
© December 2024 | IJIRT | Volume 11 Issue 7 | ISSN: 2349-6002

IJIRT 171422 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3305

Developing Commercial Application using

React,Redux and Custom API

T. Raghavendra Gupta1, S. Rakesh Reddy2, S. Shiva shanker prasad3, S. Vivek Vardan4,

P. Abhiram Sharma5, Mr. T. Raghavendra Gupta6

1Associate Professor, Department of CSE, HITAM, Hyderabad, India
2,3,4,5 Student of Computer Science and Engineering, HITAM Hyderabad, India

6Guide, Department of CSE, HITAM, Hyderabad, India

Abstract— In this project, we will develop a fully

functional website using React, Redux, Node.js, and

Express.js, with a focus on performance and efficient

state management. React component-based

architecture will be leveraged to ensure minimal and

optimized re-renders, enhancing the website's

performance and reducing server load. Redux will be

integrated to provide a centralized store accessible by

all React components, enabling consistent and efficient

DOM manipulation across the application. We will

create a custom API using Node.js, running locally to

serve data requested by the React components, while

Express.js will handle backend routing and logic,

ensuring smooth communication between the frontend

and backend. The project aims to deliver a high-

performance, responsive website with seamless

frontend-backend integration and efficient data

management.

Keywords— React.js, Redux, Node.js, Express.js,

Efficient State Management, Component-Based

Architecture, API Development, Backend Routing,

Responsive Web Design, Custom API.

I. INTRODUCTION

The rapid growth of e-commerce has transformed

how businesses operate and how consumers engage

with products and services. With the increasing

demand for online shopping, the development of

efficient, scalable, and user-friendly e-commerce

platforms has become a critical area of research and

innovation. This paper presents the design and

development of 'e shop,' a fully functional e-

commerce website that integrates modern web

technologies to deliver an enhanced shopping

experience.

The primary goal of the 'e shop' platform is to provide

users with a seamless and intuitive interface, ensuring

efficiency in browsing, selecting, and purchasing

products. Built using React, the website employs a

component-based architecture to ensure scalability

and maintainability. React enables the creation of

dynamic and responsive user interfaces that adapt to

various devices, thereby improving accessibility and

user engagement. To manage complex application

states effectively, the project incorporates Redux, a

robust state management library that ensures data

consistency and smooth interactions across the

platform. One of the unique aspects of the 'e shop' is

its focus on performance and usability. The design

emphasizes faster loading times, simplified

navigation, and a clutter-free interface to cater to the

needs of modern users. The website’s modular

architecture allows for easy integration of additional

features, such as user authentication, payment

gateways, and analytics, which can be incorporated

in future iterations to enhance functionality further.

This paper also explores the challenges encountered

during the development process, including

integrating front-end and back-end components,

managing application states efficiently, and ensuring

responsiveness across devices. It discusses the

strategies adopted to overcome these challenges and

the role of modern development tools in streamlining

the workflow. The research aims to highlight the

potential of contemporary web technologies like

React and Redux in building high-performance,

responsive, and scalable e-commerce platforms. By

combining theoretical insights with practical

implementation, this paper contributes to the growing

body of knowledge on e-commerce development,

offering valuable guidance for developers and

researchers seeking to create innovative online

shopping solutions.

In conclusion, 'e shop' represents a step forward in

delivering an efficient and user-centric e-commerce

experience. The project demonstrates the power of

modern web frameworks and state management tools

in addressing the demands of a rapidly evolving

© December 2024 | IJIRT | Volume 11 Issue 7 | ISSN: 2349-6002

IJIRT 171422 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3306

digital marketplace, paving the way for further

advancements in the field of e-commerce technology.

II. RELATED WORK

Now in this related work part, we will discuss some

work that has been done in this field.

A. Managing State in React Applications with Redux

: Timo McFarlane

The research paper titled "Managing State in React

Applications with Redux" by Timo McFarlane,

submitted as a Bachelor's thesis in November 2019 at

Tampere University of Applied Sciences, delves into

the intricacies of state management in React

applications. The primary objective was to design and

implement a new state management architecture using

Redux for an existing project. The study also explored

other methods for handling state and component

lifecycle in React applications, particularly focusing

on React Hooks, a feature introduced in February

2019.

The results of the study were promising, with a new

state management architecture successfully designed

and implemented. The paper provides valuable

insights into various state management methods and

their effectiveness in React applications.

Commissioned by Visma Consulting Oy, a software

company specializing in digital services and custom

software solutions, this research contributes

significantly to the understanding and practical

application of state management in modern web

development.[1]

B. Comparison of Redux and React Hooks Methods

in Terms of Performance : Daria Pronina and Iryna

Kyrychenko

The research paper titled "Comparison of Redux and

React Hooks Methods in Terms of Performance" by

Daria Pronina and Iryna Kyrychenko from Kharkiv

National University of Radio electronics, Ukraine,

focuses on comparing two state management

methods in React applications: Redux and React

Hooks. The primary objective of the study is to

analyse the performance of these two methods to

provide insights for choosing the appropriate state

management approach in React applications. The

study involved creating a simple front-end

application with functional requirements such as

rendering, editing, and deleting posts, and managing

user data. This application was implemented using

both Redux and React Hooks to compare their

performance.

The findings indicate that Redux, while popular for

its scalability and predictability, introduces

significant boilerplate code and performs worse in

terms of memory usage and state update time

compared to React Hooks. React Hooks, on the other

hand, offer a more optimized performance with less

code and better memory management. The study

concludes that React Hooks are more suitable for

high-performance applications, while Redux may not

be preferred for applications with stringent

performance requirements. This paper provides

valuable recommendations for developers on

choosing the right state management approach based

on performance consideration.[2]

C. Front-End Development in React: Songtao Chen

The research paper provides an in-depth exploration

of React.js, a popular JavaScript library for building

user interfaces. It begins by discussing the evolution

of web development from traditional server-side

rendering to modern client-side rendering in Single

Page Applications (SPAs). React’s client-side

rendering approach enables dynamic and interactive

user experiences by leveraging the Virtual DOM to

reduce the need for full-page reloads. This

architecture ensures faster response times and

seamless navigation, mimicking the behaviour of

native applications. React’s core features are

highlighted, including its declarative syntax, which

allows developers to focus on what they want to

render rather than how to manipulate the DOM. The

framework’s component-based architecture

promotes reusability, modularity, and easier

maintenance. React’s high performance is attributed

to its Virtual DOM, which efficiently updates only

the necessary parts of the UI instead of the entire

DOM. These features collectively make React a

preferred choice for building scalable and dynamic

applications.

The paper also discusses the broader React

ecosystem. For state management, tools like Flux and

Redux are introduced, emphasizing their ability to

handle complex data flows predictably in large-scale

applications. The use of CSS Modules is explored as

a solution to manage styles at scale, enabling

encapsulated and reusable CSS. Additionally, the

paper delves into the importance of static typing with

tools like Flow and TypeScript, which enhance code

© December 2024 | IJIRT | Volume 11 Issue 7 | ISSN: 2349-6002

IJIRT 171422 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3307

maintainability and readability. Other aspects, such

as Webpack for module bundling and tools like React

Developer Tools for debugging, are presented as

critical components of the React development

workflow.

The paper briefly compares React to other

frameworks, such as Angular.js, highlighting React's

simplicity, flexibility, and strong community support.

However, challenges like longer initial page load

times due to preloading scripts and styles, as well as

SEO limitations caused by JavaScript-dependent

content, are acknowledged. Despite these challenges,

the paper underscores React's ability to simplify

complex web development tasks and improve user

experiment.[3]

D React and Redux : Matthias Kevin Caspers

Many popular JavaScript frameworks for developing

single page applications (SPAs) and rich internet

applications (RIA) use mutable state, templating, a

two-way data-binding system and impose the

imperative programming paradigm on the developer.

This paper will show some problems that the

aforementioned design choices have and present

React and Redux as an alternative for developing

SPAs and RIAs. React is a user interface (UI) library,

written in JavaScript and developed by Facebook. It’s

often described as being the V in MVC. Redux is an

easy-to-use predictable state container, created by

Dan Abramov in JavaScript. React and Redux are

both independent from one another. They do however

work very well together in practice. Since React is a

library for building UIs and Redux is a state

container, they do not come with many of the features

that fully fledged SPA/RIA frameworks like Angular

JS or Ember JS provide. There exist however dozens

of libraries which can provide these features to them.

This paper will introduce the reader to React and

Redux, as well as the problems which they solve. The

first part of this paper will focus solely on React.

Redux will be covered in the second part. The third

part will cover how React and Redux can be used

together. It will be shown, that React and Redux

present a powerful way for developing SPAs/RIAs,

which in many regards is superior to the way SPAs

and RIAs were written prior to the emergence of

React.[4][5]

III. IMPLEMENTATION OF CORE PLATFORM

COMPONENTS

1. React.js

React.js is the primary frontend framework used to

build the platform's user interface. Its component-

based architecture enables the development of

reusable and modular UI components, such as

navigation bars, product cards, and shopping carts.

Each component is designed independently, making

the platform highly maintainable and scalable.

React’s virtual DOM ensures efficient updates,

rendering only the components that change instead of

refreshing the entire page. This enhances the user

experience by delivering faster and more responsive

interactions. Features like React hooks (useState,

useEffect) allow for efficient state handling and

lifecycle management within individual components.

2. Redux

Redux is used for efficient state management,

particularly for handling global application states like

user sessions, product data, and cart items. By

maintaining a centralized store, Redux ensures data

consistency across components and eliminates

redundancy. For example, when a product is added to

the cart, the Redux action updates the global state,

automatically re-rendering the shopping cart and

navigation bar without manual intervention.

Middleware like Redux Thunk enables asynchronous

data fetching, such as retrieving product lists from an

API, further streamlining state updates.

3. Node.js

Node.js serves as the backend runtime environment,

enabling efficient handling of server-side operations.

It powers the custom API development and processes

user requests, such as fetching product data or

managing cart operations. Node.js's non-blocking I/O

model ensures high performance and scalability,

allowing the platform to handle multiple requests

simultaneously. Its event-driven architecture makes it

ideal for building responsive and real-time

applications like 'e shop.'

4. Express.js

Express.js is the backend framework used for API

development and backend routing. It facilitates the

creation of RESTful APIs that handle core

functionalities, including retrieving product details,

adding items to the cart, and processing orders.

Express routes are designed to communicate

seamlessly with the frontend, ensuring a smooth flow

© December 2024 | IJIRT | Volume 11 Issue 7 | ISSN: 2349-6002

IJIRT 171422 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3308

of data between the user interface and the server. For

example, a GET request to /products retrieves all

product details from the database, which are then

displayed dynamically on the React frontend.

5. Efficient State Management

Efficient state management is critical to ensuring a

smooth user experience. Redux handles global states

like product listings, cart items, and user sessions,

while React manages local component-level states.

This combination ensures optimal performance by

keeping frequently changing states localized and

static data in the global store. The platform uses

structured reducers and actions in Redux, minimizing

boilerplate code and improving maintainability.

6. Component-Based Architecture

The entire platform is built using a component-based

architecture, allowing the reuse of components across

different sections. For example, the Product Card

component is used both on the product listing page

and the recommendations section of the product

details page. This modular approach improves

scalability, as developers can add new features or

update existing ones without affecting other parts of

the application. Components are styled

independently, ensuring consistent behavior across

various devices.

7. API Development

The platform's custom API is designed to handle

requests for data such as product details, user

authentication, and cart management. Built using

Node.js and Express.js, the API ensures seamless

communication between the frontend and backend. It

adheres to RESTful principles, enabling CRUD

(Create, Read, Update, Delete) operations. For

instance, when a user adds a product to the cart, a

POST request updates the cart data in the backend,

which is then fetched and displayed on the frontend

using Redux.

8. Responsive Web Design

The platform incorporates responsive web design

principles to ensure usability across devices of

varying screen sizes. CSS frameworks like Bootstrap

and custom media queries are used to make the

design adaptable. For instance, the navigation bar

collapses into a hamburger menu on smaller screens,

and the product grid layout adjusts dynamically to

optimize content visibility on mobile devices. This

ensures a consistent user experience regardless of the

device used.

9. Custom API

The custom API acts as the backbone of the platform,

enabling real-time communication between the

frontend and backend. It is built to handle key

functionalities such as product retrieval, user

authentication, and cart updates. The API is designed

for future scalability, allowing for additional

endpoints like order history, user profiles, and

analytics dashboards. Proper error handling and

validation are implemented to ensure secure and

reliable data transmission.

IV. RESULTS AND DISCUSSIONS

The development of the 'e shop' e-commerce

platform demonstrates the successful integration of

modern web technologies to create a high-

performance, responsive, and user-friendly

application. The platform's component-based

architecture, powered by React.js, enables

modularity and reusability across the application.

Key features such as product listings, dynamic

routing, and cart management showcase the

efficiency of the design. The use of Redux for state

management ensures consistency in data flow across

components, significantly reducing redundancy and

improving performance. Testing across multiple

devices and browsers confirms that the platform

maintains a seamless user experience, regardless of

the screen size or operating system, fulfilling the goal

of responsive web design.

The efficient handling of global state through Redux

has resolved common challenges such as data

inconsistency and complex state updates. The

centralized store allowed for real-time updates to

features like the shopping cart and user interface

components without the need for redundant API calls

or manual state synchronization. For instance, when

a user adds or removes an item from the cart, the

Redux store updates the cart state globally, ensuring

that changes are immediately reflected across all

relevant components. This not only enhances the

platform's efficiency but also minimizes the load on

the backend server, demonstrating a thoughtful

approach to balancing frontend and backend

responsibilities.

© December 2024 | IJIRT | Volume 11 Issue 7 | ISSN: 2349-6002

IJIRT 171422 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 3309

The backend implementation using Node.js and

Express.js further validates the scalability and

robustness of the platform. Custom APIs were

developed to handle critical operations, including

fetching product data, managing cart interactions,

and processing orders. These APIs were designed to

adhere to RESTful principles, ensuring clarity and

ease of integration with the frontend. Testing of the

APIs revealed minimal latency in data retrieval and a

strong ability to handle concurrent user requests,

indicating that the backend architecture is well-suited

for real-world use cases. Future integration of a

database for storing user and product data can further

enhance the platform's functionality and enable

additional features such as user authentication and

order history.

Overall, the 'e shop' project highlights the

effectiveness of combining React.js, Redux, Node.js,

and Express.js for building a scalable e-commerce

platform. The responsive design and optimized

performance make it a strong foundation for future

enhancements, such as payment gateway integration,

advanced filtering options, and personalized user

experiences. The results demonstrate that the

platform successfully addresses the initial challenges

of performance, state management, and scalability,

providing a competitive and modern solution in the

growing e-commerce landscape.

V. FUTURE WORK

The future work for the 'e shop' platform focuses on

expanding its capabilities to create a more robust,

secure, and personalized e-commerce experience.

Key improvements include integrating payment

gateways (such as PayPal or Stripe) for seamless

transactions, ensuring secure and smooth checkout

processes. Additionally, the implementation of user

authentication will allow for personalized profiles,

order tracking, and enhanced user interaction with the

platform. This feature will also enable role-based

access control for admins to manage products and

customer data.

To enhance the shopping experience, advanced

search features and product recommendations

powered by machine learning algorithms will be

introduced, allowing for more personalized product

suggestions and efficient navigation. Analytics and

reporting tools will be integrated to provide insights

into user behaviour, sales trends, and platform

performance, helping business owners make

informed decisions.

The platform will also be scaled by integrating cloud

services for better data management and improved

performance as user traffic increases. These

enhancements will ensure that the 'e shop' remains

competitive, secure, and user-centric, providing a

complete solution for both customers and business

owners in the e-commerce space.

REFERENCES

[1] Microsoft Word - Mcfarlane_Timo.docx

Managing State in React Appli cations with

Redux by Timo McFarlane

[2] Microsoft Word -

Comparison_of_Redux_and_React_Hooks_app

roaches_in_terms_of_performance.docx. by

Daria Pronina 1 and Iryna Kyrychenko

[3] https://www.researchgate.net/publication/37415

4236 by Songtao Chen1 , Upendar Rao Thaduri

2 , Venkata Koteswara Rao Ballamudi 3*

[4] Roy Thomas Fielding. REST APIs must be

hypertextdriven. URL:

http://roy.gbiv.com/untangled/2008/restapis-

must-be-hypertext-driven

[5] https://uol.de/f/2/dept/informatik/ag/svs/downlo

ad/reader/reader-seminar-ws2016.pdf : Matthias

Kevin Caspers Carl von Ossietzky University of

Oldenburg, Germany Department of Computer

Science matthias.kevin.caspers@uni-

oldenburg.de.

https://www.theseus.fi/bitstream/handle/10024/265492/McFarlane_Timo.pdf
https://ceur-ws.org/Vol-3171/paper59.pdf
https://ceur-ws.org/Vol-3171/paper59.pdf
https://ceur-ws.org/Vol-3171/paper59.pdf
https://www.researchgate.net/publication/374154236
https://www.researchgate.net/publication/374154236
https://uol.de/f/2/dept/informatik/ag/svs/download/reader/reader-seminar-ws2016.pdf
https://uol.de/f/2/dept/informatik/ag/svs/download/reader/reader-seminar-ws2016.pdf
mailto:matthias.kevin.caspers@uni-oldenburg.de
mailto:matthias.kevin.caspers@uni-oldenburg.de

