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1.INTRODUCTION 

The concept of Complex Valued Metric Spaces was 

introduced by A. Fisher and M. Khan [4] in 2011. The 

idea of b-Metric Spaces dated back to Bakhtin [5] in 

1989. Rao et al. [9] later combined these ideas to 

develop complex-valued b-metric spaces, which 

generalize the standard complex-valued metric spaces. 

Numerous fixed-point theorems have been established 

in the context of complex-valued metric spaces [2], 

[6], [7], [8], [10], [11], as well as in complex- valued 

b-metric spaces [1], [9]. In this paper we provide a 

common fixed-point theorem for two self-mappings 

satisfying a contractive condition in complex-valued 

b-metric spaces. This Result builds on and generalizes 

the work of S. Ali [3].  

2.PRELIMINARIES 

Let ℂ be the set of all complex numbers and z1 , z2 ∈

 ℂ . Define a partial order relation ≾ on ℂ as follows:  

z1  ≾   z2  if and only if  Re(z1) ≤

 Re(z2) and Im(z1)  ≤   Im(z1)  

Thus z1  ≾   z2 if one of the followings holds: 

(1)  Re(z1) =  Re(z2) and Im(z1)  =   Im(z1)  

(2) Re(z1) <  Re(z2) and Im(z1)  =   Im(z1) 

(3) Re(z1) =  Re(z2) and Im(z1)  <   Im(z1) 

(4) Re(z1) <  Re(z2) and Im(z1)  <   Im(z1)  

We write z1  ≾   z2 if z1  ≾   z2 and z1  ≠   z2 i.e., one 

of (2), (3) and (4) is satisfied and we will write z1  <

z2 if only (4) is Satisfied. 

Remark: We can easily check the followings: 

(i) a, b ∈  ℝ , a ≤ b ⇒ az ≾ bz, ∀ z ∈  ℂ. 

(ii) 0 ≾ z1 ≾ z2  ⇒  |z1| < |z2|. 

(iii) z1  ≾   z2  and z2 < z3 ⇒  z1 < z3. 

Azam et al. [4] defined the complex valued metric 

space in the following way: 

Definition 2.1 ([4]):  

Let X be a nonempty set. Suppose that the mapping 

d: X × X → ℂ satisfies the following conditions: 

(C1) 0 ≾ d(x, y), for all x, y ∈ X and d(x, y) =

0 if and only if x = y;  

(C2) d(x, y) = d(y, x), for all x, y ∈ X 

(C3) d(x, y) ≾ d(x, z) + d(z, y), for all x, y, z ∈ X 

Then d is called a complex valued metric on X and 

(X, d) is called a complex valued metric space. 

Example 2.1 [7]: Let X = ℂ. Define the mapping 

d: X × X → ℂ by  

d(z1, z2) = i|z1 − z2|           ∀ z1, z2 ∈ ℂ 

One can easily verify that (ℝ, d) is a complex valued 

metric space. 

Definition 2.2 ([9]):  

Let X be a nonempty set and let ω ≥ 1 be given real 

number. A function d: X × X → ℂ is called 
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a complex valued b-metric on  X, if for all x, y, z ∈ X 

the following conditions are satisfied: 

(1) 0 ≾ d(x, y), for all x, y ∈ X and  d(x, y) =

0 if and only if x = y; 

(2) d(x, y) = d(y, x)for all x, y ∈ X 

(3) d(x, y) ≾ ω[d(x, z) + d(z, y)]   for all x, y, z ∈ X.  

The pair (X, d) is called complex valued b-metric 

space. 

Example 2.2 [9]:  Let X = [0,1]. Define the mapping 

d: X × X → ℂ by  

d(x, y) = |x − y|2 + i|x − y|2, for all x, y ∈ X. 

Then (X, d) is a complex valued b-metric space with 

k = 2 

Definition 2.3 ([9]):  Let (X, d) be a complex valued b-

metric space. Then 

(i) A point x ∈ X is called an interior point of a 

set A ⊆ X if there exists 0 ≺ r ∈  ℂ Such that  

B(x, r) = {y ∈ X ∶ d(x, y) ≺ r } ⊆ A. 

 

(ii) A point x ∈ X is called a limit point of a set 

A ⊆ X if for every  0 ≺ r ∈  ℂ Such that  

B(x, r) ∩ (A − {x}) ≠  ∅. 

A subset A ⊆ X is called closed if each 

element of X − A is not a limit point of A. 

(iii) The family  

F = {B(x, r): x ∈ X, 0 ≺ r } 

Is a sub-basis for a Hausdorff topology 

τ on X. 

Definition 2.4 ([9]): Let (X, d) be a complex valued b-

metric space. Then 

⇒A sequence {xn} in X is said to converge to x ∈ X if 

for every x < r ∈ ℂ there exists N ∈  ℕ such that 

d(xn , x) < r,   ∀ n > N. We denote this by lim
n→∞

xn =

x or xn → x as   n → ∞. 

⇒ If for every 0 < r ∈ ℂ there exists N ∈ ℕ such that 

d(xn, xn+m) < r for all n > N, m ∈ ℕ, then {xn} is 

called a Cauchy sequence in (X, d). 

⇒  If every Cauchy sequence in X is convergent in X 

then (X, d) is called a complete complex valued b-

metric space. 

Lemma 2.1([9]):   Let (X, d) be a complex valued b-

metric space and {xn} be a sequence in X. Then {xn} 

converges to  x ∈ X if and only if |d(xn, x)| ⟶

0 as n ⟶ ∞. 

Lemma 2.2([9]):   Let (X, d) be a complex valued b-

metric space and {xn} be a sequence in X. Then {xn} 

is a Cauchy sequence if and only if |d(xn, xn+m)| ⟶

0 as n ⟶ ∞ where  m ∈ ℕ. 

Definition 2.5 ([11]):  The ‘max’ function for the 

partial order ≾ is defined as follows: 

(i) max{z1, z2} = z2 ⇔  z1 ≾  z2. 

(ii) z1 ≾ max{z2, z3} ⇒ z1 ≾ z2 or  z1 ≾  z3. 

(iii) max{z1, z2} = z2 ⇔  z1 ≾  z2  or |z1| ≤ |z2|. 

3.MAIN RESULT 

In this section we present the main result of the paper. 

Theorem 3.1       Let (X, d) be a complete complex 

valued b- metric space with coefficient  

ω ≥ 1  and S, T: X → X be self-maps satisfying the 

following condition: 

d(Sx, Ty) ≤ α max {d(x, y),
d(y, Ty)[1 + d(x, Sx)]

1 + d(x, y)
} + β max { d(Sx, Ty),

d(x, Sx)[1 + d(y, Sx)]

1 + d(y, Ty). d(y, Sx)
}  

 

∀ x, y ∈ X , Where α and β are real with 0 < α, 0 <

β  , α + β < 1 then S and T have a unique common 

fixed-point. 

Proof: Let x0 ∈ X be arbitrary. We define a sequence 

{xn} in  X as  

x2k+1 = Sx2k 

x2k+2 = Tx2k+1              , k = 0,1,2, … … … .. 

Then d(x2k+1, x2k+2) = d(Sx2k, Tx2k+1) 



© January 2025 | IJIRT | Volume 11 Issue 8 | ISSN: 2349-6002 
 

IJIRT 171486   INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY              119 

≤  α max {d(x2k, x2k+1),
d(x2k+1 ,Tx2k+1)[1 + d(x2k, Sx2k)]

1 + d(x2k, x2k+1)
}

+  β max {d(Sx2k, Tx2k+1), ,
d(x2k, Sx2k)[1 + d(x2k+1, Sx2k)]

1 + d(x2k+1, Tx2k+1). d(x2k+1, Sx2k)
 }    

    

≤  α max {d(x2k, x2k+1),
d(x2k+1 ,x2k+2)[1 + d(x2k, x2k+1)]

1 + d(x2k, x2k+1)
}

+  β max {d(x2k+1, x2k+2), ,
d(x2k, x2k+1)[1 + d(x2k+1, x2k+1)]

1 + d(x2k+1, x2k+2). d(x2k+1, x2k+1)
 }    

≤  α max{d(x2k, x2k+1), d(x2k+1 ,x2k+2)} +  β max{d(x2k+1, x2k+2), d(x2k, x2k+1) }    

d(x2k+1, x2k+2) ≤ (α + β) max{d(x2k, x2k+1), d(x2k+1 ,x2k+2)} 

d(x2k+1, x2k+2) ≤ (α + β) M1 

Where M1 = max{d(x2k, x2k+1), d(x2k+1 ,x2k+2)} 

 

Case-I:  If M1 = d(x2k, x2k+1) 

d(x2k+1, x2k+2) ≤ (α + β) d(x2k, x2k+1)                       (1) 

 

Case-II:  If M1 =  d(x2k+1 ,x2k+2) 

d(x2k+1, x2k+2) ≤ (α + β) d(x2k+1 ,x2k+2) 

d(x2k+1, x2k+2)(1 − α − β) ≤ 0 

∵ (1 − α − β) ≠ 0 

 So     d(x2k+1, x2k+2) = 0 

x2k+1 = x2k+2 

We will continue with case-I  

d(x2k+2, x2k+3) ≤ (α + β) d(x2k+1, x2k+2)                               (2) 

Therefore from eq. (1) and (2) for  n ∈ N we have  

d(xn+1, xn+2) ≤ (α + β) d(xn, xn+1) ≤ (α + β) 2d(xn−1, xn) ≤ ⋯ ≤ (α + β) n+1d(x0, x1). 

So, for m, n ∈ N, 

d(xn, xm+n) ≤ ω[d(xn, xn+1) + d(xn+1, xm+n)] 

≤ ω[d(xn, xn+1) + ω2[d(xn+1, xn+2) + d(xn+2, xm+n)] 
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≤ ωd(xn, xn+1) + ω2d(xn+1, xn+2) + ⋯ + ωm−1d(xm+n−2, xm+n−1) + ωmd(xm+n−1, xm+n) 

d(xn, xm+n) ≤ ω(α + β) nd(x0, x1) + ω2(α + β)n+1d(x0, x1) + ⋯ + ωm(α + β)m+n−1d(x0, x1) 

d(xn, xm+n) ≤ ω(α + β) n[1 + ω(α + β) + {ω(α + β)}2 + ⋯ + {ω(α + β)}m−1] d(x0, x1) 

→ 0       as  n → ∞   Where m ∈ N. 

Therefore, from Lemma 2, we see that {xn}  is a Cauchy sequence in  X.  

Since X is complete ∃    u ∈ X   Such that xn → u  as n → ∞ 

Thus lim
n→∞

Sx2n = lim
n→∞

Tx2n+1 = u 

Now from the given condition we have  

d(Su, u)  ≤  ω[ d(Su, Tx2n+1) + d (Tx2n+1, u)] 

≤  ω[α max {d(u, x2n+1),
d(x2n+1 ,Tx2n+1)[1 + d(u, Su)]

1 + d(u, x2n+1)
}

+  β max {d(Su, Tx2n+1), ,
d(u, Su)[1 + d(x2n+1, Su)]

1 + d(x2n+1, Tx2n+1). d(x2n+1, Su)
 }] + ω d(Tx2n+1, u)    

→ 0   as     n → ∞ 

Thus d(Su, u) ≤ 0 

⇒   d(Su, u)  =  0 

Hence Su = u  

Similarly  

⇒   d(Tu, u)  =  0 

Hence Tu = u  

Therefore, u is a common fixed-point of S and T. 

Now for the uniqueness  

Let us suppose that Su∗ = Tu∗ =  u∗  for some u∗ ∈ X. 

Then d(u, u∗) = d(Su, Tu∗) 

 

≤  α max {d(u, u∗),
d(u∗, Tu∗)[1 + d(u, Su)]

1 + d(u, u∗)
} +  β max {d(Su, Tu∗),

d(u, Su)[1 + d(u∗, Su)]

1 + d(u∗, Tu∗). d(u∗, Su)
 }] 

d(u, u∗) ≤  α max {d(u, u∗),
d(u∗, u∗)[1 + d(u, u)]

1 + d(u, u∗)
} +  β max {d(u, u∗),

d(u, u)[1 + d(u∗, u)]

1 + d(u∗, u∗). d(u∗, u)
 }] 

d(u, u∗) ≤ (α + β)d(u, u∗) 

d(u, u∗) (1 − α − β)  ≤ 0 

∵  (1 − α − β) ≠ 0   

d(u, u∗)  = 0      Hence   u = u∗ 

This completes the proof. 

Corollary: - Let (X, d) be a complete complex valued 

b- metric space with coefficient  

ω ≥ 1  and F, S: X → X be self-maps satisfying the 

following condition: 

d(Fx, Sy)

≤ α max {d(x, y),
{d(Fx, Sy)}2

d(Sy, Fx). d(Fx, x) + d(Fx, Sy)
} 

∀ x, y ∈ X , Where α  are real with 0 < α < 1 then 

S and F have a unique common fixed-point. 
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