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Abstract: In this paper, we compare the energies of 

unicycilc graphs with cycle C3 (with k number of 

vertices, having the unique cycle C3 denoted by 𝑮𝒊,𝒌
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using the coefficients of the characteristic polynomials 

and Coulson integral formula by establishing the quasi- 

ordering ‘≤’ on the unicyclic graphs of same order k. 
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1. INTRODUCTION 

Let G be a simple graph with k vertices and A(G) be 

its adjacency matrix. Let 𝜆1, … , 𝜆𝑘 be the eigenvalues 

of A(G). Then the energy of G, denoted by E(G), is 

defined as 𝐸(𝐺) = ∑ |𝜆𝑖|
𝑘
𝑖=1 . 

The characteristic polynomial det(𝑥𝐼 –  𝐴(𝐺)) of the 

adjacency matrix A(G) of the graph G is also called 

the characteristic polynomial of G is written as 

. 

Using the coefficients ai(G) of 𝜙(𝐺, 𝑥) , the energy 

E(G) of the graph G with k vertices can be expressed 

by the following Coulson integral formula (Eq. (3.11) 

in [2]): 

 

We write bi(G) = |ai(G)|. Then clearly b0(G) = 1, b1(G) 

= 0 and b2(G) equals the number of edges of G. 

About the signs of the coefficients of the 

characteristic polynomials of unicyclic graphs, we 

have the following result: 

Lemma 1.1: (Lemma 1 in [3]) Let G be a unicyclic 

graph and the length of the unique cycle of G be `. 

Then we have the following: 

(1) b2i(G) = (−1)ia2i(G), 

(2) b2i+1(G) = (−1)ia2i+1(G), if G contain a cycle 

of length l with 𝑙 ≡ 1(mod 4), 

(3) b2i+1(G) = (−1)i+1a2i+1(G), if G contain a 

cycle of length  l with 𝑙 ≢ 1(mod 4). 

Thus, the Coulson integral formula for unicyclic 

graphs can be rewritten in terms of bi(G) as follows: 

 

Hence it follows that for unicyclic graphs G, E(G) is 

a strictly monotonically increasing function of bi(G), 

𝑖 =  0, … , 𝑘 . To make it more precise, we define a 

quasi-order ≤ on graphs as follows: 

Definition 1.2: Let G1 and G2 be two graphs of order 

k. If bi(G1) ≤ bi(G2) for all i with 1 ≤ i ≤ k, then we 

write G1 ≤ G2. 

Thus using Coulson integral formula, we have, 

Theorem 1.3: For any two unicyclic graphs G1 and G2 

of order k, we have,  

G1 ≤ G2 ⟹ E(G1) ≤ E(G2). 

Thus, for comparing the energies of any two 

unicyclic graphs of the same order, it is enough to 

establish the quasi-order. 

Using this idea, in Section 2, we compare the energies 

of the unicyclic graphs                 𝐺1,𝑘
′  , 𝐺2,𝑘

′  , 𝐺3,𝑘
′    
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and 𝐺4,𝑘
′   (see Fig. 2.1 and Fig. 2.2) with k vertices 

having the 

unique cycle C3 by establishing the quasi-ordering: 

. 

This would imply, by above discussion, 

. 

We note that these graphs are bipartite. For a bipartite 

graph G, the characteristic polynomial is of the form 

, 

as a2j+1 = 0 for 𝑗 = 1, … , ⌊
𝑘

2
⌋  .  Also, (−1)ja2j = b2j and 

so 

𝜙(𝐺, 𝑥) = ∑ (−1)𝑗𝑏2𝑗𝑥𝑘−2𝑗
⌊
𝑘

2
⌋

𝑗=0
 

Thus, for a bipartite graph G, the Coulson integral 

formula 

reduces to 

 

 

from which the monotonicity of the E(G) with respect 

to the bi(G), 1 ≤ i ≤ k, follows. i.e., if G1 and G2 are 

two bipartite graphs of order k such that bi(G1) ≤ 

bi(G2) for all i, 1 ≤ i ≤ k, then E(G1) ≤ E(G2). i.e., G1 

≤ G2 implies E(G1) ≤ E(G2). 

 

2. COMPARING THE ENERGIES OF THE 

GRAPHS 𝑮𝒊,𝒌
′  

We note that in the following the binomial coefficient 

(
𝑎
𝑏

)  will be zero whenever the number a is not a 

positive integer or the number b is not a non-negative 

integer. 

Theorem 2.1: Let 𝐺1,𝑘
′ = (𝑉, 𝑋) be the graph with k 

vertices given below: 

 

Let 𝐴(𝐺1,𝑘
′ ) = (𝑎𝑖𝑗) be the adjacency matrix of the 

graph 𝐺1,𝑘
′  . Then, for k ≥ 4, its characteristic 

polynomial 𝜒(𝐺1,𝑘
′ ; 𝜆) is given by: 

 
(1)  

Also for 1 ≤ i ≤ k, the coefficient of 𝜆𝑖  in 𝜒(𝐺1,𝑘
′ ; 𝜆) is 

 

(2)  

In the above, when k − i ≡ 1(mod 2), the first sum vanishes and when k ≡ i(mod 2), second sum vanishes. 

Proof: The adjacency matrix 𝐴(𝐺1,𝑘
′ ) is given by 

 

The characteristic polynomial of the adjacency matrix 𝐴(𝐺1,𝑘
′ ) is given by 𝜒(𝐺1,𝑘

′ ; 𝜆) = |𝜆𝐼 − 𝐴|, where I is the 

identity matrix of order k. Thus, by expanding the following determinant and the subsequent determinants by 

their first column, we get, 
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=  λ2 χ(Pk−2) − λ χ(Pk−3) − χ(Pk−2) − χ(Pk−3) − χ(Pk−3) − λ χ(Pk−3) 

= (λ2 − 1) χ(Pk−2) − 2(λ + 1) χ(Pk−3), 

where χ(Pk−2) and χ(Pk−3) are the characteristic polynomials of the paths Pk−2 and Pk−3 containing k − 2 and k − 3 

vertices respectively. 

In view of (1), to find the coefficient of 𝜆𝑖  in 𝜒(𝐺1,𝑘
′ ; 𝜆), we find the coefficients of λi−2 and λi in χ(Pk−2) and the 

coefficients of λi−1 and λi in χ(Pk−3). We make use of the following characteristic polynomial of the path Pn: 

 

(3)  

Put n = k − 2 in (3). If 𝑡 =
𝑘−𝑖

2
, then n − 2t = i − 2, and so the coefficient of λi−2 in χ(Pk−2) is (−1)

𝑘−𝑖

2 (

𝑘+𝑖−4

2
𝑘−𝑖

2

), 

since, 𝑛 − 𝑡 = 𝑘 − 2 − (
𝑘−𝑖

2
) =

𝑘+𝑖−4

2
. Again by putting n = k − 2 in (3), we obtain the coefficient of λi in χ(Pk−2) 
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to be (−1)
𝑘−𝑖−2

2 (

𝑘+𝑖−2

2
𝑘−𝑖−2

2

)  by taking  𝑡 =
𝑘−𝑖−2

2
   as 𝑛 − 2𝑡 = 𝑘 − 2 − 2 (

𝑘−𝑖−2

2
) = 𝑖   and 𝑛 − 𝑡 = 𝑘 − 2 −

(
𝑘−𝑖−2

2
) =

𝑘+𝑖−2

2
.  

Similarly, by putting n = k − 3 and taking 𝑡 =
𝑘−𝑖−2

2
 in (3), we see that the 

coefficient of λi-1 in χ(Pk−3) is (−1)
𝑘−𝑖−2

2 (

𝑘+𝑖−4

2
𝑘−𝑖−2

2

)  Further putting n = k − 3 in 

(3), we see that the coefficient of λi in χ(Pk−3) is (−1)
𝑘−𝑖−3

2 (

𝑘+𝑖−3

2
𝑘−𝑖−3

2

) by taking 

𝑡 =
𝑘−𝑖−3

2
. 

Now by (1), we have,  

{Coefficient of λi in 𝜒(𝐺1,𝑘
′ ; 𝜆)} =   

{Coefficient of λi−2 in χ(Pk−3)} − {Coefficient of λi−2 in χ(Pk−2)} − 2{Coefficient of λi−1 in χ(Pk−3)} − 2 {Coefficient 

of λi in χ(Pk−3)}. 

Thus the coefficient of ) is given by 

 

 

We make use of the following well known result for computing the characteristic polynomial of some graphs in 

Corollary 2.3. 

Theorem 2.2: [1] Let v1 be a vertex of degree 1 in the graph G and let v2 be the vertex adjacent to v1. If G1 be the 

induced subgraph obtained from G by deleting the vertex v1 and let G2 be the induced subgraph obtained from G 

by deleting the vertices v1 and v2, then, 

χ(G; λ) = λ χ(G1; λ) − χ(G2; λ) (4)  

Proof: See Theorem 2.11 in [1].  

Corollary 2.3: Let 𝐺2,𝑘
′ , 𝐺3,𝑘

′  and 𝐺4,𝑘
′  be the graphs with k vertices as given below: 

 
Fig. 2.2 Graphs 𝐺2,𝑘

′ , 𝐺3,𝑘
′  and 𝐺4,𝑘

′  
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Then, we have, 

𝜒(𝐺2,𝑘
′ ) = 𝜆 𝜒(𝐺1,𝑘−1

′ ) − 𝜒(𝑃𝑘−2)                                                             (5)  

𝜒(𝐺3,𝑘
′ ) = 𝜆 𝜒(𝐺2,𝑘−1

′ ) − 𝜒(𝐺1,𝑘−2
′ ) (6)  

𝜒(𝐺4,𝑘
′ ) = 𝜆 𝜒(𝐺3,𝑘−1

′ ) − 𝜒(𝐺2,𝑘−2
′ ) (7)  

Theorem 2.4: The coefficient of λi in 𝜒(𝐺2,𝑘
′ ) is 

 

(8)  

In the above, when k − i ≡ 1(mod 2), the first sum vanishes and when k ≡ i(mod 2), second sum vanishes. 

Proof: By Corollary 2.3, we have 𝜒(𝐺2,𝑘
′ ) = 𝜆 𝜒(𝐺1,𝑘−1

′ ) − 𝜒(𝑃𝑘−2). Thus, the coefficient of λi in 𝜒(𝐺2,𝑘
′ ) = 

{Coefficient of λi-1 in 𝜒(𝐺1,𝑘−1
′ )} - {Coefficient of λi in χ(Pk−2)}. 

By putting i = i − 1 and k = k − 1 in Theorem 2.1, we obtain the coefficient of of λi-1 in 𝜒(𝐺1,𝑘−1
′ ) to be: 

. 

Also, by (3), the coefficient of λi in χ(Pk−2) is (−1)
𝑘−𝑖−2

2 (

𝑘+𝑖−2

2
𝑘−𝑖−2

2

). 

Therefore the coefficient of λi in 𝜒(𝐺2,𝑘
′ )     is given by, 

 

 

 

Theorem 2.5: The coefficient of λi in 𝜒(𝐺3,𝑘
′ ) is 

 
(9)  

In the above, when k − i ≡ 1(mod 2), the first sum vanishes and when k ≡ i(mod 2), second sum vanishes. 

Proof: By Corollary 2.3, we have, (𝐺3,𝑘
′ ) = 𝜆 𝜒(𝐺2,𝑘−1

′ ) − 𝜒(𝐺1,𝑘−2
′ ) . 
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Thus, the coefficient of λi in 𝜒(𝐺3,𝑘
′ ) is 

{Coefficient of λi-1 in 𝜒(𝐺2,𝑘−1
′ )} - {Coefficient of λi in χ(𝐺1,𝑘−2

′ )}. 

By putting i = i−1, k = k −1 in Theorem 2.4, the coefficient of λi-1 in 𝜒(𝐺2,𝑘
′ ) is seen to be 

. 

Also by replacing k by k − 2 in the Theorem 2.1, we obtain the coefficient of λi 

In 𝜒(𝐺1,𝑘
′ ): 

. 

Therefore the coefficient of λi in 𝜒(𝐺3,𝑘
′ )  is given by 

 

  .  

 

Theorem 2.6: The coefficient of λi in 𝜒(𝐺4,𝑘
′ ) is given by 

 
(10)  

In the above, when k − i ≡ 1(mod 2), the first sum vanishes and when k ≡ i(mod 2), second sum vanishes. 

Proof: By Corollary 2.3, we have, 𝜒(𝐺4,𝑘
′ ) = 𝜆 𝜒(𝐺3,𝑘−1

′ ) − 𝜒(𝐺2,𝑘−2
′ ). 

Thus, the coefficient of λi in 𝜒(𝐺4,𝑘
′ ) = 

{Coefficient of λi−1 in 𝜒(𝐺3,𝑘−1
′ )} − {Coefficient of λi  in 𝜒(𝐺2,𝑘−2

′ )}. 

By putting i = i−1, k = k −1 in Theorem 2.5, the coefficient of λi-1 in 𝜒(𝐺3,𝑘
′ )is seen to be 



© January 2019 | IJIRT | Volume 5 Issue 8 | ISSN: 2349-6002 

 

IJIRT 171074   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY        358 

 

By replacing k by k − 2 in the Theorem 2.4, we obtain the coefficient of λi in 𝜒(𝐺2,𝑘
′ ): 

. 

Therefore the coefficient of λi in 𝜒(𝐺4,𝑘
′ ) is given by 

 

 

 

 

 . 

Theorem 2.7: For any graph G, let bi(G) = |ai(G)|, where ai(G) is the coefficient λi in χ(G;λ). Then, 

. 

Proof: We prove that: 

 

 

 

Proof of (i): We have two cases to be considered. 

Suppose i and k are not of same parity. Note that the coefficient of λi in 𝜒(𝐺1,𝑘
′ ) is given in equation (2) and the 

coefficient of λi in 𝜒(𝐺3,𝑘
′ ) is given in equation (9). Also, note that when i and k are not of same parity, the first 
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sum in (2) and (9) vanish and so we need to consider only the second sum (−1)
𝑘−𝑖−1

2
 2 (

𝑘+𝑖−3

2
𝑘−𝑖−3

2

) of (2) and the 

second sum (−1)
𝑘−𝑖−1

2
 2 [(

𝑘+𝑖−7

2
𝑘−𝑖−3

2

) + (

𝑘+𝑖−5

2
𝑘−𝑖−5

2

)] of (9). 

Using the binomial identity: 

, 

we expand above sums to obtain: 

. 

Thus, in this case we observe that  𝑏𝑖(𝐺1,𝑘
′ ) ≥ 𝑏𝑖(𝐺3,𝑘

′ ).    

Suppose i and k are of same parity. Note that when i and k are of same parity, the second sum in equation (2) and 

equation (9) vanish and so we need to consider 

only the first sum (−1)
𝑘−𝑖

2
 [(

𝑘+𝑖−4

2
𝑘−𝑖

2

) + (

𝑘+𝑖−2

2
𝑘−𝑖−2

2

) + 2 (

𝑘+𝑖−4

2
𝑘−𝑖−2

2

)] of (2) and the first 

sum 

 
of (9). 

Again by using the binomial identity, we have, 
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Thus we see that: 𝒃𝒊(𝑮𝟏,𝒌
′ ) ≥ 𝒃𝒊(𝑮𝟑,𝒌

′ )  
. This proves (i). 

Proof of (ii): 

We show that 𝒃𝒊(𝑮𝟑,𝒌
′ ) ≥ 𝑏𝒊(𝑮𝟒,𝒌

′ )  
. For this we consider two cases. 

Suppose i and k are not of same parity. Note that the coefficient of λi in 𝝌(𝑮𝟑,𝒌
′ ) is given in equation (9), and the 

coefficient of λi in 𝝌(𝑮𝟒,𝒌
′ ) is given in equation (10). Also note that when i and k are not of same parity, the first 

sum in (9) and (10) vanish and so we need to consider only the second sum 𝟐(−𝟏)
𝒌−𝒊−𝟏

𝟐
 [(

𝒌+𝒊−𝟕

𝟐
𝒌−𝒊−𝟑

𝟐

) + (

𝒌+𝒊−𝟓

𝟐
𝒌−𝒊−𝟓

𝟐

)] of 

(9) and the second sum𝟐(−𝟏)
𝒌−𝒊−𝟏

𝟐
 [(

𝒌+𝒊−𝟗

𝟐
𝒌−𝒊−𝟑

𝟐

) + (

𝒌+𝒊−𝟕

𝟐
𝒌−𝒊−𝟓

𝟐

)] of (10). 

Consider the term [(

𝒌+𝒊−𝟕

𝟐
𝒌−𝒊−𝟑

𝟐

) + (

𝒌+𝒊−𝟓

𝟐
𝒌−𝒊−𝟓

𝟐

)]. By putting 
𝒌+𝒊−𝟏

𝟐
= 𝒓 and 

𝒌−𝒊−𝟏

𝟐
= 𝒔, 

we obtain by using the binomial identity, 
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Hence, 𝒃𝒊(𝑮𝟑,𝒌
′ ) ≥ 𝒃𝒊(𝑮𝟒,𝒌

′ ).   

Suppose i and k are of same parity. Note that when i and k are of same parity, the second sum in equation (9) and 

equation (10) vanish and so we need to consider only the first sum 

 

of (9) and the first sum 

 

of (10). We need to show that A−B ≥ 0. By substituting 
𝒌+𝒊

𝟐
= 𝒓 and 

𝒌−𝒊

𝟐
= 𝒔,   

we get, 

 

Consider 
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Thus A − B ≥ 0, proving there by that 𝒃𝒊(𝑮𝟑,𝒌
′ ) ≥ 𝒃𝒊(𝑮𝟒,𝒌

′ ).   

Proof of (iii): Finally we show 𝒃𝒊(𝑮𝟒,𝒌
′ ) ≥ 𝒃𝒊(𝑮𝟐,𝒌

′ ).   Again there are two cases to be considered. 

Suppose i and k are not of same parity. Note that the coefficient of λi in 𝝌(𝑮𝟒,𝒌
′ ) is given in equation (10) and the 

coefficient of λi in 𝝌(𝑮𝟐,𝒌
′ )  is given in equation (8). Also note that when i and k are not of same parity, the first 

sum in (10) and in (8) vanish and so we need to consider only the second sum 𝟐(−𝟏)
𝒌−𝒊−𝟏

𝟐
 [(

𝒌+𝒊−𝟗

𝟐
𝒌−𝒊−𝟑

𝟐

) +

𝟐 (

𝒌+𝒊−𝟕

𝟐
𝒌−𝒊−𝟓

𝟐

)] of (10) and the second term 𝟐(−𝟏)
𝒌−𝒊−𝟏

𝟐
 [(

𝒌+𝒊−𝟓

𝟐
𝒌−𝒊−𝟑

𝟐

)] of (8). 

Consider the term (

𝒌+𝒊−𝟗

𝟐
𝒌−𝒊−𝟑

𝟐

) + 𝟐 (

𝒌+𝒊−𝟕

𝟐
𝒌−𝒊−𝟓

𝟐

). By putting  
𝒌+𝒊−𝟏

𝟐
= 𝒓 and 

𝒌−𝒊−𝟏

2
= 𝒔, we get, 

 

. 
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Hence, 𝒃𝒊(𝑮𝟒,𝒌
′ ) ≥ 𝒃𝒊(𝑮𝟐,𝒌

′ ).   

Suppose i and k are of same parity. Note that when i and k are of same parity, the second sum in equation (10) and 

equation (8) vanish and so we need to consider only the first sum 

 

of (10) and the first sum 𝑪 = (

𝒌+𝒊−𝟒

𝟐
𝒌−𝒊

𝟐

) + (

𝒌+𝒊−𝟐

𝟐
𝒌−𝒊−𝟐

𝟐

) + (

𝒌+𝒊−𝟒

𝟐
𝒌−𝒊−𝟐

𝟐

) + (

𝒌+𝒊−𝟔

𝟐
𝒌−𝒊−𝟐

𝟐

) of (8). 

By substituting 
𝒌+𝒊

𝟐
= 𝒓 and 

𝒌−𝒊

𝟐
= 𝒔, we get 

𝑩 = (
𝒓 − 4

𝑠
) + 2 (

𝑟 − 3
𝑠 − 1

) + 2 (
𝑟 − 4
𝑠 − 1

) + (
𝑟 − 5
𝑠 − 1

) + 2 (
𝑟 − 3
𝑠 − 2

) + 3 (
𝑟 − 4
𝑠 − 2

) + (
𝑟 − 2
𝑠 − 2

), 

 . 

Consider 
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 . ‘ 

Thus B − C ≥ 0, proving there by that 𝑏𝑖(𝐺4,𝑘
′ ) ≥ 𝑏𝑖(𝐺2,𝑘

′ ).   

This proves the theorem.  

Corollary 2.8: For k ≥ 6, we have, 𝐺1,𝑘
′ ≥ 𝐺3,𝑘

′ ≥ 𝐺4,𝑘
′ ≥ 𝐺2,𝑘

′ . Consequently, 

 
Proof: The first statement follows from Theorem 2.7. The second statement follows from Theorem 1.3.  

Remark 2.9: The characteristic polynomial and energy of the adjacency matrix of a unicyclic graphs 𝐺1,𝑘
′ , 𝐺2,𝑘

′ ,

𝐺3,𝑘
′  and 𝐺4,𝑘

′  for k = 7, 8, 9 (by using maple) are given below: 

No. of Graphs Characteristic Polynomial Energy 

vertices k   (approx.) 

 

k = 7  λ7 − 7λ5 − 2λ4 + 13λ3 + 6λ2 − 5λ − 2 8.9405 

 λ7 − 7λ5 − 2λ4 + 12λ3 + 4λ2 − 5λ − 2 8.8698 

 λ7 − 7λ5 − 2λ4 + 12λ3 + 4λ2 − 4λ 8.4554 

 λ7 − 7λ5 − 2λ4 + 12λ3 + 4λ2 − 4λ 8.4554 

 

k = 8 
 λ8 − 8λ6 − 2λ5 + 19λ4 + 8λ3 − 13λ2 − 6λ + 1 10.106 

 λ8 − 8λ6 − 2λ5 + 18λ4 + 6λ3 − 12λ2 − 4λ + 1 9.996 

 λ8 − 8λ6 − 2λ5 + 18λ4 + 6λ3 − 12λ2 − 4λ + 1 9.996 

 λ8 − 8λ6 − 2λ5 + 18λ4 + 6λ3 − 11λ2 − 2λ + 1 9.93 

 

k = 9 
 λ9 − 9λ7 − 2λ6 + 26λ5 + 10λ4 − 26λ3 − 12λ2 + 6λ + 2 11.4701 

 λ9 − 9λ7 − 2λ6 + 25λ5 + 8λ4 − 24λ3 − 8λ2 + 6λ + 2 11.3853 

 λ9 − 9λ7 − 2λ6 + 25λ5 + 8λ4 − 24λ3 − 8λ2 + 5λ 11.0603 

 λ9 − 9λ7 − 2λ6 + 25λ5 + 8λ4 − 23λ3 − 6λ2 + 5λ 11.0342 
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