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Abstract—Lithium-ion batteries have become 

indispensable in numerous applications, including 

electric vehicles, renewable energy systems, and portable 

electronics, due to their high energy density, long cycle 

life, and lightweight construction. However, their 

widespread adoption has introduced challenges related 

to safety, reliability, and operational efficiency. 

Advanced fault detection techniques leveraging artificial 

intelligence (AI), machine learning (ML), and hybrid 

approaches are emerging as transformative tools for 

addressing these issues. This paper reviews the state-of-

the-art in fault detection and health monitoring systems 

for lithium-ion batteries, with an emphasis on AI-driven 

innovations, key methodologies, major findings, and 

research gaps. Future directions for advancing this 

critical field are also discussed. 
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I. INTRODUCTION 

 

Lithium-ion batteries are fundamental to the global 

shift towards sustainable energy systems. Despite their 

advantages, these batteries are prone to issues such as 

capacity degradation, overheating, and thermal 

runaway, which can result in safety hazards and 

operational inefficiencies [1]. Fault detection and 

health monitoring systems play a crucial role in 

ensuring battery safety and longevity. Traditional 

approaches, however, are limited in their ability to 

predict complex fault behaviors under dynamic 

operating conditions. 

The integration of AI and ML has opened new 

frontiers in battery fault detection by enabling data-

driven insights and real-time health monitoring. 

Moreover, hybrid approaches that combine physics-

based models with AI techniques offer a promising 

path toward more accurate and interpretable solutions. 

This paper aims to provide a comprehensive review of 

recent advancements in these areas, emphasizing 

methodologies, applications, and challenges. 

 
Figure 1: Generic block-diagram of ML-based fault 

diagnosis scheme [1] 

 

II. METHODOLOGIES 

III.  

A. Machine Learning Techniques: 

Machine learning techniques have gained prominence 

due to their ability to process vast amounts of data and 

uncover intricate patterns related to battery faults. 

Popular ML methods include: 

Artificial Neural Networks (ANN): These are 

employed for predicting state-of-charge (SOC) and 

fault conditions by learning nonlinear relationships in 

battery performance data [2]. 

Support Vector Machines (SVM): Effective in 

classifying fault types and detecting anomalies, 

particularly in cases with limited datasets [3]. 

Random Forest (RF): Used for feature selection and 

fault diagnosis, providing interpretable results through 

decision-tree ensembles [4]. 

Logistic Regression (LR): Applied to simpler fault 

detection tasks, particularly in combination with 

feature engineering techniques [5]. 

 

B. Deep Learning Approaches: 

Deep learning methods extend ML capabilities by 

automating feature extraction and handling large-scale 

time-series data. These methods include: 
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Convolutional Neural Networks (CNN): Effective for 

spatial pattern recognition, CNNs have been utilized 

for diagnosing thermal faults based on thermal images 

and sensor data [6]. 

Long Short-Term Memory Networks (LSTM): LSTM 

models excel at time-series predictions, such as 

remaining useful life (RUL) estimation and state-of-

health (SOH) forecasting [7]. 

Autoencoders: These are used for anomaly detection 

by reconstructing normal operational patterns and 

identifying deviations [8]. 

 

C. Hybrid Models: 

Hybrid approaches integrate the strengths of physics-

based and data-driven methods. Physics-based models 

provide a theoretical foundation by simulating battery 

electrochemical behavior, while data-driven models 

improve prediction accuracy through empirical 

insights. For example: 

Lin et al. [9] developed a hybrid framework combining 

battery degradation models with ML-based 

uncertainty calibration, achieving high prediction 

accuracy. 

Schaeffer et al. [10] demonstrated the benefits of 

hybrid modeling for cycle life prediction by 

incorporating first-principles physics with ML 

algorithms. 

 

D. Probabilistic and Adaptive Frameworks: 

Probabilistic models address real-world uncertainties 

by providing confidence intervals and adaptive 

thresholds for fault detection. These models 

dynamically adjust to operational conditions, offering 

robust fault diagnosis and early warning capabilities 

[11]. 

 

E. Comparison of Techniques for Fault Detection in 

Li-Ion Batteries: 

ANN and CNN excel in predictive accuracy but are 

resource-intensive and require extensive datasets. 

SVM and RF are suitable for simpler datasets and 

applications but face limitations in scalability. 

Hybrid models offer the best balance of accuracy and 

interpretability, making them ideal for high-stakes 

applications. 

Probabilistic models are crucial for real-world 

applications, providing safety assurances under 

uncertain conditions. 

LSTM and Autoencoders are effective for sequential 

and unsupervised tasks, respectively, but demand 

significant computational resources. 

 

 
Figure 2: A complete family of ML approaches, used in BMS of LIB [1] 
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Table 1: Comparison of Techniques for Fault Detection in Lithium-Ion Batteries 

Technique Methodology Advantages Challenges 

Artificial Neural 

Networks (ANN) 

Learning nonlinear relationships 

in battery performance data 

High accuracy for SOC 

and SOH predictions 

Requires large datasets; 

computationally 

intensive 

Support Vector 

Machines (SVM) 

Classifies fault types and detects 

anomalies in small datasets 

Effective for small 

datasets; robust 

Limited scalability for 

complex systems 

Random Forest 

(RF) 

Ensemble decision-tree method 

for feature selection and 

diagnosis 

Interpretable; good for 

feature importance 

analysis 

Prone to overfitting with 

high dimensionality 

Logistic Regression 

(LR) 

Simple statistical approach for 

binary classification 

Low computational cost; 

easy to implement 

Limited to linear 

relationships 

Convolutional 

Neural Networks 

(CNN) 

Extracting spatial features from 

sensor or image data 

Excellent for thermal fault 

detection 

High computational 

demand; requires labeled 

data 

Long Short-Term 

Memory (LSTM) 

Sequential learning for time-

series data 

Strong for RUL and SOH 

predictions 

Computationally 

expensive; long training 

times 

Autoencoder 

Reconstructing normal 

operational patterns for anomaly 

detection 

Unsupervised learning; 

anomaly detection 

Sensitive to noise in 

input data 

Hybrid Models 

Combines physics-based and 

ML models for enhanced 

accuracy 

High interpretability; 

bridges theoretical and 

empirical gaps 

Complex 

implementation; requires 

domain expertise 

Probabilistic 

Models 

Uses statistical distributions and 

adaptive thresholds for real-

world uncertainty handling 

Robust to uncertainties; 

provides confidence 

intervals 

Requires complex 

statistical modeling 

 

III. RESULTS AND DISCUSSIONS 

 

The reviewed studies underscore the transformative 

potential of AI and ML in battery fault detection and 

health monitoring. Key findings include: 

• Predictive Accuracy: AI-driven methods 

consistently outperform traditional techniques in 

predicting SOC, SOH, and RUL. 

• Fault Detection: ML and deep learning models 

excel at identifying early-stage faults, reducing the 

risk of catastrophic failures. 

• Adaptability: Hybrid and probabilistic frameworks 

enhance system robustness under dynamic and 

uncertain operating conditions. 

• Safety Enhancements: Early fault warnings 

significantly mitigate safety risks, especially in 

high-stakes applications like electric vehicles. 

• Despite these advancements, challenges such as 

computational complexity, data scarcity, and 

integration hurdles remain prominent. 

 

IV. RESEARCH GAPS AND FUTURE 

DIRECTIONS 

 

• While substantial progress has been made, several 

research gaps warrant attention: 

• Data Availability and Quality: The lack of 

standardized, high-quality datasets hampers the 

development of robust AI/ML models. 

Collaborative efforts to create open-access 

datasets are essential. 

• Model Interpretability: Many AI/ML models 

operate as black boxes, limiting their adoption in 

safety-critical applications. Developing 

interpretable models will be key to gaining 

stakeholder trust. 
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• Integration with Battery Management Systems 

(BMS): Seamless integration of AI-driven 

solutions into existing BMS infrastructure 

requires addressing computational and real-time 

processing challenges. 

• Real-World Validation: Most proposed methods 

are validated under controlled laboratory 

conditions. Testing and adapting these models to 

real-world scenarios is critical for their practical 

deployment. 

• Energy Efficiency: AI/ML models often require 

significant computational resources, which can be 

a constraint in energy-constrained systems. 

Lightweight algorithms optimized for edge 

computing are needed. 

 

V. CONCLUSION 

 

AI, ML, and hybrid techniques have revolutionized the 

field of lithium-ion battery fault detection, enabling 

more accurate, reliable, and adaptive health 

monitoring systems. These advancements hold 

immense promise for enhancing battery safety, 

reliability, and efficiency across diverse applications. 

However, addressing challenges such as data 

availability, model interpretability, and real-world 

applicability will be crucial for the widespread 

adoption of these technologies. Future research should 

focus on interdisciplinary collaboration to bridge the 

gaps between AI and battery science, driving 

innovation in sustainable energy systems. 
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