Energy Comparison of Unicyclic Graphs with Cycle C₃

Ravikumar N.¹, Nanjundaswamy N.²

¹Department of Mathematics, Government First Grade College, Gundulpet - 571111, India. ²Department of Mathematics Sri Mahadeswara Government First Grade College, Kollegal-571 440, India

Abstract: In this paper, we compare the energies of unicycilc graphs with cycle C_3 (with k number of vertices, having the unique cycle C_3 denoted by $G'_{i,k}$), using the coefficients of the characteristic polynomials and Coulson integral formula by establishing the quasi-ordering ' \leq ' on the unicyclic graphs of same order k.

Keywords. Energy; Characteristic polynomial; Adjacency matrix A(G); Coefficient of λ^i ; Unicyclic graphs; Bipartite graphs.

1. INTRODUCTION

Let G be a simple graph with k vertices and A(G) be its adjacency matrix. Let $\lambda_1, ..., \lambda_k$ be the eigenvalues

$$E(G) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{x^2} \log \left[\left(\sum_{i=0}^{\lfloor \frac{\pi}{2} \rfloor} (-1)^i a_{2i}(G) x^{2i} \right) \right] dx^{2i}$$

We write $b_i(G) = |a_i(G)|$. Then clearly $b_0(G) = 1$, $b_1(G) = 0$ and $b_2(G)$ equals the number of edges of *G*.

About the signs of the coefficients of the characteristic polynomials of unicyclic graphs, we have the following result:

Lemma 1.1: (Lemma 1 in [3]) Let G be a unicyclic graph and the length of the unique cycle of G be `. Then we have the following:

of
$$A(G)$$
. Then the *energy* of G, denoted by $E(G)$, is defined as $E(G) = \sum_{i=1}^{k} |\lambda_i|$.

The characteristic polynomial det(xI - A(G)) of the adjacency matrix A(G) of the graph G is also called the *characteristic polynomial* of G is written as

$$\phi(G, x) = \sum_{i=0}^{n} a_i(G) \ x^{k-i}$$

Using the coefficients $a_i(G)$ of $\phi(G, x)$, the energy E(G) of the graph *G* with *k* vertices can be expressed by the following Coulson integral formula (Eq. (3.11) in [2]):

$$\int^{2} + \left(\sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^{i} a_{2i+1}(G) x^{2i+1}\right)^{2} dx.$$
(1) $b_{2i}(G) = (-1)^{i} a_{2i}(G),$

|k|

(2) $b_{2i+1}(G) = (-1)^i a_{2i+1}(G)$, if G contain a cycle of length l with $l \equiv 1 \pmod{4}$,

(3) $b_{2i+1}(G) = (-1)^{i+1}a_{2i+1}(G)$, if G contain a cycle of length l with $l \not\equiv 1 \pmod{4}$.

Thus, the Coulson integral formula for unicyclic graphs can be rewritten in terms of $b_i(G)$ as follows:

$$E(G) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{x^2} \log \left[\left(\sum_{i=0}^{\lfloor \frac{k}{2} \rfloor} b_{2i}(G) \ x^{2i} \right)^2 + \left(\sum_{i=0}^{\lfloor \frac{k}{2} \rfloor} b_{2i+1}(G) \ x^{2i+1} \right)^2 \right] \mathrm{d}x.$$

Hence it follows that for unicyclic graphs G, E(G) is a strictly monotonically increasing function of $b_i(G)$, i = 0, ..., k. To make it more precise, we define a quasi-order \leq on graphs as follows:

Definition 1.2: Let G_1 and G_2 be two graphs of order k. If $b_i(G_1) \le b_i(G_2)$ for all i with $1 \le i \le k$, then we write $G_1 \le G_2$.

Thus using Coulson integral formula, we have,

Theorem 1.3: For any two unicyclic graphs G_1 and G_2 of order k, we have,

$$G_1 \leq G_2 \Longrightarrow E(G_1) \leq E(G_2)$$

Thus, for comparing the energies of any two unicyclic graphs of the same order, it is enough to establish the quasi-order.

Using this idea, in Section 2, we compare the energies of the *unicyclic graphs* $G'_{1,k}$, $G'_{2,k}$, $G'_{3,k}$

and $G'_{4,k}$ (see Fig. 2.1 and Fig. 2.2) with k vertices having the

unique cycle C_3 by establishing the quasi-ordering:

$$G_{2,k}^{'} \leq G_{4,k}^{'} \leq G_{3,k}^{'} \leq G_{1,k}^{'}$$

This would imply, by above discussion,

$$E(G'_{2,k}) \le E(G'_{4,k}) \le E(G'_{3,k}) \le E(G'_{1,k})$$

We note that these graphs are *bipartite*. For a bipartite graph G, the characteristic polynomial is of the form

$$\phi(G, x) = \sum_{i=0}^{k} a_i \ x^{k-i} = \sum_{j=0}^{\lfloor \frac{k}{2} \rfloor} a_{2j} \ x^{k-2j}$$

as $a_{2j+1} = 0$ for $j = 1, ..., \left\lfloor \frac{k}{2} \right\rfloor$. Also, $(-1)^{j} a_{2j} = b_{2j}$ and so

$$\phi(G, x) = \sum_{j=0}^{\left\lfloor \frac{k}{2} \right\rfloor} (-1)^j b_{2j} x^{k-2}$$

Thus, for a bipartite graph G, the Coulson integral formula

reduces to

$$E(G) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{x} \log \left[\left(\sum_{j=0}^{\lfloor \frac{k}{2} \rfloor} (-1)^j a_{2j}(G) \right) \right]_{j=0}^{k}$$

from which the monotonicity of the E(G) with respect to the $b_i(G)$, $1 \le i \le k$, follows. i.e., if G_1 and G_2 are two bipartite graphs of order k such that $b_i(G_1) \le$ $b_i(G_2)$ for all $i, 1 \le i \le k$, then $E(G_1) \le E(G_2)$. i.e., G_1 $\le G_2$ implies $E(G_1) \le E(G_2)$.

2. COMPARING THE ENERGIES OF THE GRAPHS $G'_{i,k}$

We note that in the following the binomial coefficient $\binom{a}{b}$ will be zero whenever the number *a* is not a positive integer or the number *b* is not a non-negative integer.

Theorem 2.1: Let $G'_{1,k} = (V, X)$ be the graph with k vertices given below:

Fig. 2.1 Graph $G'_{1,k}$

Let
$$A(G'_{1,k}) = (a_{ij})$$
 be the adjacency matrix of the graph $G'_{1,k}$. Then, for $k \ge 4$, its characteristic polynomial $\chi(G'_{1,k}; \lambda)$ is given by:

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{x} \log \left[\left(\sum_{j=0}^{\lfloor \frac{k}{2} \rfloor} b_{2j}(G) \ x^{k-2j} \right)^2 \right] \mathrm{d}x,$$

$$\chi(G'_{1,k}; \lambda) = (\lambda^2 - 1) \ \chi(P_{k-2}) - 2(\lambda + 1) \ \chi(P_{k-3})$$
(1)

Also for $1 \le i \le k$, the coefficient of λ^i in $\chi(G'_{1,k}; \lambda)$ is

$$(-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-4}{2}}{\frac{k-i}{2}} + \binom{\frac{k+i-2}{2}}{\frac{k-i-2}{2}} + 2\binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} \right] + 2(-1)^{\frac{k-i-1}{2}} \binom{\frac{k+i-3}{2}}{\frac{k-i-3}{2}}$$
(2)

In the above, when $k - i \equiv 1 \pmod{2}$, the first sum vanishes and when $k \equiv i \pmod{2}$, second sum vanishes.

Proof: The adjacency matrix $A(G'_{1,k})$ is given by

The characteristic polynomial of the adjacency matrix $A(G'_{1,k})$ is given by $\chi(G'_{1,k}; \lambda) = |\lambda I - A|$, where *I* is the identity matrix of order *k*. Thus, by expanding the following determinant and the subsequent determinants by their first column, we get,

$$= \lambda^{2} \chi(Pk-2) - \lambda \chi(Pk-3) - \chi(Pk-2) - \chi(Pk-3) - \chi(Pk-3) - \lambda \chi(Pk-3)$$

= $(\lambda^{2} - 1) \chi(P_{k-2}) - 2(\lambda + 1) \chi(P_{k-3}),$

where $\chi(P_{k-2})$ and $\chi(P_{k-3})$ are the characteristic polynomials of the paths P_{k-2} and P_{k-3} containing k-2 and k-3 vertices respectively.

In view of (1), to find the coefficient of λ^i in $\chi(G'_{1,k}; \lambda)$, we find the coefficients of λ^{i-2} and λ^i in $\chi(P_{k-2})$ and the coefficients of λ^{i-1} and λ^i in $\chi(P_{k-3})$. We make use of the following characteristic polynomial of the path P_n :

$$\chi(P_n) = \sum_{t=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^t \binom{n-t}{t} \lambda^{n-2t}$$
(3)

Put n = k - 2 in (3). If $t = \frac{k-i}{2}$, then n - 2t = i - 2, and so the coefficient of λ^{i-2} in $\chi(P_{k-2})$ is $(-1)^{\frac{k-i}{2}} \begin{pmatrix} \frac{k+i-4}{2} \\ \frac{k-i}{2} \end{pmatrix}$, since, $n - t = k - 2 - \left(\frac{k-i}{2}\right) = \frac{k+i-4}{2}$. Again by putting n = k - 2 in (3), we obtain the coefficient of λ^i in $\chi(P_{k-2})$.

to be
$$(-1)^{\frac{k-i-2}{2}} \begin{pmatrix} \frac{k+i-2}{2} \\ \frac{k-i-2}{2} \end{pmatrix}$$
 by taking $t = \frac{k-i-2}{2}$ as $n-2t = k-2-2 \begin{pmatrix} \frac{k-i-2}{2} \end{pmatrix} = i$ and $n-t = k-2-k$
 $\begin{pmatrix} \frac{k-i-2}{2} \end{pmatrix} = \frac{k+i-2}{2}$.
Similarly, by putting $n = k-3$ and taking $t = \frac{k-i-2}{2}$ in (3), we see that the

coefficient of λ^{i-l} in $\chi(P_{k-3})$ is $(-1)^{\frac{k-i-2}{2}} \begin{pmatrix} \frac{k+i-4}{2} \\ \frac{k-i-2}{2} \end{pmatrix}^{2}$ Further putting n = k-3 in (3), we see that the coefficient of λ^{i} in $\chi(P_{k-3})$ is $(-1)^{\frac{k-i-3}{2}} \begin{pmatrix} \frac{k+i-3}{2} \\ \frac{k-i-3}{2} \end{pmatrix}$ by taking

$$t=\frac{k-i-3}{2}.$$

Now by (1), we have,

{Coefficient of λ^i in $\chi(G'_{1,k}; \lambda)$ } = {Coefficient of λ^{i-2} in $\chi(P_{k-3})$ } - {Coefficient of λ^{i-2} in $\chi(P_{k-2})$ } - 2{Coefficient of λ^{i-1} in $\chi(P_{k-3})$ } - 2{Coefficient of λ^i in $\chi(P_{k-3})$ }.

Thus the coefficient of λ^i in $\chi(G'_{1,k})$ is given by

$$(-1)^{\frac{k-i}{2}} \binom{\frac{k+i-4}{2}}{\frac{k-i}{2}} - (-1)^{\frac{k-2-i}{2}} \binom{\frac{k+i-2}{2}}{\frac{k-i-2}{2}} - 2 \left[(-1)^{\frac{k-i-2}{2}} \binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} + (-1)^{\frac{k-i-3}{2}} \binom{\frac{k+i-3}{2}}{\frac{k-i-3}{2}} \right]$$

$$= (-1)^{\frac{k-i}{2}} \binom{\frac{k+i-4}{2}}{\frac{k-i}{2}} + (-1)^{\frac{k-i}{2}} \binom{\frac{k+i-2}{2}}{\frac{k-i-2}{2}} + 2(-1)^{\frac{k-i}{2}} \binom{\frac{k+i-4}{2}}{\frac{k-i-3}{2}} + 2(-1)^{\frac{k-i-1}{2}} \binom{\frac{k+i-3}{2}}{\frac{k-i-3}{2}} \right]$$

$$= (-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-4}{2}}{\frac{k-i}{2}} + \binom{\frac{k+i-2}{2}}{\frac{k-i-2}{2}} + 2\binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} \right] + 2(-1)^{\frac{k-i-1}{2}} \binom{\frac{k+i-3}{2}}{\frac{k-i-3}{2}} \right]$$

We make use of the following well known result for computing the characteristic polynomial of some graphs in Corollary 2.3.

Theorem 2.2: [1] Let v_1 be a vertex of degree 1 in the graph G and let v_2 be the vertex adjacent to v_1 . If G_1 be the induced subgraph obtained from G by deleting the vertex v_1 and let G_2 be the induced subgraph obtained from G by deleting the vertex v_1 and let G_2 be the induced subgraph obtained from G by deleting the vertex v_1 and let G_2 be the induced subgraph obtained from G by deleting the vertex v_1 and let G_2 be the induced subgraph obtained from G by deleting the vertex v_1 and let G_2 be the induced subgraph obtained from G by deleting the vertex v_1 and let G_2 be the induced subgraph obtained from G by deleting the vertex v_1 and v_2 , then,

$$\chi(G;\lambda) = \lambda \,\chi(G_1;\lambda) - \chi(G_2;\lambda) \tag{4}$$

Proof: See Theorem 2.11 in [1].

Corollary 2.3: Let $G'_{2,k}$, $G'_{3,k}$ and $G'_{4,k}$ be the graphs with k vertices as given below:

Fig. 2.2 Graphs $G'_{2,k}$, $G'_{3,k}$ and $G'_{4,k}$

Then, we have,

$$\chi(G'_{2,k}) = \lambda \,\chi(G'_{1,k-1}) - \chi(P_{k-2}) \tag{5}$$

$$\chi(G'_{3,k}) = \lambda \, \chi(G'_{2,k-1}) - \chi(G'_{1,k-2}) \tag{6}$$

$$\chi(G'_{4,k}) = \lambda \, \chi(G'_{3,k-1}) - \chi(G'_{2,k-2}) \tag{7}$$

Theorem 2.4: The coefficient of λ^i in $\chi(G'_{2,k})$ is

$$(-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-4}{2}}{\frac{k-i}{2}} + \binom{\frac{k+i-2}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} \right] + 2(-1)^{\frac{k-i-1}{2}} \binom{\frac{k+i-5}{2}}{\frac{k-i-3}{2}}$$
(8)
In the above, when $k - i \equiv 1 \pmod{2}$, the first sum vanishes and when $k \equiv i \pmod{2}$, second sum vanishes.

Proof: By Corollary 2.3, we have $\chi(G'_{2,k}) = \lambda \chi(G'_{1,k-1}) - \chi(P_{k-2})$. Thus, the coefficient of λ^i in $\chi(G'_{2,k}) =$ {Coefficient of λ^{i-1} in $\chi(G'_{1,k-1})$ } - {Coefficient of λ^i in $\chi(P_{k-2})$ }.

By putting i = i - 1 and k = k - 1 in Theorem 2.1, we obtain the coefficient of λ^{i-1} in $\chi(G'_{1,k-1})$ to be:

$$(-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} \right] + 2(-1)^{\frac{k-i-1}{2}} \binom{\frac{k+i-5}{2}}{\frac{k-i-3}{2}}.$$

t of λ^{i} in $\chi(P_{k-2})$ is $(-1)^{\frac{k-i-2}{2}} \binom{\frac{k+i-2}{2}}{\frac{k-i-2}{2}}.$

Also, by (3), the coefficient of λ^i in $\chi(P_{k-2})$ is $(-1)^{\frac{k-i-2}{2}} \left(\frac{\frac{k-i-2}{2}}{\frac{k-i-2}{2}}\right)^{\frac{k-i-2}{2}}$ Therefore the coefficient of λ^i in $\chi(G'_{k-1})$ is given by

Therefore the coefficient of
$$\lambda^{i}$$
 in $\chi(G_{2,k})^{-1}$ is given by,

$$(-1)^{\frac{k-i}{2}} \left[\left(\frac{k+i-6}{2} \\ \frac{k-i-2}{2} \right) + \left(\frac{k+i-4}{2} \\ \frac{k-i-2}{2} \right) + 2 \left(\frac{k+i-6}{2} \\ \frac{k-i-2}{2} \right) \right] + 2(-1)^{\frac{k-i-1}{2}} \left(\frac{k+i-5}{2} \\ \frac{k-i-2}{2} \right) - (-1)^{\frac{k-i-2}{2}} \left(\frac{k+i-2}{2} \\ \frac{k-i-2}{2} \right) \right]$$

$$= (-1)^{\frac{k-i}{2}} \left[\left(\frac{k+i-6}{2} \\ \frac{k-i-2}{2} \right) + \left(\frac{k+i-4}{2} \\ \frac{k-i-2}{2} \right) + 2 \left(\frac{k+i-6}{2} \\ \frac{k-i-2}{2} \right) + \left(\frac{k+i-6}{2} \\ \frac{k-i-2}{2} \right) + 2 \left(\frac{k+i-6}{2} \\ \frac{k-i-2}{2} \right) \right]$$

$$= (-1)^{\frac{k-i}{2}} \left[\left(\frac{k+i-6}{2} \\ \frac{k-i-5}{2} \\ \frac{k-i-5}{2} \right) + \left(\frac{k+i-6}{2} \\ \frac{k-i-2}{2} \\ \frac{k-i-2}{2} \right) + \left(\frac{k+i-6}{2} \\ \frac{k-i-2}{2} \\ \frac{k-i-2}{2} \\ \frac{k-i-2}{2} \\ \frac{k+i-6}{2} \\ \frac{k-i-2}{2} \\ \frac{k-i-2}{2} \\ \frac{k+i-6}{2} \\ \frac{k-i-2}{2} \\ \frac{k-i-2}{2} \\ \frac{k-i-2}{2} \\ \frac{k+i-6}{2} \\ \frac{k-i-2}{2} \\ \frac{k-i-2}{2} \\ \frac{k+i-6}{2} \\ \frac{k-i-2}{2} \\ \frac{k-i-2}{2} \\ \frac{k+i-6}{2} \\ \frac{k-i-2}{2} \\ \frac{k-i-2}{2} \\ \frac{k-i-2}{2} \\ \frac{k-i-2}{2} \\ \frac{k+i-6}{2} \\ \frac{k-i-2}{2} \\ \frac{k-i-2}{2} \\ \frac{k-i-2}{2} \\ \frac{k-i-2}{2} \\ \frac{k+i-6}{2} \\ \frac{k-i-2}{2} \\ \frac{k$$

Theorem 2.5: The coefficient of λ^i in $\chi(G'_{3,k})$ is

$$(-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} \right] + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} = 2\binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} = 2\binom{\frac{k-i-6}{2}}{\frac{k-i-4}{2}} = 2\binom{\frac{k-i-6}{2}}{\frac{k-i-4}{2}} = 2\binom{\frac{k-i-6}{2}}{\frac{k-i-4}{2}} = 2\binom{\frac{k-i-6}{2}}{\frac{k-i-6}{2}} = 2\binom{\frac{k-i-6}{2}} = 2\binom{\frac{k-i-6}{2}} = 2\binom{\frac{k-i-6}{2}}{\frac{k-i-6}{2}} = 2\binom{\frac{k-i-6}{2}} = 2\binom{\frac{k-i-6}{2}}{\frac{k-i-6}{2}} = 2\binom{\frac{k-i-6}{2}}{\frac{k-i-6}{2}} = 2\binom{\frac{k-i-6}{2}} = 2\binom{\frac{k-i-6}{2$$

In the above, when $k - i \equiv 1 \pmod{2}$, the first sum vanishes and when $k \equiv i \pmod{2}$, second sum vanishes. Proof: By Corollary 2.3, we have, $(G'_{3,k}) = \lambda \chi(G'_{2,k-1}) - \chi(G'_{1,k-2})$. Thus, the coefficient of λ^i in $\chi(G'_{3,k})$ is

{Coefficient of
$$\lambda^{i-1}$$
 in $\chi(G'_{2,k-1})$ } - {Coefficient of λ^i in $\chi(G'_{1,k-2})$ }.

By putting i = i-1, k = k-1 in Theorem 2.4, the coefficient of λ^{i-1} in $\chi(G'_{2,k})$ is seen to be

$$(-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} \right] + 2(-1)^{\frac{k-i-1}{2}} \binom{\frac{k+i-7}{2}}{\frac{k-i-3}{2}}$$

Also by replacing k by k - 2 in the Theorem 2.1, we obtain the coefficient of λ^i In $\chi(G'_{1,k})$:

$$(-1)^{\frac{k-i-2}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} + \right] + 2(-1)^{\frac{k-i-3}{2}} \binom{\frac{k+i-5}{2}}{\frac{k-i-5}{2}}.$$

Therefore the coefficient of λ^i in $\chi(G'_{3,k})$ is given by

$$\begin{split} (-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} \right] + 2(-1)^{\frac{k-i-1}{2}} \binom{\frac{k+i-7}{2}}{\frac{k-i-3}{2}} \\ &-(-1)^{\frac{k-i-2}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} + \right] - 2(-1)^{\frac{k-i-3}{2}} \binom{\frac{k+i-5}{2}}{\frac{k-i-5}{2}} \\ &= (-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} \right] + 2(-1)^{\frac{k-i-1}{2}} \binom{\frac{k+i-7}{2}}{\frac{k-i-3}{2}} \\ &+(-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} + \right] + 2(-1)^{\frac{k-i-1}{2}} \binom{\frac{k+i-5}{2}}{\frac{k-i-5}{2}} \\ &= (-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-5}{2}} \right] \\ &+ 2\binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} \right] + 2(-1)^{\frac{k-i-1}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} \right] \\ &+ 2\binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} \right] + 2(-1)^{\frac{k-i-1}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} \right] \\ &+ 2\binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} \right] \\ &+ 2(-1)^{\frac{k-i-4}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} \right] \\ &+ \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} \right] \\ &+ \binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} \end{bmatrix} \\ &+ \binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} \end{bmatrix} \\ &+ \binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} \end{bmatrix} \\ &+ \binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}$$

Theorem 2.6: The coefficient of λ^i in $\chi(G'_{4,k})$ is given by

$$(-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-8}{2}}{\frac{k-i}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + 2\binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-10}{2}}{\frac{k-i-2}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} \right] + 3\binom{\frac{k+i-8}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}} + 2\binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}} + 2\binom{\frac{k+i-7}{2}}{\frac{k-i-5}{2}} + 2\binom{\frac{k+i-7}{2}}{\frac{k-i-5}{2}} \right].$$
(10)

In the above, when $k - i \equiv 1 \pmod{2}$, the first sum vanishes and when $k \equiv i \pmod{2}$, second sum vanishes.

Proof: By Corollary 2.3, we have, $\chi(G'_{4,k}) = \lambda \chi(G'_{3,k-1}) - \chi(G'_{2,k-2})$. Thus, the coefficient of λ^i in $\chi(G'_{4,k}) =$

{Coefficient of λ^{i-1} in $\chi(G'_{3,k-1})$ } – {Coefficient of λ^i in $\chi(G'_{2,k-2})$ }.

By putting i = i-1, k = k-1 in Theorem 2.5, the coefficient of λ^{i-1} in $\chi(G'_{3,k})$ is seen to be

$$(-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-8}{2}}{\frac{k-i}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + 2\binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-10}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} + 2\binom{\frac{k+i-8}{2}}{\frac{k-i-4}{2}} \right] + 2\binom{\frac{k+i-8}{2}}{\frac{k-i-4}{2}} = 2\binom{\frac{k+i-8}{2}}{\frac{k-i-4}{2}} + 2\binom{\frac{k+i-8}{2}}{\frac{k-i-4}{2}} = 2\binom{\frac{k-i-8}{2}}{\frac{k-i-4}{2}} = 2\binom{\frac{k-i-8}{2}} = 2\binom{\frac{k-i-8}{2}} = 2\binom{\frac{k-i-8}{2}} = 2\binom{\frac{k-i-8}{2}}{\frac{k-i-4}{2}} = 2\binom{\frac{k-i-8}{2}}{\frac{k$$

By replacing k by k - 2 in the Theorem 2.4, we obtain the coefficient of λ^i in $\chi(G'_{2,k})$:

$$(-1)^{\frac{k-i-2}{2}} \left[\left(\frac{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} \right) + \left(\frac{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} \right) + \left(\frac{\frac{k+i-8}{2}}{\frac{k-i-4}{2}} \right) + \left(\frac{\frac{k+i-4}{2}}{\frac{k-i-4}{2}} \right) \right] + 2(-1)^{\frac{k-i-3}{2}} \left(\frac{\frac{k+i-7}{2}}{\frac{k-i-5}{2}} \right).$$

Therefore the coefficient of λ^i in $\chi(G'_{4,k})$ is given by

$$\begin{split} &(-1)^{\frac{k-i}{2}} \left[\left(\frac{k+i-8}{2}\right) + \left(\frac{k+i-6}{2}\right) + 2\left(\frac{k+i-8}{2}\right) + \left(\frac{k+i-10}{2}\right) + \left(\frac{k+i-6}{2}\right) + 2\left(\frac{k+i-8}{2}\right) \right] \\ &+ 2(-1)^{\frac{k-i-1}{2}} \left[\left(\frac{k+i-9}{2}\right) + \left(\frac{k+i-7}{2}\right) \right] \\ &- (-1)^{\frac{k-i-2}{2}} \left[\left(\frac{k+i-6}{2}\right) + \left(\frac{k+i-6}{2}\right) + \left(\frac{k+i-6}{2}\right) + \left(\frac{k+i-8}{2}\right) + \left(\frac{k+i-4}{2}\right) \right] - 2(-1)^{\frac{k-i-3}{2}} \left(\frac{k+i-7}{2}\right) \\ &= (-1)^{\frac{k-i}{2}} \left[\left(\frac{k+i-8}{2}\right) + \left(\frac{k+i-6}{2}\right) + \left(\frac{k+i-6}{2}\right) + 2\left(\frac{k+i-8}{2}\right) + \left(\frac{k+i-10}{2}\right) + \left(\frac{k+i-6}{2}\right) \\ &+ 2\left(\frac{k-i-4}{2}\right) \right] + 2(-1)^{\frac{k-i-1}{2}} \left[\left(\frac{k+i-9}{2}\right) + \left(\frac{k+i-9}{2}\right) + 2\left(\frac{k+i-8}{2}\right) \right] + (-1)^{\frac{k-i}{2}} \left[\left(\frac{k+i-6}{2}\right) \\ &+ 2\left(\frac{k+i-8}{2}\right) + \left(\frac{k+i-8}{2}\right) + \left(\frac{k+i-9}{2}\right) \right] + 2(-1)^{\frac{k-i-1}{2}} \left[\left(\frac{k+i-6}{2}\right) \\ &+ \left(\frac{k+i-8}{2}\right) + \left(\frac{k+i-8}{2}\right) + 2\left(\frac{k+i-4}{2}\right) \right] + 2(-1)^{\frac{k-i-1}{2}} \left(\frac{k+i-7}{2}\right) \\ &+ \left(\frac{k+i-8}{2}\right) + \left(\frac{k+i-8}{2}\right) + 2\left(\frac{k+i-6}{2}\right) + 2\left(\frac{k+i-7}{2}\right) \\ &+ 3\left(\frac{k+i-6}{2}\right) + 2\left(\frac{k+i-6}{2}\right) + 2\left(\frac{k+i-6}{2}\right) \\ &+ 3\left(\frac{k+i-6}{2}\right) + 2\left(\frac{k+i-6}{2}\right) + 2\left(\frac{k+i-6}{2}\right) \\ &+ 3\left(\frac{k+i-6}{2}\right) + 2\left(\frac{k+i-6}{2}\right) \\ &+ 2\left(\frac{k+i-6}{2}\right) + 2\left(\frac{k+i-6}{2}\right) \\ &+ 2\left(\frac{k+i-6}{2}\right) + 2\left(\frac{k+i-6}{2}\right) \\ &+ 2\left(\frac{k+i-6}{2}\right) \\ &+ 2\left(\frac{k+i-6}{2}\right) + 2\left(\frac{k+i-6}{2}\right) \\ &+ 2\left(\frac{k+i$$

Theorem 2.7: For any graph G, let $b_i(G) = |a_i(G)|$, where $a_i(G)$ is the coefficient λ^i in $\chi(G;\lambda)$. Then, $b_i(G'_{1,k}) \ge b_i(G'_{3,k}) \ge b_i(G'_{4,k}) \ge b_i(G'_{2,k})$.

Proof: We prove that:

(i) $b_i(G'_{1,k}) \ge b_i(G'_{3,k}),$ (ii) $b_i(G'_{3,k}) \ge b_i(G'_{4,k}),$ (iii) $b_i(G'_{4,k}) \ge b_i(G'_{2,k}).$

Proof of (i): We have two cases to be considered.

Suppose *i* and *k* are not of same parity. Note that the coefficient of λ^i in $\chi(G'_{1,k})$ is given in equation (2) and the coefficient of λ^i in $\chi(G'_{3,k})$ is given in equation (9). Also, note that when *i* and *k* are not of same parity, the first

sum in (2) and (9) vanish and so we need to consider only the second sum $(-1)^{\frac{k-i-1}{2}} 2\binom{\frac{k+i-3}{2}}{\frac{k-i-3}{2}}$ of (2) and the

second sum $(-1)^{\frac{k-i-1}{2}} 2\left[\left(\frac{k+i-7}{2} \\ \frac{k-i-3}{2} \right) + \left(\frac{k+i-5}{2} \\ \frac{k-i-5}{2} \\ \frac{k-i-5}{2} \right) \right]$ of (9). Using the binomial identity:

$$\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1},$$

we expand above sums to obtain:

$$\begin{pmatrix} \frac{k+i-3}{2} \\ \frac{k-i-3}{2} \end{pmatrix} = \begin{pmatrix} \frac{k+i-5}{2} \\ \frac{k-i-3}{2} \end{pmatrix} + \begin{pmatrix} \frac{k+i-5}{2} \\ \frac{k-i-5}{2} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{k+i-7}{2} \\ \frac{k-i-3}{2} \end{pmatrix} + \begin{pmatrix} \frac{k+i-7}{2} \\ \frac{k-i-5}{2} \end{pmatrix} + \begin{pmatrix} \frac{k+i-5}{2} \\ \frac{k-i-5}{2} \end{pmatrix}$$

$$= \begin{bmatrix} \begin{pmatrix} \frac{k+i-7}{2} \\ \frac{k-i-3}{2} \end{pmatrix} + \begin{pmatrix} \frac{k+i-5}{2} \\ \frac{k-i-5}{2} \end{pmatrix} \end{bmatrix} + \begin{pmatrix} \frac{k+i-7}{2} \\ \frac{k-i-5}{2} \end{pmatrix}$$

Thus, in this case we observe that $b_i(G'_{1,k}) \ge b_i(G'_{3,k})$.

Suppose i and k are of same parity. Note that when i and k are of same parity, the second sum in equation (2) and equation (9) vanish and so we need to consider

only the first sum
$$(-1)^{\frac{k-i}{2}} \left[\left(\frac{\frac{k+i-4}{2}}{\frac{k-i}{2}} \right) + \left(\frac{\frac{k+i-2}{2}}{\frac{k-i-2}{2}} \right) + 2 \left(\frac{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} \right) \right]$$
 of (2) and the first sum

$$(-1)^{\frac{k-i}{2}} \left[\binom{\frac{k+i-6}{2}}{\frac{k-i}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} \right]$$
of (9).

Again by using the binomial identity, we have,

$$\begin{pmatrix} \frac{k+i-4}{2} \\ \frac{k-i}{2} \end{pmatrix} + \begin{pmatrix} \frac{k+i-2}{2} \\ \frac{k-i-2}{2} \end{pmatrix} + 2\begin{pmatrix} \frac{k+i-4}{2} \\ \frac{k-i-2}{2} \end{pmatrix}$$

$$= \left[\begin{pmatrix} \frac{k+i-6}{2} \\ \frac{k-i}{2} \end{pmatrix} + \begin{pmatrix} \frac{k+i-6}{2} \\ \frac{k-i-2}{2} \end{pmatrix} \right] + \left[\begin{pmatrix} \frac{k+i-4}{2} \\ \frac{k-i-2}{2} \end{pmatrix} + \begin{pmatrix} \frac{k+i-6}{2} \\ \frac{k-i-2}{2} \end{pmatrix} \right] + \left[\begin{pmatrix} \frac{k+i-6}{2} \\ \frac{k-i-2}{2} \end{pmatrix} + \begin{pmatrix} \frac{k+i-6}{2} \\ \frac{k-i-2}{2} \end{pmatrix} \right] + \left(\frac{\frac{k+i-4}{2}}{2} \end{pmatrix} \right]$$

$$= \left[\begin{pmatrix} \frac{k+i-6}{2} \\ \frac{k-i-2}{2} \end{pmatrix} + 2\begin{pmatrix} \frac{k+i-6}{2} \\ \frac{k-i-2}{2} \end{pmatrix} + \begin{pmatrix} \frac{k+i-4}{2} \\ \frac{k-i-4}{2} \end{pmatrix} + \begin{pmatrix} \frac{k+i-4}{2} \\ \frac{k-i-2}{2} \end{pmatrix} \right] + \begin{pmatrix} \frac{k+i-6}{2} \\ \frac{k-i-4}{2} \end{pmatrix}$$

$$= \left[\begin{pmatrix} \frac{k+i-6}{2} \\ \frac{k-i-6}{2} \\ \frac{k-i-2}{2} \end{pmatrix} + 2\begin{pmatrix} \frac{k+i-6}{2} \\ \frac{k-i-2}{2} \end{pmatrix} + \begin{pmatrix} \frac{k+i-4}{2} \\ \frac{k-i-4}{2} \end{pmatrix} + \begin{pmatrix} \frac{k+i-6}{2} \\ \frac{k-i-2}{2} \end{pmatrix} + \begin{pmatrix} \frac{k+i-6}{2} \\ \frac{k-i-4}{2} \end{pmatrix} \right]$$

$$= \left[\binom{\frac{k+i-6}{2}}{\frac{k-i}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} \right] + \binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} \\ = \left[\binom{\frac{k+i-6}{2}}{\frac{k-i}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} \right] + \binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} \\ + \binom{\frac{k+i-8}{2}}{\frac{k-i-4}{2}} \\ = \left[\binom{\frac{k+i-6}{2}}{\frac{k-i}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} \right] \\ + \binom{\frac{k+i-8}{2}}{\frac{k-i-4}{2}}.$$

Thus we see that: $b_i(G'_{1,k}) \ge b_i(G'_{3,k})$. This proves (i).

Proof of (ii):

We show that $b_i(G'_{3,k}) \ge b_i(G'_{4,k})$. For this we consider two cases.

Suppose *i* and *k* are not of same parity. Note that the coefficient of λ^i in $\chi(\mathbf{G}'_{3,k})$ is given in equation (9), and the coefficient of λ^i in $\chi(\mathbf{G}'_{4,k})$ is given in equation (10). Also note that when *i* and *k* are not of same parity, the first sum in (9) and (10) vanish and so we need to consider only the second sum $2(-1)^{\frac{k-i-1}{2}} \left[\begin{pmatrix} \frac{k+i-7}{2} \\ \frac{k-i-3}{2} \end{pmatrix} + \begin{pmatrix} \frac{k+i-5}{2} \\ \frac{k-i-5}{2} \end{pmatrix} \right]$ of

(9) and the second sum2(-1)^{$$\frac{k-i-1}{2}$$} $\left[\left(\frac{k+i-9}{2} \\ \frac{k-i-3}{2} \right) + \left(\frac{k+i-7}{2} \\ \frac{k-i-5}{2} \right) \right]$ of (10).
Consider the term $\left[\left(\frac{k+i-7}{2} \\ \frac{k-i-3}{2} \right) + \left(\frac{k+i-5}{2} \\ \frac{k-i-5}{2} \right) \right]$. By putting $\frac{k+i-1}{2} = r$ and $\frac{k-i-1}{2} = s$,

$$\begin{pmatrix} \frac{k+i-7}{2} \\ \frac{k-i-3}{2} \end{pmatrix} + \begin{pmatrix} \frac{k+i-5}{2} \\ \frac{k-i-5}{2} \end{pmatrix} = \binom{r-3}{s-1} + \binom{r-2}{s-2}$$

$$= \left[\binom{r-4}{s-1} + \binom{r-4}{s-2} \right] + \left[\binom{r-3}{s-2} + \binom{r-3}{s-3} \right]$$

$$= \left[\binom{r-4}{s-1} + \binom{r-3}{s-2} \right] + \binom{r-4}{s-2} + \left[\binom{r-4}{s-3} + \binom{r-4}{s-4} \right]$$

$$= \left[\binom{r-4}{s-1} + \binom{r-3}{s-2} \right] + \left\{ \binom{r-4}{s-2} + \binom{r-4}{s-3} \right\} + \binom{r-4}{s-4}$$

$$= \left[\binom{r-4}{s-1} + \binom{r-3}{s-2} \right] + \binom{r-3}{s-2} + \binom{r-4}{s-4}$$

$$= \left[\binom{r-4}{s-1} + 2\binom{r-3}{s-2} \right] + \binom{r-4}{s-4}$$

$$= \left[\binom{\binom{k+i-9}{2}}{\frac{k-i-3}{2}} + 2\binom{\binom{k+i-7}{2}}{\frac{k-i-5}{2}} \right] + \binom{\frac{k+i-9}{2}}{\frac{k-i-9}{2}}$$

Hence, $b_i(G'_{3,k}) \ge b_i(G'_{4,k})$.

Suppose *i* and *k* are of same parity. Note that when *i* and *k* are of same parity, the second sum in equation (9) and equation (10) vanish and so we need to consider only the first sum

$$A = \left[\binom{\frac{k+i-6}{2}}{\frac{k-i}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-2}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} \right]$$

of (9) and the first sum

$$B = \left[\left(\frac{k+i-8}{2} \\ \frac{k-i}{2} \right) + 2 \left(\frac{k+i-6}{2} \\ \frac{k-i-2}{2} \right) + 2 \left(\frac{k+i-8}{2} \\ \frac{k-i-2}{2} \right) + 2 \left(\frac{k+i-6}{2} \\ \frac{k-i-4}{2} \right) + 3 \left(\frac{k+i-8}{2} \\ \frac{k-i-4}{2} \right) \right]$$

 $+\left(\frac{\frac{1-1}{2}}{\frac{k-i-4}{2}}\right)$

of (10). We need to show that $A-B \ge 0$. By substituting $\frac{k+i}{2} = r$ and $\frac{k-i}{2} = s$, we get,

$$A = \binom{r-3}{s} + \binom{r-2}{s-1} + 2\binom{r-3}{s-1} + \binom{r-4}{s-1} + \binom{r-2}{s-2} + 2\binom{r-3}{s-2}$$
$$B = \binom{r-4}{s} + 2\binom{r-3}{s-1} + 2\binom{r-4}{s-1} + \binom{r-5}{s-1} + 2\binom{r-3}{s-2} + 3\binom{r-4}{s-2} + \binom{r-2}{s-2}$$

Consider

$$\begin{aligned} A - B &= \binom{r-3}{s} + \binom{r-2}{s-1} + 2\binom{r-3}{s-1} + \binom{r-4}{s-1} + \binom{r-2}{s-2} + 2\binom{r-3}{s-2} \\ &- \binom{r-4}{s} - 2\binom{r-3}{s-1} - 2\binom{r-4}{s-1} - \binom{r-5}{s-1} - 2\binom{r-3}{s-2} \\ &- 3\binom{r-4}{s-2} - \binom{r-2}{s-2} \end{aligned}$$

$$= \binom{r-3}{s} + \binom{r-2}{s-1} - \binom{r-4}{s-1} - \binom{r-4}{s} - \binom{r-5}{s-1} - 3\binom{r-4}{s-2} \\ &= \left[\binom{r-4}{s} + \binom{r-4}{s-1}\right] + \binom{r-2}{s-1} - \binom{r-4}{s-1} - \binom{r-4}{s-1} - \binom{r-4}{s} - \binom{r-5}{s-1} - 3\binom{r-4}{s-2} \\ &= \left[\binom{r-2}{s-1} - \binom{r-5}{s-1} - 3\binom{r-4}{s-2} \\ &= \binom{r-2}{s-1} - \binom{r-5}{s-1} - \left[\binom{r-5}{s-2} + \binom{r-5}{s-3}\right] - 2\binom{r-4}{s-2} \\ &= \binom{r-2}{s-1} - \left[\binom{r-5}{s-1} + \binom{r-5}{s-2}\right] - \binom{r-5}{s-3} - 2\binom{r-4}{s-2} \\ &= \binom{r-2}{s-1} - \binom{r-4}{s-1} - \binom{r-5}{s-3} - 2\binom{r-4}{s-2} \end{aligned}$$

$$= \binom{r-2}{s-1} - \left[\binom{r-4}{s-1} + \binom{r-4}{s-2}\right] - \binom{r-5}{s-3} - \binom{r-4}{s-2}$$

$$= \binom{r-2}{s-1} - \binom{r-3}{s-1} - \binom{r-5}{s-3} - \binom{r-4}{s-2}$$

$$= \binom{r-3}{s-1} + \binom{r-3}{s-2} - \binom{r-3}{s-1} - \binom{r-5}{s-3} - \binom{r-4}{s-2}$$

$$= \binom{r-3}{s-2} - \binom{r-5}{s-3} - \binom{r-4}{s-2}$$

$$= \binom{r-4}{s-2} + \binom{r-4}{s-3} - \binom{r-5}{s-3} - \binom{r-4}{s-2}$$

$$= \binom{r-5}{s-3} + \binom{r-5}{s-4} - \binom{r-5}{s-3}.$$

$$= \binom{r-5}{s-4} \ge 0.$$

Thus $A - B \ge 0$, proving there by that $\boldsymbol{b}_i(\boldsymbol{G}'_{3,k}) \ge \boldsymbol{b}_i(\boldsymbol{G}'_{4,k})$.

Proof of (iii): Finally we show $b_i(G'_{4,k}) \ge b_i(G'_{2,k})$. Again there are two cases to be considered. Suppose *i* and *k* are not of same parity. Note that the coefficient of λ^i in $\chi(G'_{4,k})$ is given in equation (10) and the coefficient of λ^i in $\chi(G'_{2,k})$ is given in equation (8). Also note that when *i* and *k* are not of same parity, the first

sum in (10) and in (8) vanish and so we need to consider only the second sum $2(-1)^{\frac{k-i-1}{2}} \left[\left(\frac{\frac{k+i-9}{2}}{\frac{k-i-3}{2}} \right) + \frac{k-i-1}{2} \left[\left(\frac{\frac{k+i-9}{2}}{\frac{k-i-3}{2}} \right) \right] \right]$

$$2\binom{\frac{k+i-7}{2}}{\frac{k-i-5}{2}} \int of(10) \text{ and the second term } 2(-1)^{\frac{k-i-1}{2}} \left[\binom{\frac{k+i-5}{2}}{\frac{k-i-3}{2}}\right] of(8).$$
Consider the term $\binom{\frac{k+i-9}{2}}{\frac{k-i-3}{2}} + 2\binom{\frac{k+i-7}{2}}{\frac{k-i-5}{2}}$. By putting $\frac{k+i-1}{2} = r$ and $\frac{k-i-1}{2} = s$, we get,
 $\binom{\frac{k+i-9}{2}}{\frac{k-i-3}{2}} + 2\binom{\frac{k+i-7}{2}}{\frac{k-i-5}{2}} = \binom{r-4}{s-1} + 2\binom{r-3}{s-2}$

$$= \binom{r-4}{s-1} + \binom{r-4}{s-2} + \binom{r-4}{s-3} + \binom{r-3}{s-2}$$

$$= \binom{r-4}{s-1} + \binom{r-4}{s-2} + \binom{r-4}{s-3} + \binom{r-3}{s-2}$$

$$= \binom{r-3}{s-1} + \binom{r-3}{s-2} + \binom{r-4}{s-3}$$

$$= \binom{r-2}{s-1} + \binom{r-4}{s-3}$$

•

Hence, $b_i(G'_{4,k}) \ge b_i(G'_{2,k})$.

Suppose i and k are of same parity. Note that when i and k are of same parity, the second sum in equation (10) and equation (8) vanish and so we need to consider only the first sum

$$B = \binom{\frac{k+i-8}{2}}{\frac{k-i}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-2}{2}} + 2\binom{\frac{k+i-8}{2}}{\frac{k-i-2}{2}} + \binom{\frac{k+i-10}{2}}{\frac{k-i-2}{2}} + 2\binom{\frac{k+i-6}{2}}{\frac{k-i-4}{2}} + 3\binom{\frac{k+i-8}{2}}{\frac{k-i-4}{2}} + \binom{\frac{k+i-4}{2}}{\frac{k-i-4}{2}}$$

of (10) and the first sum
$$\mathbf{C} = \begin{pmatrix} \frac{\mathbf{C} + \mathbf{C} - \mathbf{C}}{2} \\ \frac{\mathbf{k} - \mathbf{i}}{2} \end{pmatrix} + \begin{pmatrix} \frac{\mathbf{C} + \mathbf{C} - \mathbf{C}}{2} \\ \frac{\mathbf{k} - \mathbf{i} - 2}{2} \end{pmatrix} + \begin{pmatrix} \frac{\mathbf{C} + \mathbf{C} - \mathbf{C}}{2} \\ \frac{\mathbf{k} - \mathbf{i} - 2}{2} \end{pmatrix} + \begin{pmatrix} \frac{\mathbf{C} + \mathbf{C} - \mathbf{C}}{2} \\ \frac{\mathbf{k} - \mathbf{i} - 2}{2} \end{pmatrix} \text{ of } (8).$$

By substituting $\frac{k+i}{2} = r$ and $\frac{k-i}{2} = s$, we get

$$B = {\binom{r-4}{s}} + 2{\binom{r-3}{s-1}} + 2{\binom{r-4}{s-1}} + {\binom{r-5}{s-1}} + 2{\binom{r-3}{s-2}} + 3{\binom{r-4}{s-2}} + {\binom{r-2}{s-2}},$$

$$C = {\binom{r-2}{s}} + {\binom{r-1}{s-1}} + {\binom{r-2}{s-1}} + {\binom{r-3}{s-1}}.$$

Consider

$$\begin{split} B - C &= \binom{r-4}{s} + 2\binom{r-3}{s-1} + 2\binom{r-4}{s-1} + \binom{r-5}{s-1} + 2\binom{r-3}{s-2} + 3\binom{r-4}{s-2} \\ &+ \binom{r-2}{s-2} - \binom{r-2}{s} - \binom{r-1}{s-1} - \binom{r-2}{s-1} - \binom{r-3}{s-1} \\ &= \left[\binom{r-4}{s} + \binom{r-4}{s-1}\right] + \binom{r-3}{s-1} + \binom{r-4}{s-1} + \binom{r-5}{s-1} + 2\binom{r-3}{s-2} \\ &+ 3\binom{r-4}{s-2} + \binom{r-2}{s-2} - \binom{r-2}{s} - \binom{r-1}{s-1} - \binom{r-2}{s-1} \\ &= \binom{r-3}{s} + \binom{r-3}{s-1} + \binom{r-4}{s-1} + \binom{r-5}{s-1} + 2\binom{r-3}{s-2} + 3\binom{r-4}{s-2} \\ &+ \binom{r-2}{s-2} - \left[\binom{r-3}{s} + \binom{r-3}{s-1}\right] - \left[\binom{r-2}{s-1} + \binom{r-2}{s-2}\right] - \binom{r-2}{s-1} \\ &= \binom{r-4}{s-1} + \binom{r-5}{s-1} + 2\binom{r-3}{s-2} + 3\binom{r-4}{s-2} - 2\binom{r-2}{s-1} \\ &= \binom{r-4}{s-1} + \binom{r-5}{s-1} + 3\binom{r-4}{s-2} - 2\binom{r-3}{s-1} \\ &= \binom{r-4}{s-1} + \binom{r-5}{s-1} + 3\binom{r-4}{s-2} - 2\binom{r-3}{s-1} \\ &= \binom{r-4}{s-1} + \binom{r-5}{s-1} + 3\binom{r-4}{s-2} - 2\binom{r-3}{s-1} \\ &= \binom{r-4}{s-1} + \binom{r-5}{s-1} + \binom{r-4}{s-2} - 2\binom{r-4}{s-1} \\ &= \binom{r-4}{s-1} + \binom{r-5}{s-1} + \binom{r-4}{s-2} - 2\binom{r-4}{s-2} \\ &= -\binom{r-4}{s-1} + \binom{r-5}{s-2} + \binom{r-5}{s-1} + \binom{r-4}{s-2} \\ &= -\binom{r-5}{s-2} + \binom{r-5}{s-2} + \binom{r-5}{s-3} \end{split}$$

$$= \binom{r-5}{s-3} \ge 0$$

Thus $B - C \ge 0$, proving there by that $b_i(G'_{4,k}) \ge b_i(G'_{2,k})$. This proves the theorem.

Corollary 2.8: For $k \ge 6$, we have, $G'_{1,k} \ge G'_{3,k} \ge G'_{4,k} \ge G'_{2,k}$. Consequently, $E(G'_{1,k}) \ge E(G'_{3,k}) \ge E(G'_{4,k}) \ge E(G'_{2,k})$.

Proof: The first statement follows from Theorem 2.7. The second statement follows from Theorem 1.3.

Remark 2.9: The characteristic polynomial and energy of the adjacency matrix of a unicyclic graphs $G'_{1,k}$, $G'_{2,k}$, $G'_{3,k}$ and $G'_{4,k}$ for k = 7, 8, 9 (by using *maple*) are given below:

No. of	Graphs	Characteristic Polynomial	Energy
vertices k			(approx.)
<i>k</i> = 7	C'	17 715 214 1213 (212 51 2	9.0405
	01,7	$\lambda' - 7\lambda^3 - 2\lambda' + 13\lambda^3 + 6\lambda^2 - 5\lambda - 2$	8.9405
	$G_{3,7}^{\prime}$	$\lambda^7 - 7\lambda^5 - 2\lambda^4 + 12\lambda^3 + 4\lambda^2 - 5\lambda - 2$	8.8698
	$G_{4,7}^{\prime}$	$\lambda^7 - 7\lambda^5 - 2\lambda^4 + 12\lambda^3 + 4\lambda^2 - 4\lambda$	8.4554
	$G_{2,7}'$	$\lambda^7 - 7\lambda^5 - 2\lambda^4 + 12\lambda^3 + 4\lambda^2 - 4\lambda$	8.4554
k = 8	$G_{1,8}^{\prime}$	$\lambda^8 - 8\lambda^6 - 2\lambda^5 + 19\lambda^4 + 8\lambda^3 - 13\lambda^2 - 6\lambda + 1$	10.106
	$G_{3,8}'$	$\lambda^8 - 8\lambda^6 - 2\lambda^5 + 18\lambda^4 + 6\lambda^3 - 12\lambda^2 - 4\lambda + 1$	9.996
	$G_{4,8}'$	$\lambda^8 - 8\lambda^6 - 2\lambda^5 + 18\lambda^4 + 6\lambda^3 - 12\lambda^2 - 4\lambda + 1$	9.996
	$G_{2,8}'$	$\lambda^8 - 8\lambda^6 - 2\lambda^5 + 18\lambda^4 + 6\lambda^3 - 11\lambda^2 - 2\lambda + 1$	9.93
<i>k</i> = 9	$G_{1,9}^{\prime}$	$\lambda^9 - 9\lambda^7 - 2\lambda^6 + 26\lambda^5 + 10\lambda^4 - 26\lambda^3 - 12\lambda^2 + 6\lambda + 2$	11.4701
	$G_{3,9}^{\prime}$	$\lambda^9 - 9\lambda^7 - 2\lambda^6 + 25\lambda^5 + 8\lambda^4 - 24\lambda^3 - 8\lambda^2 + 6\lambda + 2$	11.3853
	$G_{4,9}'$	$\lambda^9 - 9\lambda^7 - 2\lambda^6 + 25\lambda^5 + 8\lambda^4 - 24\lambda^3 - 8\lambda^2 + 5\lambda$	11.0603
	$G_{2,9}^{\prime}$	$\lambda^9 - 9\lambda^7 - 2\lambda^6 + 25\lambda^5 + 8\lambda^4 - 23\lambda^3 - 6\lambda^2 + 5\lambda$	11.0342

REFERENCES

- D. M. Cvetkovi'c, M. Doob and H. Sachs, Spectra of Graphs, Academic Press, New York, 1980.
- [2] I. Gutman, X. Li, and Y. Shi, *Graph Energy*, New York: Springer, 2012.
- [3] F. Harary, *Graph Theory*, Addison-Wesley Publishing Company, New York, 1969
- Y. Hou, Unicyclic graphs with minimal energy, Journal of Mathematical Chemistry, Vol. 29, No. 3, (2001), 163-168.