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Abstract - The efficient transmission and distribution of 

electricity, as well as the overall operation of the power system, 

are dependent on the transformer. The study lays out the history 

of transformer failure detection methods and gives an overview 

of them. A large number of academics have sought to improve 

upon these time-honoured techniques by using smart 

technologies like support vector machines, neural networks, and 

machine learning. A new approach and technology for the safe 

and dependable operation and routine maintenance of power 

systems are provided by combining transformer fault prediction 

with a machine learning algorithm. This helps maintenance 

personnel of power systems to accurately predict the running 

state of power equipment. 

 

Indexed Terms- Transformer Fault Diagnosis, Machine 

Learning, Support Vector Machine. 

 

I. INTRODUCTION 

 

The operation of contemporary power systems is predicated 

on the safe, high-quality, and cost-effective delivery of 

electric energy. The transformer, being an essential piece of 

machinery for both the electrical grid and the national grid, 

comes in a variety of forms, may be used in different ways, 

and is widely used. In order to distribute electric energy and 

accomplish voltage changes, it is essential to have this 

equipment in the power system. The power system 

transformer has a greater failure probability than other 

power equipment due to the lengthy periods of operation 

under load. Meanwhile, cross-regional networking and 

dispatching are becoming increasingly common as a result 

of China's present power grid system's upgrade. A local 

chain reaction in a specific electrical grid can easily arise if 

the transformer problem is not identified and fixed in a 

timely manner. Because of this, power grid personnel must 

perform transformer fault detection and diagnostics 

everyday to aid in the repair process prior to transformer 

problems [1]. 

 

Prevention of safety accidents and improvements in the 

power market have been greatly aided by early defect 

diagnostic methods for transformers, such as dissolved gas 

analysis (DGA), vibration analysis, impulsive voltage 

waveform testing, and preventative electrical tests [2]; Lu 

et al. [3]. Unfortunately, the diagnostic accuracy is 

sometimes compromised by the limits of these conventional 

methods in terms of the amount and precision of diagnostic 

features under certain situations. This means they can't keep 

up with the ever-changing needs for power transformer 

diagnostics.  

 

Intelligent transformer diagnostics has been the subject of 

much study in an effort to circumvent these shortcomings 

of conventional diagnostic procedures [4,5]. Algorithms 

powered by AI are very good at learning and processing 

large datasets. By analysing large amounts of transformer 

failure data, these algorithms can make accurate predictions 

and analyses, solving problems with traditional diagnostic 

approaches including missing data and a lack of clarity in 

the link between characteristics and defects. Particularly 

useful in transformer diagnostics, the result is a 

considerable improvement in the precision of detection and 

diagnosis. Fault detection in transformers has made use of 

a number of methods, such as neural networks [6], support 

vector machines [7], machine learning [8], and others. 

Using these smart algorithms in conjunction with more 

conventional approaches is still not without its difficulties, 

though, because of the intricacy of transformer internal 

systems and external surroundings [9]. Consequently, 

scientists have optimised algorithms and improved feature 

extraction techniques to reduce measurement noise and 

make intelligent diagnostic methods more flexible for 

different types of transformers [10], which has contributed 

to the rapid advancement of these technologies. However, 

with the development of AI technology, the idea of 

integrating several diagnostic procedures has surfaced.  

 

Intelligent diagnosis technology, according to Taneja's [11] 

DGA evaluation, should include a thorough diagnosis 

including several characteristic criteria rather than being 

limited to a single approach. In his study on the transformer 

insulation system's health index, Badawi [12] found that a 

comprehensive analysis of several characteristics (e.g., 

DGA, winding resistance, acidity, moisture content of the 

insulation oil, etc.) yielded significantly more accurate 

results than a single DGA verification. A more precise 

estimate of the health index was achieved by combining 

data from many sources using a transformer detecting 

system. Thus, intelligent transformer failure detection is 

moving in the direction of multi-source information 

integration, making use of the data gathering, analysis, and 

processing capabilities of such technology. An improved 

level of protection for the transformer may be achieved with 
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the use of diagnostic technology that integrates data from 

several sources, which allows for the efficient and precise 

identification of various fault types [13]. This highlights the 

need of continuing to study and develop technologies for 

diagnosing transformer faults, which will help improve the 

power system's stability and dependability. 

 

II. TRANSFORMER FAULT DIAGNOSIS 

 

Interturn problems in the windings, dampness, overheating, 

winding open, grounding, mechanical failure, and other 

failures are common in power transformers; Connectors 

that are loose, short circuits, damp, lead breaks, and other 

issues on the terminal row; Cracks, wetness, low oil level, 

flange grounding, and other defects in the aged casing; Core 

lamination short circuits, loose components, and faulty 

insulation are all examples of core insulation issues. 

Various problems might arise with the tap switch, including 

mechanical failure, overheating, lead failure, electrical 

failure, physical damage, and more. [1]. The foundation of 

diagnosis is fault detection in transformers, which 

encompasses both classic off-line detection and new on-line 

monitoring methods. One of the most frequent ways to 

avoid power transformer failure is using an off-line 

detection system, which is also the most visible one in the 

field. In comparison to more traditional detection methods, 

online monitoring allows for real-time attention to the 

transformer's fault state, allowing for early diagnosis and 

treatment. [1]. 

 

In order to keep tabs on monitoring data and the health state 

of transformers, fault detection is crucial [14,15]. The 

insulating material decompresses during transformer 

operation to release gases due to environmental influences; 

the particular gas content increases after transformer 

failure. Gases such as CH4, C2H2, C2H4, C2H6, CO, CO2, 

H2, etc. are members of the characteristic gas class [16]. 

The amount of gas decomposed by insulating materials is 

negligible under typical operating conditions. However, 

when the power transformer is not functioning properly in 

the power system, the accelerated decomposition and 

ageing of the oil and solid insulating materials causes an 

increase in the current and temperature within the 

transformer, which in turn causes a change in the content of 

dissolved gas in the oil [17]. The operational status of a 

transformer may be effectively assessed by tracking and 

analysing the concentration of dissolved gas in the 

transformer oil [18]. The Chinese power system's 

transformer fault analysis has made extensive use of 

dissolved gas analysis in oil (DGA), the principal method 

of transformer fault detection [19].  

The conventional approach to transformer failure 

diagnostics involves summarising data from ongoing 

experimental research and then analysing dissolved gas. 

Methods for identifying typical gases and ratios are the 

mainstays of traditional transformer failure diagnostics. An 

old-fashioned technique for diagnosing transformer faults, 

the characteristic gas identification method relies on the 

type of gas that is dissolved in the fluid. The basic idea 

behind this approach is that different types of transformer 

faults have different degrees of influence on the insulating 

material's main dissolved gas composition and secondary 

gas composition in the transformer oil. By studying the 

transformer fault, one can determine the difference in the 

dissolved gas composition [18]. 

 

An old-fashioned way for diagnosing transformer faults 

using the ratio approach is to look at the oil's gas 

proportions. Instead of utilising the coding that corresponds 

to the dissolved gas ratio interval, the uncoded ratio 

approach directly utilises a specific ratio range that 

corresponds to a certain sort of transformer malfunction. 

The ratio method's failure to account for the relatively 

modest likelihood throughout statistical analysis of a large 

number of transformer breakdowns makes it an inaccurate 

tool for analysing these problems [18]. That being said, 

there have been some successes with the aforementioned 

conventional approaches to transformer problem 

diagnostics. Most of them, nevertheless, use hard-coded 

weights and thresholds that don't reflect the interplay 

between performance, defect features, and objective laws 

very well. More and more machine learning algorithms are 

being used for transformer failure diagnostics as a result of 

the fast advancement of science and technology. 

Consequently, it is crucial to employ smart algorithms in 

conjunction with conventional techniques of transformer 

diagnosis in order to achieve rapid and precise intelligent 

diagnosis and to anticipate potential future transformer 

defects using the adaptable DGA approach. A few examples 

are ANNs [20], SVMs [21], Bayesian networks [22], and 

random forests [23] among others. An enhanced 

Grasshopper optimisation algorithm-based transformer 

defect diagnostic model was suggested by Li et al. 

[24].Support Vector Machine with Optimisation (SVM). To 

fine-tune SVM's kernel function parameters and penalty 

coefficient, we turned to the improved Grasshopper 

Optimisation Algorithm (IGOA). The usefulness and 

superiority of IGOA-SVM in recognising transformer 

failure states were validated by comparing it with PSO-

SVM and GOA-SVM. The model was developed in the 

SVM optimised by the oil-based IGOA algorithm and is 

based on Dissolved Gas Analysis (DGA). In order to 

increase the estimation accuracy by over 0.1 using a 

sequential Kalman filter, DemirciMerve et al. [25] 

integrated gas data categorised by a machine learning 

technique with a sensor fusion approach. In order to 
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construct a model for transformer problem diagnostics, Hu 

[26] et al. employed the slime mould algorithm (SMA) to 

determine the characteristic wavelength of the oil 

fluorescence spectra of transformers. They utilised SMA to 

screen the characteristic wavelength of transformer oil LIF 

spectra and utilised it for fault detection of transformers 

after demonstrating its benefit in screening fluorescence 

spectra of transformer oil. The cloud computing approach 

was used by Liu Rongsheng et al. [27] to compare 

chromatographic data with electrical test data of 

transformers, combining the benefits of neural networks 

and evidence theory. We provide a cloud-based evidence 

theory and multi-neural network–based comprehensive 

fault diagnostic approach for transformers.  

 

Looking at the broken transformer is a good way to gauge 

how well it detects faults. Through the comparison of 

various types of data, the findings demonstrate that the 

suggested technique may enhance the diagnostic reliability 

and accuracy in comparison to the conventional single data 

alignment. One of the most fundamental pieces of nuclear 

power system equipment is the transformer, which must be 

more secure, of higher quality, and more cost-effective for 

the current power system to function. Unfortunately, the 

present power grid system upgrade in China cannot be met 

by the outdated, unreliable, and impractical methods of 

fault detection and diagnostics used in transformers. To 

ensure that power grid personnel can fix transformers 

before a fault happens—a crucial guiding importance for 

the power system—daily fault detection and diagnostics is 

a vital component of the power grid. That is why there has 

to be more study and development into using machine 

learning techniques to diagnose transformer faults [1]. 

 

III. TRANSFORMER FAULT TYPES 

 

Knowing the many types of transformer problems and what 

causes them is essential for accurate diagnosis. Power 

transformer capacity is always rising to satisfy market 

demands as the power industry develops. Establishing a 

proper maintenance plan is vital to maintain ongoing 

functioning. While investigating what goes wrong, Kumar 

et al. [28] divided transformer failure mechanisms into three 

categories: electrical, mechanical, and thermal. External, 

ground, interphase short-circuit, and interturn faults are 

some subcategories of these problems [29]. Winding 

distortion, ageing insulating oil, overheating, system 

overload, design flaws, and other issues are common causes 

of these failures (Figure 1). One way to better understand 

the goals and methods of transformer fault diagnostics is to 

categorise transformer failures and examine their causes. 

 

Figure 1: Transformer Faults 

•  

• External Faults 

When we talk about transformers having external faults, we 

usually mean problems with the power grid or the 

connecting line. Issues like these can develop when the 

external power transformer, transmission lines, or other 

components linked to it malfunction. Other examples of 

external problems are power system overloads and 

overvoltages induced by lightning strikes [30]. As an 

example, the transformer can be damaged by the 

overvoltage that occurs when the power system switches. 

Power system safeguards, including overcurrent protection 

and instantaneous overcurrent protection, are in place to 

prevent faults from happening before they do [31]. 

Frequency analysis and preventative electrical tests are 

tools used in the problem diagnostic toolbox for keeping 

tabs on transformer voltage, current, and frequency. This 

makes it easier to identify and anticipate problems, which 

in turn allows maintenance staff to attend to them when they 

arise. 

•  

• Ground Faults: 

Insulation ageing, insulation material deterioration, 

equipment humidity, external damage, operational 

mistakes, and low voltage or high voltage windings of a 

transformer are all potential sources of grounding issues. 

Both the associated electrical system and the device itself 

are vulnerable to grounding issues. To improve the safety 

and dependability of transformers, researchers frequently 

use Restricted Earth Fault (REF) relays in addition to 

conventional differential relays [32]. When they happen, 

ground faults can cause problems including localised 

discharge and overheating because grounding sites might 

vary. Techniques including electrical analysis, infrared 
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imaging, and dissolved gas analysis (DGA) allow for the 

quick identification of these defects. 

 

• Short Circuit Faults: 

Power outages and unstable voltage are only two of the 

major problems that might result from a phase-to-phase 

short-circuit in a transformer. Thus, finding and fixing such 

errors as soon as they happen is of the utmost importance. 

The insulating system of the transformer ageing, excessive 

current, and mechanical deformation are the main reasons 

for these defects [33]. Techniques including dissolved gas 

analysis (DGA), vibration analysis, and sweep frequency 

analysis may effectively diagnose insulation breakdown 

and mechanical deformation in transformers. Preventing 

significant safety events and economic losses can be 

achieved by quick detection prior to phase-to-phase short-

circuit problems. 

 

• Turn-Turn Faults 

The iron core and winding play crucial roles in the power 

transformer, which is a critical component of the power 

system. Most transformer problems may be attributed to 

core and winding turn-to-turn failures. Regarding instances 

where transformers stopped working. Many reasons, 

including mechanical vibration, high voltage stress, high 

current stress (particularly during external short circuits), 

thermal overload, contamination, and repetitive 

overloading, can cause inter-turn insulation to age and 

eventually fail. In order to find faults, diagnostic methods 

such as polarisation current analysis, frequency response 

analysis, and vibration analysis are needed. Mechanical 

deformation and insulation failure are two major problems 

that these approaches may detect in transformers. Because 

it does not involve physical touch, infrared imaging has 

great promise for detecting overheating. 

 

CONCLUSION 

 

In order to keep the power grid running smoothly, 

transformer problem diagnostics is vital, as transformers are 

an integral part of power systems. Techniques for 

diagnosing transformer faults are thoroughly covered in this 

work. It begins by outlining the several kinds of transformer 

problems and what could trigger them. From both electrical 

and nonelectrical detection vantage points, it then examines 

the historical development of conventional methods for 

defect identification. Problems with improving detection 

accuracy, complicated fault analysis, and more complicated 

fault characteristics make it clear that conventional 

diagnostic approaches have their limitations. As a result, an 

increasing number of academics are integrating classical 

methodologies with AI technology such as neural networks 

and machine learning. These smart algorithms tackle 

problems with conventional fault detection, such as poor 

correlation between fault characteristics and features, 

imprecise fault descriptions, and challenging feature 

analysis, by analysing data and classifying features. This 

helps the transformer business grow and greatly improves 

the accuracy of problem diagnostics. 
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