
© December 2024 | IJIRT | Volume 11 Issue 7 | ISSN: 2349-6002

IJIRT 171282 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4053

Decrypting Bit Locked drive: Using Open-Source Tools

Ashmit Sharma1, Anju Anna Joseph2, Kanan Bala Jena3

1Scientist ‘B’, Forensic Electronics, CFSL, Bhopal Camp at CFSL, Chandigarh
2Forensic Professional, Ballistics, CFSL, Bhopal

3Director & Scientist ‘E’, CFSL, Bhopal

Abstract— BitLocker encryption is designed to enhance

data security by encrypting the entire hard drive, unlike

traditional systems that only provide partial encryption.

While this offers robust protection, it presents a

significant challenge for forensic investigators, as all

data on the drive becomes inaccessible without

decryption. Forensic access to BitLocker-encrypted

volumes relies on obtaining key protectors such as the

Volume Master Key (VMK) or the Full Volume

Encryption Key (FVEK). The use of the VMK as an

intermediate key enables the modification of

compromised protectors without re-encrypting the

drive's data. This study explores the feasibility of

decrypting BitLocker-encrypted volumes using open-

source tools and assesses their effectiveness. The

research aims to contribute to the development of

forensic methodologies for encrypted data access.

Furthermore, while commercial decryption tools

employing similar techniques often come with

significant costs, this study highlights how open-source

alternatives provide cost-effective solutions to break the

Bitlocked encrypted drive. Hence, offering a valuable

resource for investigators with limited budgets.

Index Terms—Breaking Bit-locked drives, Encryption,

Decryption of Bit-locked drives, Open source forensics,

Digital Forensics, brute force attack.

I. INTRODUCTION

BitLocker is a Windows security feature that

provides encryption for entire volumes, addressing

the risks of data theft or exposure from lost, stolen, or

improperly decommissioned devices. It offers

maximum protection when used with a Trusted

Platform Module (TPM), a common hardware

component in Windows devices. The TPM works

with BitLocker to ensure that the device has not been

tampered with while the system is offline. In addition

to using a TPM, BitLocker can secure the normal

startup process by requiring the user to enter a

personal identification number (PIN) or insert a

removable device containing a startup key. These

security measures provide multifactor authentication

and ensure that the device cannot start or resume

from hibernation until the correct PIN or startup key

is presented. For devices without a TPM, BitLocker

can still be used to encrypt the operating system

drive. BitLocker's two main features are providing

full drive encryption and verifying the integrity of

early boot components.

A. BITLOCKER ARCHITECTURE

B. Full Disk Encryption (FDE)

It encrypts every file folder, sector with strong

cryptographic algorithm. Bit locker of Windows 10

supports XTS-AES (Advanced Encryption Standard)

which provides protection against unauthorized

manipulation of encrypted data. There are two types

of encryption namely software based and hardware

based encryption. The former encrypts the operating

system and other data partitions whereas the latter

© December 2024 | IJIRT | Volume 11 Issue 7 | ISSN: 2349-6002

IJIRT 171282 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4054

uses user entered PIN or Trusted Computing Platform

(TPM) in addition to encrypting the operating

system. The contents of the drive are challenging for

an adversary to access, as they are implemented

within embedded hardware chips.

In software based encryption, the keys used for

encryption are stored in the system memory which

can be accessed making it vulnerable for certain

attacks such as cold boot attacks. After the booting

process, since the keys are located in the RAM which

makes it feasible to circumvent the encryption.

C. Self-Encryption Drives (SDE)

These are hard wares with inbuilt hardware-based

encryption modules. All encryption keys are stored

natively on the hard drive and the keys remain

confined to the hard disk and hence not accessible by

any software running over the operating system. SED

generates two types of keys: Media Encryption Key

(MEK) & Key Encryption Key (KEK).

MEK: used for encrypting the contents of hard drive

KEK: used for encrypting MEK.

II. INSTRUMENTATION

A. High End Workstation

A high-end workstation is required for a BitLocker

dictionary attack because of the significant

computational power needed to handle the

complexity of the encryption and the large size of the

dictionary. BitLocker uses strong encryption (AES

with 128-bit or 256-bit keys), creating a vast search

space for password combinations. A dictionary attack

tests millions or even billions of potential passwords,

which requires massive processing power. High-end

workstations equipped with powerful CPUs and

GPUs enable parallel processing, significantly

speeding up the testing of these combinations.

Additionally, large dictionaries and the need for

substantial memory and storage capacity make

powerful hardware essential to efficiently process

and crack the encryption, especially for complex

passwords. Without such high-performance

equipment, the attack would be too slow and

impractical, even taking months or longer for

successful decryption.

B. FTK ImagerFTK Imager is a tool primarily used

for creating forensic disk images, and while it does

not directly support decrypting BitLocker encryption,

it can play a role in the process. First, FTK Imager

can be used to create an exact image of the encrypted

disk, which is crucial for forensic analysis. After

imaging the drive, forensic investigators can attempt

a password recovery using specialized tools. FTK

Imager can also be used to analyze the disk image for

any clues, such as recovery keys or encrypted data

remnants. However, the actual decryption or

password attack requires additional tools, as FTK

Imager itself does not have the capability to crack

passwords or bypass encryption.

Download Link: https://www.exterro.com/ftk-

product-downloads/ftk-imager-4-7-3-81

C. Hash Cat

Hashcat is a powerful, open-source password

cracking tool that can be used to decrypt BitLocker-

encrypted drives by attacking the password or PIN

used as a key protector. BitLocker encryption stores

password hashes, and Hashcat can leverage these

hashes to attempt to recover the password through

methods like dictionary, brute-force, or hybrid

attacks. By utilizing advanced algorithms and

hardware acceleration, particularly through GPUs,

Hashcat can test millions of password combinations

per second, drastically speeding up the cracking

process. The effectiveness of Hashcat depends on the

complexity of the password, with simple passwords

being more easily cracked, while longer and more

complex passwords requiring substantial

computational power and time. Hashcat's ability to

handle large datasets and perform parallel

computations makes it a powerful tool for forensic

investigators and attackers attempting to bypass

BitLocker encryption.

Download Link: https://hashcat.net/hashcat/

D. JOHN THE RIPPER

John the Ripper is another popular open-source

password cracking tool that can be used to decrypt

BitLocker-encrypted drives. Similar to Hashcat, John

the Ripper is designed to break password hashes

through various attack methods like dictionary, brute-

force, and hybrid attacks. For BitLocker decryption,

John the Ripper works by targeting the BitLocker

password hash stored in the encrypted volume. By

extracting the hash from the BitLocker-encrypted

drive, John the Ripper can attempt to crack the

https://www.exterro.com/ftk-product-downloads/ftk-imager-4-7-3-81
https://www.exterro.com/ftk-product-downloads/ftk-imager-4-7-3-81
https://hashcat.net/hashcat/

© December 2024 | IJIRT | Volume 11 Issue 7 | ISSN: 2349-6002

IJIRT 171282 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4055

password that protects the encryption key, allowing

access to the encrypted data.

John the Ripper utilizes advanced techniques and can

be customized with different wordlists or rules to

improve its chances of success, making it adaptable

to a wide range of password structures. However, its

performance is typically slower than tools like

Hashcat, particularly when cracking passwords with

complex combinations, as it doesn't utilize GPUs for

acceleration. Despite this, John the Ripper remains a

valuable tool for forensic investigators and security

professionals, especially when dealing with simpler

or more predictable passwords. It can be used in

combination with other tools to enhance the overall

decryption process when trying to access data on a

BitLocker-encrypted drive.

Download Link: https://www.openwall.com/john/

E. Password Dictionary

In a brute force BitLocker decryption attack, the use

of a password dictionary significantly enhances the

efficiency of the process by narrowing the search

space. Rather than attempting every possible

character combination, which can be incredibly slow,

a dictionary contains likely passwords, including

common words, phrases, and predictable patterns that

many users tend to choose. This reduces the number

of combinations that need to be tested, speeding up

the attack. Additionally, dictionaries can be

customized based on personal information or known

details about the user, further improving success

rates. A hybrid approach combining brute force and

dictionary attacks is often employed, where the

dictionary tests common passwords and brute force

handles variations or more complex combinations.

This approach is especially effective against weak

passwords, which are common in BitLocker

encryption, making the process of decryption more

efficient and less time-consuming. Such dictionaries

are available on the internet and can be downloaded.

Download Link: https://github.com/zxcV32/indian-

wordlist

III. OVERVIEW

This research explores the use of open-source

password cracking tools like Hashcat and John the

Ripper for decrypting BitLocker-encrypted devices.

The focus of the study is to assess the effectiveness

of these tools in attacking BitLocker encryption and

extracting password hashes or decrypting encrypted

data, both from software-based encryption (such as

BitLocker) and hardware-based encryption (including

Self-Encrypting Drives, or SEDs).

The primary objective of this research is to evaluate

the feasibility and efficiency of these open-source

tools in forensic investigations. Specifically, we

examine their ability to recover passwords from

encrypted drives, which can be critical in legal and

forensic contexts. We also investigate the

performance of Hashcat and John the Ripper in

password cracking using dictionary-based and brute-

force attack methods.

By focusing on real-world scenarios, the research

aims to determine how these tools can assist digital

forensic professionals in accessing encrypted data

when traditional decryption methods are unavailable

or ineffective. Additionally, the study considers the

legal and ethical implications of using these tools in

forensic investigations, emphasizing the importance

of proper authorization and lawful use.

Ultimately, this research contributes to the growing

field of digital forensics, highlighting the potential

and limitations of open-source tools like Hashcat and

John the Ripper in decrypting BitLocker-encrypted

volumes and aiding in forensic evidence recovery.

IV. LITERATURE REVIEW

A. BitLocker Encryption

BitLocker uses a combination of AES (Advanced

Encryption Standard) and PBKDF2 (Password-Based

Key Derivation Function 2) to protect the drive data.

The key steps are:

• PBKDF2 is used to derive the encryption key

(used for encrypting the Volume Master Key

(VMK)) from the password.

• The VMK is then encrypted with AES to protect

the drive's contents.

• The encrypted VMK is stored in the BitLocker

header.

• Formula for Key Derivation (PBKDF2)

• BitLocker uses PBKDF2 (Password-Based Key

Derivation Function 2) to convert the user’s

password into the key that is used to encrypt and

protect the Volume Master Key (VMK).

https://www.openwall.com/john/
https://github.com/zxcV32/indian-wordlist
https://github.com/zxcV32/indian-wordlist

© December 2024 | IJIRT | Volume 11 Issue 7 | ISSN: 2349-6002

IJIRT 171282 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4056

Where:

• PPP = Password or passphrase used by the user

to unlock the drive.

• SSS = Salt, which is a random value added to the

password to ensure uniqueness (different salts

are used in each encryption).

• III = The iteration count, which specifies how

many times the HMAC-SHA1 function is

applied to slow down brute-force attacks. In

BitLocker, this iteration count is typically

100,000 or higher.

This process results in a derived key that is then

used to decrypt the Volume Master Key (VMK),

which is itself encrypted with AES.

B. Bitlocker2john

Bitlocker2john is a tool included in the John the

Ripper suite designed to extract password hashes

from BitLocker-encrypted volumes. To extract the

hash used in the cracking process, BitLocker2John

performs the following steps:

Step 1: Extract BitLocker Header

The tool first reads the BitLocker header from the

disk, which contains the encrypted VMK, salt, and

iteration count used in the PBKDF2 process.

Step 2: Apply PBKDF2

The password is hashed using PBKDF2 to derive the

key that will be used to decrypt the VMK. This is

done by applying HMAC-SHA1 on the password and

salt for a number of iterations.

 Where:

• P is the user password,

• S is the salt value,

• Iterations is the number of PBKDF2 iterations

C. Hashcat and GPU-Based Cracking

Hashcat is a powerful password cracking tool that

leverages GPU acceleration to efficiently break hash-

based password protections. It supports a broad

spectrum of cryptographic hash algorithms (e.g.,

MD5, SHA-1, bcrypt) and employs various attack

modes such as brute-force, dictionary, mask, and

hybrid attacks. The mathematics behind Hashcat

involves a combination of cryptographic hash

functions, key derivation functions (KDFs), and

strategic attack methods that exploit the

computational power of GPUs to crack passwords.

1. Cryptographic Hash Functions

At the heart of Hashcat's functionality is its ability to

crack cryptographic hash functions used to securely

store passwords. A hash function takes an input (or

"message") and produces a fixed-length output,

known as the "hash." The essential properties of a

cryptographic hash function are:

• Deterministic: The same input will always

produce the same hash.

• Fast to compute: Hash functions are designed to

be computed quickly.

• Pre-image resistance: It is computationally

challenging to reverse the hash function (i.e., to

find an input corresponding to a given hash).

• Collision resistance: It is difficult to find two

different inputs that produce the same hash

value.

• Mathematically, a hash function H maps an input

message m to a fixed-size output h:

Where:

• m is the input message (e.g., a password).

• h is the resulting hash value.

• These properties ensure that a hash function is

useful for securely storing passwords, but also

present challenges for attackers trying to reverse-

engineer the original input.

2. Key Derivation Functions (KDFs)

In addition to simple hash functions, Hashcat also

targets Key Derivation Functions (KDFs), such as

PBKDF2 and bcrypt, which are designed to make the

password hashing process slower and more resistant

to brute-force attacks.

2.1 PBKDF2 (Password-Based Key Derivation

Function 2)

PBKDF2 is widely used in password hashing

schemes to protect against brute-force attacks. It

applies a hash function (e.g., SHA-256) to the

password in multiple iterations to derive a key. The

formula for PBKDF2 is:

© December 2024 | IJIRT | Volume 11 Issue 7 | ISSN: 2349-6002

IJIRT 171282 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4057

Where:

• DK is the derived key (output).

• P is the password (input).

• S is the salt (random data to prevent identical

passwords from generating the same derived

key).

• i is the iteration count (number of hash rounds).

• HMAC is the hash-based message authentication

code, typically computed using SHA-1 or SHA-

256.

• The number of iterations iii is typically large

(e.g., 100,000 or more) to slow down brute-force

attempts, making password cracking

significantly harder.

2.2 bcrypt

bcrypt is another widely used KDF for password

hashing that incorporates the Blowfish encryption

algorithm. It applies the Blowfish algorithm in a way

that increases the computational cost, making

password cracking more difficult. bcrypt uses a salt

and a cost factor ccc, which determines the number

of rounds of hashing applied. The formula for bcrypt

is:

Where:

• P is the password.

• S is the salt.

• c is the cost factor (the number of iterations).

• As the cost factor ccc increases, the time

required to compute the hash also increases,

which slows down brute-force attacks.

D. Attack Modes in Hashcat

Hashcat supports various attack modes, each

employing different mathematical strategies to guess

the correct password. The most common attack

modes are:

1 Dictionary Attack

In a dictionary attack, Hashcat attempts passwords

from a predefined list (dictionary) of commonly used

passwords. The time complexity of this attack is

proportional to the size of the dictionary, represented

as:

T = N

Where N is the number of entries in the dictionary.

Dictionary attacks are faster than brute-force attacks

since they leverage commonly used password

patterns.

E. GPU Acceleration in Hashcat

One of Hashcat's key strengths is its use of GPU

acceleration. GPUs are designed for parallel

computation and are highly effective at performing

many hash calculations simultaneously. This

parallelism allows Hashcat to dramatically increase

the number of hashes it can compute per second

compared to traditional CPU-based cracking.

The number of hashes per second can be represented

as:

Where:

• H is the number of hashes that can be computed

in parallel per cycle (dependent on the algorithm

and the GPU architecture).

• P is the number of parallel operations that can be

performed (based on the number of GPU cores).

• This parallel computing capability allows

Hashcat to perform password cracking far more

efficiently, significantly reducing the time

required to attempt a large number of possible

passwords.

V. METHODOLOGY

A. Create Forensic Image of the Encrypted Drive

To create a forensic image of an encrypted drive

using FTK Imager, first launch the tool and select

Create Disk Image from the File menu. Next, choose

the encrypted drive (either physical or logical) as the

source. Select a destination folder to save the image,

and choose the preferred image format (e.g., E01,

Raw dd). Configure the settings to generate hash

values (MD5, SHA1, SHA256) for integrity

verification and enable compression if needed. Click

Start to begin the imaging process, ensuring the drive

remains unaltered during the process. Once the image

is created, verify the hashes to confirm the image

matches the original drive, and securely store the

image file while maintaining proper chain of custody

© December 2024 | IJIRT | Volume 11 Issue 7 | ISSN: 2349-6002

IJIRT 171282 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4058

documentation. This ensures a bit-for-bit copy of the

encrypted drive, preserving its integrity, though the

encrypted data will need decryption methods like

password cracking to access its contents.

B. Bitlocker2John

Navigate to the "Run" folder within the John the

Ripper tool, type CMD in the highlighted area, and

press Enter.

Type bitlocker2john.exe -i "location of the forensic

image” in the command prompt for eg.

bitlocker2john.exe -i E:\Bitlocker

Decryption\Bitlocked.E01"

bitlocker2john.exe extracts the hash value(s)

associated with the BitLocker encryption from the

provided drive image file. The hash is needed to

perform the password cracking process

Scroll down, and you will find the password hashes

displayed. The tool will output the hash values in the

following format:

Copy these hash values and paste them into a

Notepad file, then save it as **allhash.txt**.

C. Hashcat

Once you have copied the hash values and saved

them as allhash.txt, move this file, along with the

password dictionary file (e.g., passes.txt), into the

Hashcat folder for easier access during the cracking

process.

The dictionary file (passes.txt) contains a list of

potential passwords that might match the BitLocker

password. This file is essential for performing a

dictionary attack.The passes.txt file should contain

one password per line. This file may contain common

passwords, phrases, or other potential passwords

relevant to the target system.

A large and diverse dictionary file increases the

chances of successfully cracking the password.

Navigate to the Hash Cat tool, type CMD in the

highlighted area, and press Enter.

Type hashcat.exe -m 22100 hash.txt passes.txt –show

in CMD prompt

hashcat.exe: This is the executable for Hashcat, a

powerful password cracking tool.

-m 22100: This specifies the hash mode for

BitLocker encryption. Mode 22100 corresponds to

the BitLocker hash.

hash.txt: The file containing the BitLocker hash value

extracted in

passes.txt: The dictionary file containing possible

passwords to try against the hash.

--show: This flag tells Hashcat to display the cracked

password if it successfully matches the hash.

© December 2024 | IJIRT | Volume 11 Issue 7 | ISSN: 2349-6002

IJIRT 171282 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4059

Hashcat will begin processing the hash and

attempting to match it with each password in

passes.txt.

If it finds a match, it will display the cracked

password, for example: kill2hack is the decryption

key in our case

VI. OUTCOME

The analysis of this experiment on cracking

BitLocker-encrypted drives using dictionary attacks

offers valuable insights into the strengths, limitations,

and key factors influencing the success of such

methods. Several aspects play a critical role in

determining the outcome, which are explored in more

detail below:

A. Quality and Size of the Dictionary

A primary factor in the success of dictionary attacks

is the quality and size of the dictionary used. The

passes.txt file, which serves as the list of potential

passwords, must be comprehensive enough to

account for common patterns, variations, and

complex password choices. For common passwords

like "123456" or "password," a basic dictionary file

might be sufficient. However, as Bonneau (2012)

suggests, for complex passwords involving multiple

characters, symbols, and numbers, a more extensive

and specialized dictionary would be necessary. A

smaller or outdated dictionary will fail to match

complex passwords, rendering the attack ineffective.

B. Password Complexity and Strength

Password complexity is another crucial factor in

determining the outcome of a dictionary attack.

Passwords that involve a mix of uppercase and

lowercase letters, numbers, and symbols are harder to

crack compared to simpler ones. As highlighted by

Heninger et al. (2010), a password that’s long and

random will significantly increase the difficulty of

cracking attempts. For example, passwords like

"LJf45hG!d@2tZ" (a long and random combination)

are resistant to dictionary attacks because they fall

outside the scope of typical dictionary entries. This

emphasizes the importance of using strong passwords

in encryption scenarios to ensure robust data

protection.

C. Hashcat and Computational Resources

Hashcat is a highly efficient password-cracking tool

that benefits from GPU acceleration, allowing it to

test a vast number of potential passwords rapidly.

According to Kelley et al. (2019), tools like Hashcat

provide a significant advantage over traditional CPU-

based tools by utilizing parallel processing

capabilities of modern GPUs. This allows faster

cracking of password hashes, especially when dealing

with large dictionaries or more extensive password

combinations. However, as with all cracking

methods, the efficiency of Hashcat is limited by the

quality and diversity of the dictionary. If the correct

password isn’t included in the dictionary, no amount

of computational power can recover it.

D. Time and Computational Effort

The time required to crack a password depends

largely on its complexity and the size of the

dictionary used. Simple passwords can be cracked in

a short amount of time, whereas complex passwords

or larger dictionaries can significantly increase the

cracking time. As discussed by Kelley et al. (2019),

advanced cracking techniques such as mask attacks

(where the pattern of characters is known) or rule-

based attacks (which modify dictionary entries) can

improve the chances of success. However, these

techniques require significant computational

resources, which may not always be available for

every user. The larger the dictionary and the more

complex the password, the greater the time and

computational effort required.

E. Alternative Attack Methods

When a dictionary attack fails, alternatives like brute-

force or hybrid attacks can be attempted. Brute-force

attacks test all possible combinations, while hybrid

attacks combine dictionary and brute-force methods.

Although these methods increase the chances of

cracking a password, they are computationally

expensive and can take considerable time, especially

for long, complex passwords. As Lamarca (2016)

mentions, brute-force attacks are only feasible for

short and simple passwords, while hybrid methods

might succeed when combined with multiple

© December 2024 | IJIRT | Volume 11 Issue 7 | ISSN: 2349-6002

IJIRT 171282 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 4060

strategies. However, they remain time-consuming

and inefficient against highly complex passwords.

VII. CONCLUSION

The experiment successfully demonstrated that free

tools like bitlocker2john and Hashcat can be used

effectively to crack BitLocker-encrypted drives,

provided the passwords are not excessively complex.

In comparison, Passware, a commercial alternative,

offers a more polished and comprehensive solution,

but comes with a significant financial cost, ranging

from $3,000 to $5,000 annually. For individuals and

smaller organizations, bitlocker2john and Hashcat

offer a powerful, cost-free solution to password

recovery, providing similar efficiency for many

common password scenarios. Passware may be a

more convenient option for enterprises due to its

support and broader capabilities, but for those on a

budget, open-source tools present a viable alternative

without compromising on performance.

VIII. ACKNOWLEDGMENT

I would like to express my sincere gratitude to

everyone who supported and contributed to the

completion of this research paper.

I would also like to thank the John the Ripper

Development Team for creating the bitlocker2john

tool, which was fundamental for extracting password

hashes from BitLocker-encrypted volumes. The

tool’s effectiveness in facilitating hash extraction

directly contributed to the success of the experiment.

My sincere thanks also go to the Hashcat Community

for developing Hashcat, a powerful tool used to crack

passwords with GPU acceleration. This tool played a

pivotal role in executing the dictionary attack and

testing its effectiveness. The team’s dedication to

creating such a robust and efficient tool was integral

to the success of this research.

Additionally, I am grateful to the authors and

researchers whose work laid the foundation for this

study. I would like to especially recognize the work

of Bonneau (2012), Heninger et al. (2010), and

Kelley et al. (2019), whose research on password

strength, cracking methods, and security

vulnerabilities provided significant insights into the

context of this paper.

I am also thankful to my peers and colleagues for

their insightful feedback and discussions that helped

refine the analysis and interpretation of results. Their

suggestions and comments were instrumental in

improving the quality of this research.

Lastly, I would like to acknowledge my peers and

mentors for their insightful feedback and support

throughout the process of conducting this experiment

and preparing the report. Their guidance has been

invaluable in enhancing my understanding of

encryption and password cracking techniques.

REFERENCES

[1] Hashcat. (n.d.). Hashcat - Advanced password

recovery. Retrieved from

https://hashcat.net/hashcat/.

[2] Openwall. (n.d.). John the Ripper. Retrieved

from https://www.openwall.com/john/.

[3] Bonneau, J. (2012). The security of personal

data in the cloud. In Proceedings of the 3rd

USENIX conference on Hot Topics in Security

(HotSec '12). USENIX Association.

[4] Heninger, N., Durbin, M., Mitchell, J. C., &

Shacham, H. (2010). Mining your Ps and Qs:

Detection of widespread weak keys in network

devices. In Proceedings of the 19th USENIX

Security Symposium (pp. 233-248). USENIX

Association.

[5] Kelley, P., He, Q., & Shacham, H. (2019).

Hashcat: The performance of GPU-based

password cracking. In Proceedings of the 2019

IEEE European Symposium on Security and

Privacy (pp. 273-288). IEEE.

[6] Microsoft. (2020). BitLocker Drive Encryption

Overview. Retrieved from

https://docs.microsoft.com/en-

us/windows/security/information-

protection/bitlocker/bitlocker-drive-encryption-

overview

[7] S. Kahn, D. (2020). History of encryption and its

impact on modern security systems. In

Proceedings of the 2020 IEEE Symposium on

Security and Privacy (pp. 124-139). IEEE.

[8] Chakraborty, P., & Roy, S. (2020). The evolution

of brute-force and dictionary-based password

cracking algorithms. Journal of Security and

Privacy, 4(4), 175-194.

