficient of
$$
\lambda^i
$$
 in $\chi(G'_{2,k})$ is given by,
\n
$$
(-1)^{\frac{k-i}{2}} \left[\left(\frac{\frac{k+i-6}{2}}{\frac{k-i}{2}} \right) + \left(\frac{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} \right) + 2 \left(\frac{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} \right) \right] + 2(-1)^{\frac{k-i-1}{2}} \left(\frac{\frac{k+i-5}{2}}{\frac{k-i-3}{2}} \right) - (-1)^{\frac{k-i-2}{2}} \left(\frac{\frac{k+i-2}{2}}{\frac{k-i-2}{2}} \right)
$$
\n
$$
= (-1)^{\frac{k-i}{2}} \left[\left(\frac{\frac{k+i-6}{2}}{\frac{k-i}{2}} \right) + \left(\frac{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} \right) + 2 \left(\frac{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} \right) \right] + 2(-1)^{\frac{k-i-1}{2}} \left(\frac{\frac{k+i-5}{2}}{\frac{k-i-3}{2}} \right)
$$
\n
$$
= (-1)^{\frac{k-i}{2}} \left[\left(\frac{\frac{k+i-6}{2}}{\frac{k-i}{2}} \right) + \left(\frac{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} \right) + \left(\frac{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} \right) + \left(\frac{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} \right) \right]
$$
\n
$$
+ 2(-1)^{\frac{k-i-1}{2}} \left(\frac{\frac{k+i-5}{2}}{\frac{k-i-3}{2}} \right)
$$
\n
$$
= (-1)^{\frac{k-i}{2}} \left[\left(\frac{\frac{k+i-5}{2}}{\frac{k-i}{2}} \right) + \left(\frac{\frac{k+i-2}{2}}{\frac{k-i-2}{2}} \right) + \left(\frac{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} \right) \right] + 2(-1)^{\frac{k-i-1}{2}} \left(\frac{\frac{k+i-5}{2}}{\frac{k-i-3}{2}} \right)
$$

Theorem 2.5: The coefficient of λ^i in $\chi(G'_{3,k})$ is

$$
(-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} + 2 \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}} + 2 \binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} \right]
$$

+2(-1)^{\frac{k-i-1}{2}} \left[\binom{\frac{k+i-7}{2}}{\frac{k-i-3}{2}} + \binom{\frac{k+i-5}{2}}{\frac{k-i-5}{2}} \right]. (9)

In the above, when $k - i \equiv 1 \pmod{2}$, the first sum vanishes and when $k \equiv i \pmod{2}$, second sum vanishes. Proof: By Corollary 2.3, we have, $(G'_{3,k}) = \lambda \chi(G'_{2,k-1}) - \chi(G'_{1,k-2})$.

Thus, the coefficient of λ^i in $\chi(G'_{3,k})$ is

{Coefficient of
$$
\lambda^{i-1}
$$
 in $\chi(G'_{2,k-1})$ } - {Coefficient of λ^i in $\chi(G'_{1,k-2})$ }

By putting $i = i-1$, $k = k-1$ in Theorem 2.4, the coefficient of λ^{i-1} in $\chi(G_{2,k})$ is seen to be

$$
(-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} \right] + 2(-1)^{\frac{k-i-1}{2}} \binom{\frac{k+i-7}{2}}{\frac{k-i-3}{2}}
$$

Also by replacing k by $k - 2$ in the Theorem 2.1, we obtain the coefficient of λ^{i} In $\chi(G'_{1,k})$:

$$
(-1)^{\frac{k-i-2}{2}}\left[\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}}+\binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}}+2\binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}}+\right]+2(-1)^{\frac{k-i-3}{2}}\binom{\frac{k+i-5}{2}}{\frac{k-i-5}{2}}\right]
$$

Therefore the coefficient of λ^i in $\chi(G'_{3,k})$ is given by

$$
(-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} \right] + 2(-1)^{\frac{k-i-1}{2}} \binom{\frac{k+i-5}{2}}{\frac{k-i-3}{2}} \right]
$$

\n
$$
-(-1)^{\frac{k-i-2}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}} + 2 \binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} + \right] - 2(-1)^{\frac{k-i-3}{2}} \binom{\frac{k+i-5}{2}}{\frac{k-i-5}{2}} \right]
$$

\n
$$
= (-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} \right] + 2(-1)^{\frac{k-i-1}{2}} \binom{\frac{k+i-7}{2}}{\frac{k-i-3}{2}} \right]
$$

\n
$$
+(-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}} + 2 \binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} + \right] + 2(-1)^{\frac{k-i-1}{2}} \binom{\frac{k+i-5}{2}}{\frac{k-i-5}{2}} \right]
$$

\n
$$
= (-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} + 2 \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}} \right]
$$

\n
$$
+ 2 \binom{\frac{k+i-6}{2}}{\frac{k-i}{2}} \right] + 2(-1)^{\frac{k-i-1}{2}} \left[\binom{\
$$

Theorem 2.6: The coefficient of λ^i in $\chi(G'_{4,k})$ is given by

$$
(-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-8}{2}}{\frac{k-i}{2}} + 2 \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + 2 \binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-10}{2}}{\frac{k-i-2}{2}} + 2 \binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} \right]
$$

$$
+3 \binom{\frac{k+i-8}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}} + 2(-1)^{\frac{k-i-1}{2}} \left[\binom{\frac{k+i-9}{2}}{\frac{k-i-3}{2}} + 2 \binom{\frac{k+i-7}{2}}{\frac{k-i-5}{2}} \right].
$$
 (10)

In the above, when $k - i \equiv 1 \pmod{2}$, the first sum vanishes and when $k \equiv i \pmod{2}$, second sum vanishes.

Proof: By Corollary 2.3, we have, $\chi(G'_{4,k}) = \lambda \chi(G'_{3,k-1}) - \chi(G'_{2,k-2})$. Thus, the coefficient of λ^i in $\chi(G'_{4,k}) =$

{Coefficient of
$$
\lambda^{i-1}
$$
 in $\chi(G'_{3,k-1})$ } – {Coefficient of λ^i in $\chi(G'_{2,k-2})$ }.

By putting $i = i-1$, $k = k-1$ in Theorem 2.5, the coefficient of λ^{i-1} in $\chi(G'_{3,k})$ is seen to be

$$
\begin{aligned} &(-1)^{\frac{k-i}{2}}\left[\binom{\frac{k+i-8}{2}}{\frac{k-i}{2}}+\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}}+2\binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}}+\binom{\frac{k+i-10}{2}}{\frac{k-i-2}{2}}+\binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}}+2\binom{\frac{k+i-8}{2}}{\frac{k-i-4}{2}}\right] \\ &+2(-1)^{\frac{k-i-1}{2}}\left[\binom{\frac{k+i-9}{2}}{\frac{k-i-3}{2}}+\binom{\frac{k+i-7}{2}}{\frac{k-i-5}{2}}\right]. \end{aligned}
$$

By replacing *k* by $k - 2$ in the Theorem 2.4, we obtain the coefficient of λ^i in $\chi(G_{2,k}')$:

$$
(-1)^{\frac{k-i-2}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-8}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}} \right] + 2(-1)^{\frac{k-i-3}{2}} \binom{\frac{k+i-7}{2}}{\frac{k-i-5}{2}}.
$$

Therefore the coefficient of λ^i in $\chi(G'_{4,k})$ is given by

$$
\begin{split} &(-1)^{\frac{k-i}{2}}\left[\binom{\frac{k+i-8}{2}}{\frac{k-i}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + 2\binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-10}{2}}{\frac{k-i-4}{2}} + 2\binom{\frac{k+i-8}{2}}{\frac{k-i-4}{2}} \right] \\ +2(-1)^{\frac{k-i-1}{2}}\left[\binom{\frac{k+i-9}{2}}{\frac{k-i-3}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-5}{2}} \right] \\ &-(-1)^{\frac{k-i-2}{2}}\left[\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-8}{2}}{\frac{k-i-4}{2}} \right] -2(-1)^{\frac{k-i-3}{2}}\binom{\frac{k+i-7}{2}}{\frac{k-i-5}{2}} \\ & = (-1)^{\frac{k-i}{2}}\left[\binom{\frac{k+i-8}{2}}{\frac{k-i}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + 2\binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-10}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} \right] \\ & + 2\binom{\frac{k+i-8}{2}}{\frac{k-i-4}{2}} \right] +2(-1)^{\frac{k-i-1}{2}}\left[\binom{\frac{k+i-9}{2}}{\frac{k-i-3}{2}} + \binom{\frac{k+i-7}{2}}{\frac{k-i-5}{2}} \right] + (-1)^{\frac{k-i}{2}}\left[\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} \right] \\ & + \binom{\frac{k+i-8}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-8}{2}}{\frac{k-i-4}{2}} + 2\binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} + 2\binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-10}{2}}{\frac{k-i-2}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} \\ & = (-1)^{\frac{k-i}{2}}\left[\binom{\frac{k+i-8}{2}}{\frac{k-i}{2}} + 2\binom
$$

Theorem 2.7: For any graph *G*, let $b_i(G) = |a_i(G)|$, where $a_i(G)$ is the coefficient λ^i in $\chi(G;\lambda)$. Then, $b_i(G'_{1,k}) \geq b_i(G'_{3,k}) \geq b_i(G'_{4,k}) \geq b_i(G'_{2,k})$

Proof: We prove that:

(i) $b_i(G'_{1,k}) \geq b_i(G'_{3,k}),$ (ii) $b_i(G'_{3,k}) \geq b_i(G'_{4,k}),$ (iii) $b_i(G'_{4,k}) \geq b_i(G'_{2,k}).$

Proof of (i): We have two cases to be considered.

Suppose *i* and *k* are not of same parity. Note that the coefficient of λ^i in $\chi(G'_{1,k})$ is given in equation (2) and the coefficient of λ^i in $\chi(G'_{3,k})$ is given in equation (9). Also, note that when *i* and *k* are not of same parity, the first

.

sum in (2) and (9) vanish and so we need to consider only the second sum $(-1)^{\frac{k-i-1}{2}}$ 2 $k+i-3$ 2 $k-i-3$ 2) of (2) and the

second sum $(-1)^{\frac{k-i-1}{2}}2$ $k+i-7$ 2 $k-i-3$ 2)+ ($k+i-5$ 2 $k-i-5$ 2 \int of (9). Using the binomial identity:

 $\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1}$

we expand above sums to obtain:

$$
\begin{aligned}\n\left(\frac{k+i-3}{2}\right) &= \left(\frac{k+i-5}{2}\right) + \left(\frac{k+i-5}{2}\right) \\
&= \left(\frac{k-i-3}{2}\right) + \left(\frac{k+i-7}{2}\right) \\
&= \left(\frac{k+i-7}{2}\right) + \left(\frac{k+i-7}{2}\right) + \left(\frac{k+i-5}{2}\right) \\
&= \left[\left(\frac{k+i-7}{2}\right) + \left(\frac{k+i-5}{2}\right)\right] + \left(\frac{k+i-7}{2}\right) \\
&= \left[\left(\frac{k+i-7}{2}\right) + \left(\frac{k+i-5}{2}\right)\right] + \left(\frac{k+i-7}{2}\right)\n\end{aligned}
$$

Thus, in this case we observe that $b_i(G'_{1,k}) \geq b_i(G'_{3,k})$.

Suppose *i* and *k* are of same parity. Note that when *i* and *k* are of same parity, the second sum in equation (2) and equation (9) vanish and so we need to consider

only the first sum
$$
(-1)^{\frac{k-i}{2}} \left[\left(\frac{\frac{k+i-4}{2}}{\frac{k-i}{2}} \right) + \left(\frac{\frac{k+i-2}{2}}{\frac{k-i-2}{2}} \right) + 2 \left(\frac{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} \right) \right]
$$
 of (2) and the first sum

sum

$$
(-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} \right]
$$

of (9).

Again by using the binomial identity, we have,

$$
\begin{split} &\left. \frac{k+i-4}{2} \right) + \left(\frac{\frac{k+i-2}{2}}{2} \right) + 2\left(\frac{\frac{k+i-4}{2}}{2} \right) \\ &= \left[\left(\frac{\frac{k+i-6}{2}}{2} \right) + \left(\frac{\frac{k+i-6}{2}}{2} \right) \right] + \left[\left(\frac{\frac{k+i-4}{2}}{2} \right) + \left(\frac{\frac{k+i-4}{2}}{2} \right) \right] \\ &+ \left[\left(\frac{\frac{k+i-4}{2}}{2} \right) + \left(\frac{\frac{k+i-6}{2}}{2} \right) + \left(\frac{\frac{k+i-4}{2}}{2} \right) \right] \\ &= \left[\left(\frac{\frac{k+i-6}{2}}{2} \right) + 2\left(\frac{\frac{k+i-6}{2}}{2} \right) + \left(\frac{\frac{k+i-4}{2}}{2} \right) \right] \\ &= \left[\left(\frac{\frac{k+i-6}{2}}{2} \right) + 2\left(\frac{\frac{k+i-6}{2}}{2} \right) + \left(\frac{\frac{k-i-4}{2}}{2} \right) + \left(\frac{\frac{k+i-4}{2}}{2} \right) \right] + \left(\frac{\frac{k+i-4}{2}}{2} \right) + \left(\frac{\frac{k+i-6}{2}}{2} \right) \\ &= \left[\left(\frac{\frac{k+i-6}{2}}{2} \right) + 2\left(\frac{\frac{k-i-6}{2}}{2} \right) + \left(\frac{\frac{k+i-4}{2}}{2} \right) + \left(\frac{\frac{k+i-4}{2}}{2} \right) \right] + \left(\frac{\frac{k+i-6}{2}}{2} \right) + \left(\frac{\frac{k+i-6}{2}}{2} \right) \\ &+ \left(\frac{\frac{k+i-6}{2}}{2} \right) \end{split}
$$

$$
= \begin{bmatrix} \left(\frac{k+i-6}{2}\right) + 2\left(\frac{k+i-6}{2}\right) + \left(\frac{k+i-4}{2}\right) + \left(\frac{k+i-4}{2}\right) + 2\left(\frac{k+i-6}{2}\right) \end{bmatrix} + \left(\frac{k+i-6}{2}\right) \\ = \begin{bmatrix} \left(\frac{k+i-6}{2}\right) + 2\left(\frac{k+i-6}{2}\right) + \left(\frac{k+i-4}{2}\right) + \left(\frac{k+i-4}{2}\right) + \left(\frac{k+i-4}{2}\right) \end{bmatrix} + \left(\frac{k+i-8}{2}\right) \\ + \left(\frac{k-i-8}{2}\right) + 2\left(\frac{k+i-8}{2}\right) + \left(\frac{k+i-6}{2}\right) + \left(\frac{k+i-4}{2}\right) + \left(\frac{k+i-8}{2}\right) \end{bmatrix} + \left(\frac{k+i-8}{2}\right) \\ = \begin{bmatrix} \left(\frac{k+i-8}{2}\right) \\ \frac{k-i-4}{2} \end{bmatrix} + 2\left(\frac{k+i-6}{2}\right) + \left(\frac{k+i-4}{2}\right) + \left(\frac{k+i-4}{2}\right) + \left(\frac{k+i-4}{2}\right) + \left(\frac{k+i-8}{2}\right) \end{bmatrix} \\ + \left(\frac{k+i-8}{2}\right) + 2\left(\frac{k-i-2}{2}\right) + 2\left(\frac{k-i-2}{2}\right) + \left(\frac{k-i-2}{2}\right) + \left(\frac{k+i-8}{2}\right) \end{bmatrix}
$$

Thus we see that: $b_i(G'_{1,k}) \geq b_i(G'_{3,k})$. This proves (i).

Proof of (ii):

We show that $b_i(G'_{3,k}) \ge b_i(G'_{4,k})$. For this we consider two cases.

Suppose *i* and *k* are not of same parity. Note that the coefficient of λ^i in $\chi(G'_{3,k})$ is given in equation (9), and the coefficient of λ^i in $\chi(G'_{4,k})$ is given in equation (10). Also note that when *i* and *k* are not of same parity, the first

sum in (9) and (10) vanish and so we need to consider only the second sum $2(-1)^{\frac{k-i-1}{2}}$ $k+i-7$ $\overline{\mathbf{c}}$ $k-i-3$ $\overline{\mathbf{c}}$ $| + |$ $k+i-5$ $\overline{\mathbf{c}}$ $k-i-5$ $\overline{\mathbf{c}}$ \vert of \rightarrow

(9) and the second sum2(-1)
$$
\frac{k-i-1}{2}
$$
 $\left\lfloor \frac{k+i-9}{2} \right\rfloor + \left\lfloor \frac{k+i-7}{2} \right\rfloor$ of (10).

Consider the term
$$
\left| \left(\frac{\frac{2}{k-i-3}}{\frac{k-i-3}{2}} \right) + \left(\frac{\frac{2}{k-i-5}}{\frac{k-i-5}{2}} \right) \right|
$$
. By putting $\frac{k+i-1}{2} = r$ and $\frac{k-i-1}{2} = s$,

we obtain by using the binomial identity,

$$
\begin{aligned}\n\left(\frac{k+i-7}{2}\right) + \left(\frac{k+i-5}{2}\right) &= \binom{r-3}{s-1} + \binom{r-2}{s-2} \\
&= \left[\binom{r-4}{s-1} + \binom{r-4}{s-2} \right] + \left[\binom{r-3}{s-2} + \binom{r-3}{s-3} \right] \\
&= \left[\binom{r-4}{s-1} + \binom{r-3}{s-2} \right] + \binom{r-4}{s-2} + \left[\binom{r-4}{s-3} + \binom{r-4}{s-4} \right] \\
&= \left[\binom{r-4}{s-1} + \binom{r-3}{s-2} \right] + \left\{ \binom{r-4}{s-2} + \binom{r-4}{s-3} \right\} + \binom{r-4}{s-4} \\
&= \left[\binom{r-4}{s-1} + \binom{r-3}{s-2} \right] + \binom{r-3}{s-2} + \binom{r-4}{s-4} \\
&= \left[\binom{r-4}{s-1} + \binom{r-3}{s-2} \right] + \binom{r-3}{s-4} \\
&= \left[\binom{r-4}{s-1} + 2 \binom{r-3}{s-2} \right] + \binom{r-4}{s-4} \\
&= \left[\binom{\frac{k+i-9}{2}}{2} + 2 \binom{\frac{k+i-7}{2}}{2} \right] + \binom{\frac{k+i-9}{2}}{2}\n\end{aligned}
$$

Hence, $b_i(G'_{3,k}) \geq b_i(G'_{4,k})$.

Suppose *i* and *k* are of same parity. Note that when *i* and *k* are of same parity, the second sum in equation (9) and equation (10) vanish and so we need to consider only the first sum

$$
A = \left[\binom{\frac{k+i-6}{2}}{\frac{k-i}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} \right]
$$

of (9) and the first sum

$$
B = \left[\binom{\frac{k+i-8}{2}}{\frac{k-i}{2}} + 2\left(\frac{\frac{k+i-6}{2}}{\frac{k-i-2}{2}}\right) + 2\left(\frac{\frac{k+i-8}{2}}{\frac{k-i-2}{2}}\right) + \left(\frac{\frac{k+i-10}{2}}{\frac{k-i-2}{2}}\right) + 2\left(\frac{\frac{k+i-6}{2}}{\frac{k-i-4}{2}}\right) + 3\left(\frac{\frac{k+i-8}{2}}{\frac{k-i-4}{2}}\right) + \left(\frac{\frac{k+i-4}{2}}{\frac{k-i-4}{2}}\right) \right]
$$

of (10). We need to show that $A - B \ge 0$. By substituting $\frac{k+i}{2} = r$ and $\frac{k-i}{2} = s$, we get,

$$
A = {r-3 \choose s} + {r-2 \choose s-1} + 2 {r-3 \choose s-1} + {r-4 \choose s-1} + {r-2 \choose s-2} + 2 {r-3 \choose s-2}
$$

$$
B = {r-4 \choose s} + 2 {r-3 \choose s-1} + 2 {r-4 \choose s-1} + {r-5 \choose s-1} + 2 {r-3 \choose s-2} + 3 {r-4 \choose s-2} + {r-2 \choose s-2}
$$

Consider

$$
A-B = {r-3 \choose s} + {r-2 \choose s-1} + 2 {r-3 \choose s-1} + {r-4 \choose s-1} + {r-2 \choose s-2} + 2 {r-3 \choose s-2}
$$

\n
$$
- {r-4 \choose s} - 2 {r-3 \choose s-1} - 2 {r-4 \choose s-1} - {r-5 \choose s-1} - 2 {r-3 \choose s-2}
$$

\n
$$
-3 {r-4 \choose s-2} - {r-2 \choose s-2}
$$

\n
$$
= {r-3 \choose s} + {r-2 \choose s-1} - {r-4 \choose s-1} - {r-4 \choose s} - {r-5 \choose s-1} - 3 {r-4 \choose s-2}
$$

\n
$$
= [r-4 \choose s} + {r-4 \choose s-1}] + {r-2 \choose s-1} - {r-4 \choose s-1} - {r-4 \choose s} - {r-5 \choose s-1}
$$

\n
$$
-3 {r-4 \choose s-2}
$$

\n
$$
= {r-2 \choose s-1} - {r-5 \choose s-1} - 3 {r-4 \choose s-2}
$$

\n
$$
= {r-2 \choose s-1} - {r-5 \choose s-1} - [r-5 \choose s-2}] - 2 {r-4 \choose s-3}
$$

\n
$$
= {r-2 \choose s-1} - [r-5 \choose s-1} + {r-5 \choose s-2}] - {r-5 \choose s-3} - 2 {r-4 \choose s-2}
$$

\n
$$
= {r-2 \choose s-1} - {r-4 \choose s-1} - {r-5 \choose s-2} - 2 {r-4 \choose s-2}
$$

\n
$$
= {r-2 \choose s-1} - {r-4 \choose s-1} - {r-5 \choose s-3} - 2 {r-4 \choose s-2}
$$

$$
= \binom{r-2}{s-1} - \left[\binom{r-4}{s-1} + \binom{r-4}{s-2} \right] - \binom{r-5}{s-3} - \binom{r-4}{s-2}
$$

\n
$$
= \binom{r-2}{s-1} - \binom{r-3}{s-1} - \binom{r-5}{s-3} - \binom{r-4}{s-2}
$$

\n
$$
= \binom{r-3}{s-1} + \binom{r-3}{s-2} - \binom{r-3}{s-1} - \binom{r-5}{s-3} - \binom{r-4}{s-2}
$$

\n
$$
= \binom{r-3}{s-2} - \binom{r-5}{s-3} - \binom{r-4}{s-2}
$$

\n
$$
= \binom{r-4}{s-2} + \binom{r-4}{s-3} - \binom{r-5}{s-3} - \binom{r-4}{s-2}
$$

\n
$$
= \binom{r-5}{s-3} + \binom{r-5}{s-4} - \binom{r-5}{s-3}.
$$

\n
$$
= \binom{r-5}{s-4} \ge 0.
$$

Thus $A - B \ge 0$, proving there by that $b_i(G'_{3,k}) \ge b_i(G'_{4,k})$.

Proof of (iii): Finally we show $b_i(G'_{4,k}) \ge b_i(G'_{2,k})$. Again there are two cases to be considered. Suppose *i* and *k* are not of same parity. Note that the coefficient of λ^i in $\chi(G'_{4,k})$ is given in equation (10) and the coefficient of λ^i in $\chi(G'_{2,k})$ is given in equation (8). Also note that when *i* and *k* are not of same parity, the first

sum in (10) and in (8) vanish and so we need to consider only the second sum $2(-1)^{\frac{k-i-1}{2}}$ $k+i-9$ $\overline{\mathbf{c}}$ $k-i-3$ $\overline{\mathbf{c}}$ $\vert +$ $\sqrt{k+i-7}$ 1 $\sqrt{k+i-5}$ 1

$$
2\left(\frac{\frac{k+i-5}{2}}{2}\right) \text{ of (10) and the second term } 2(-1)^{\frac{k-i-1}{2}} \left| \left(\frac{\frac{k+i-3}{2}}{2}\right) \text{ of (8)}.
$$

\nConsider the term $\left(\frac{\frac{k+i-9}{2}}{\frac{k-i-3}{2}}\right) + 2\left(\frac{\frac{k+i-7}{2}}{\frac{k-i-5}{2}}\right)$. By putting $\frac{k+i-1}{2} = r$ and $\frac{k-i-1}{2} = s$, we get,
\n
$$
\left(\frac{\frac{k+i-9}{2}}{\frac{k-i-3}{2}}\right) + 2\left(\frac{\frac{k-i-7}{2}}{\frac{k-i-5}{2}}\right) = \left(\frac{r-4}{s-1}\right) + 2\left(\frac{r-3}{s-2}\right)
$$
\n
$$
= \left(\frac{r-4}{s-1}\right) + \left[\left(\frac{r-4}{s-2}\right) + \left(\frac{r-4}{s-3}\right)\right] + \left(\frac{r-3}{s-2}\right)
$$
\n
$$
= \left[\left(\frac{r-4}{s-1}\right) + \left(\frac{r-4}{s-2}\right)\right] + \left(\frac{r-4}{s-3}\right) + \left(\frac{r-3}{s-2}\right)
$$
\n
$$
= \left(\frac{r-3}{s-1}\right) + \left(\frac{r-3}{s-2}\right) + \left(\frac{r-4}{s-3}\right)
$$
\n
$$
= \left(\frac{r-2}{s-1}\right) + \left(\frac{r-4}{s-3}\right)
$$
\n
$$
= \left(\frac{r-2}{s-1}\right) + \left(\frac{r-4}{s-3}\right)
$$
\n
$$
= \left[\left(\frac{\frac{k+i-5}{2}}{\frac{k-i-7}{2}}\right)\right] + \left(\frac{\frac{k+i-9}{2}}{\frac{k-i-7}{2}}\right)
$$

.

Hence, $b_i(G'_{4,k}) \geq b_i(G'_{2,k})$.

Suppose *i* and *k* are of same parity. Note that when *i* and *k* are of same parity, the second sum in equation (10) and equation (8) vanish and so we need to consider only the first sum

$$
B = \begin{pmatrix} \frac{k+i-8}{2} \\ \frac{k-i}{2} \end{pmatrix} + 2\begin{pmatrix} \frac{k+i-6}{2} \\ \frac{k-i-2}{2} \end{pmatrix} + 2\begin{pmatrix} \frac{k+i-8}{2} \\ \frac{k-i-2}{2} \end{pmatrix} + \begin{pmatrix} \frac{k+i-10}{2} \\ \frac{k-i-2}{2} \end{pmatrix} + 2\begin{pmatrix} \frac{k+i-6}{2} \\ \frac{k-i-4}{2} \end{pmatrix} + 3\begin{pmatrix} \frac{k+i-8}{2} \\ \frac{k-i-4}{2} \end{pmatrix} + \begin{pmatrix} \frac{k+i-4}{2} \\ \frac{k-i-4}{2} \end{pmatrix}
$$

$$
\begin{pmatrix} k+i-4 \\ k-i-2 \end{pmatrix} \quad \begin{pmatrix} k+i-4 \\ k+i-6 \end{pmatrix} \quad \begin{pmatrix} k+i-6 \\ k-i-6 \end{pmatrix}
$$

of (10) and the first sum
$$
\mathbf{C} = \left(\frac{\frac{k+i-4}{2}}{\frac{k-i}{2}}\right) + \left(\frac{\frac{k+i-2}{2}}{\frac{k-i-2}{2}}\right) + \left(\frac{\frac{k+i-4}{2}}{\frac{k-i-2}{2}}\right) + \left(\frac{\frac{k+i-6}{2}}{\frac{k-i-2}{2}}\right)
$$
of (8).

By substituting $\frac{k+i}{2} = r$ and $\frac{k-i}{2} = s$, we get

$$
\mathbf{B} = \binom{r-4}{s} + 2\binom{r-3}{s-1} + 2\binom{r-4}{s-1} + \binom{r-5}{s-1} + 2\binom{r-3}{s-2} + 3\binom{r-4}{s-2} + \binom{r-2}{s-2},
$$
\n
$$
C = \binom{r-2}{s} + \binom{r-1}{s-1} + \binom{r-2}{s-1} + \binom{r-3}{s-1}.
$$
\nGensides

Consider

$$
B-C = {r-4 \choose s} + 2{r-3 \choose s-1} + 2{r-4 \choose s-1} + {r-5 \choose s-1} + 2{r-3 \choose s-2} + 3{r-4 \choose s-2} + {r-2 \choose s-2} - {r-2 \choose s} - {r-1 \choose s-1} - {r-2 \choose s-1} - {r-3 \choose s-1} = \left[{r-4 \choose s} + {r-4 \choose s-1} \right] + {r-3 \choose s-1} + {r-4 \choose s-1} + {r-5 \choose s-1} + 2{r-3 \choose s-2} + 3{r-4 \choose s-2} + {r-2 \choose s-2} - {r-2 \choose s} - {r-1 \choose s-1} - {r-2 \choose s-1} = {r-3 \choose s} + {r-3 \choose s-1} + {r-4 \choose s-1} + {r-5 \choose s-1} + 2{r-3 \choose s-2} + 3{r-4 \choose s-2} + {r-2 \choose s-2} - \left[{r-3 \choose s} + {r-3 \choose s-1} \right] - \left[{r-2 \choose s-1} + {r-2 \choose s-2} \right] - {r-2 \choose s-1} = {r-4 \choose s-1} + {r-5 \choose s-1} + 2{r-3 \choose s-2} + 3{r-4 \choose s-2} - 2{r-2 \choose s-1} = {r-4 \choose s-1} + {r-5 \choose s-1} + 2{r-3 \choose s-2} + 3{r-4 \choose s-2} - 2 \left[{r-3 \choose s-1} + {r-3 \choose s-2} \right] = {r-4 \choose s-1} + {r-5 \choose s-1} + 3{r-4 \choose s-2} - 2{r-3 \choose s-1} = {r-4 \choose s-1} + {r-5 \choose s-1} + 3{r-4 \choose s-2} - 2 \left[{r-4 \choose s-1} + {r-4 \choose s-2} \right] = -{r-5 \choose s-1} - {r-5 \choose s-1} + {r-5 \choose s-2} = -{r-5 \choose s-1} - {r-5 \choose s-2} + {r-5 \choose s-1} + {r-5 \choose s
$$

$$
= \binom{r-5}{s-3} \ge 0
$$

Thus $B - C \ge 0$, proving there by that $b_i(G'_{4,k}) \ge b_i(G'_{2,k})$. This proves the theorem.

Corollary 2.8: For $k \ge 6$, we have, $G'_{1,k} \ge G'_{3,k} \ge G'_{4,k} \ge G'_{2,k}$. Consequently, $E(G'_{1,k}) \geq E(G'_{3,k}) \geq E(G'_{4,k}) \geq E(G'_{2,k}).$

Proof: The first statement follows from Theorem 2.7. The second statement follows from Theorem 1.3.

Remark 2.9: The characteristic polynomial and energy of the adjacency matrix of a unicyclic graphs $G'_{1,k}$, $G'_{2,k}$, $G'_{3,k}$ and $G'_{4,k}$ for $k = 7, 8, 9$ (by using *maple*) are given below:

No. of vertices k	Graphs	Characteristic Polynomial	Energy (approx.)
$k = 7$	$G'_{1,7}$	λ^7 – λ^5 – λ^4 + λ^3 + λ^2 – λ^3 – λ	8.9405
	$G_{3,7}^{\prime}$	λ^7 – $7\lambda^5$ – $2\lambda^4$ + $12\lambda^3$ + $4\lambda^2$ – 5λ – 2	8.8698
	$G'_{4,7}$	λ^7 – $7\lambda^5$ – $2\lambda^4$ + $12\lambda^3$ + $4\lambda^2$ – 4λ	8.4554
	$G'_{2,7}$	λ^7 – $7\lambda^5$ – $2\lambda^4$ + $12\lambda^3$ + $4\lambda^2$ – 4λ	8.4554
$k=8$	$G'_{1,8}$	$\lambda^8 - 8\lambda^6 - 2\lambda^5 + 19\lambda^4 + 8\lambda^3 - 13\lambda^2 - 6\lambda + 1$	10.106
	$G'_{3,8}$	$\lambda^8 - 8\lambda^6 - 2\lambda^5 + 18\lambda^4 + 6\lambda^3 - 12\lambda^2 - 4\lambda + 1$	9.996
	$G'_{4,8}$	$\lambda^8 - 8\lambda^6 - 2\lambda^5 + 18\lambda^4 + 6\lambda^3 - 12\lambda^2 - 4\lambda + 1$	9.996
	$G_{2,8}^{ \prime }$	λ^8 – $\lambda\lambda^6$ – $2\lambda^5$ + $18\lambda^4$ + $6\lambda^3$ – $11\lambda^2$ – 2λ + 1	9.93
$k=9$	$G'_{1,9}$	λ^9 – 9 λ^7 – 2 λ^6 + 26 λ^5 + 10 λ^4 – 26 λ^3 – 12 λ^2 + 6 λ + 2	11.4701
	$G'_{3,9}$	λ^9 – 9 λ^7 – 2 λ^6 + 25 λ^5 + 8 λ^4 – 24 λ^3 – 8 λ^2 + 6 λ + 2	11.3853
	$G'_{4,9}$	λ^9 – 9 λ^7 – 2 λ^6 + 25 λ^5 + 8 λ^4 – 24 λ^3 – 8 λ^2 + 5 λ	11.0603
	$G'_{2,9}$	λ^9 – 9 λ^7 – 2 λ^6 + 25 λ^5 + 8 λ^4 – 23 λ^3 – 6 λ^2 + 5 λ	11.0342

REFERENCES

- [1] D. M. Cvetkovi'c, M. Doob and H. Sachs, *Spectra of Graphs*, Academic Press, New York, 1980.
- [2] I. Gutman, X. Li, and Y. Shi, *Graph Energy*, New York: Springer, 2012.
- [3] F. Harary, *Graph Theory*, Addison-Wesley Publishing Company, New York, 1969
- [4] Y. Hou, *Unicyclic graphs with minimal energy*, Journal of Mathematical Chemistry, Vol. 29, No. 3, (2001), 163-168.