
© January 2025 | IJIRT | Volume 11 Issue 8 | ISSN: 2349-6002

IJIRT 172005 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1610

Use of Statistical Techniques for Optimizing Hashing

Pankaj Kumar Gupta1, P. K. Tyagi2, R. K. Agrawal3

1Assistant Professor & Head, BCA Department, DPBS College, Anupshahr Distt. BulandShahr (UP)

India.
2Professor & Head, Department of Statistics, DPBS College, Anupshahr Distt. BulandShahr (UP)

India.
3Professor & Head, Department of Mathematics, DPBS College, Anupshahr Distt. BulandShahr (UP)

India.

Abstract: A process of mapping large amount of data

item to smaller table with the help of some special

function is known as Hashing and this special function

is termed as hash function. In this research paper we

are going to discuss how statistical techniques can be

used for optimization of hashing. Hashing can also be

known as Hashing Algorithm or Message Digest

Function. Hashing can also be used to convert a range

of key values into a range of indexes of an array.

Hashing is used with a database to retrieve items more

quickly. It can be used in the encryption and decryption

of Digital Signatures.

Keywords: Hashing, complexity, load factor, collision,

Reinforcement, Cryptographic, Entropy, Markov

Models.

INTRODUCTION

Hashing:

A process of mapping large amount of data item to

smaller table with the help of some special function

is known as Hashing and this special function is

termed as hash function. In this research paper we are

going to discuss how statistical techniques can be

used for optimization of hashing. Hashing can also be

known as Hashing Algorithm or Message Digest

Function. Hashing can also be used to convert a range

of key values into a range of indexes of an array.

Hashing is used with a database to retrieve items

more quickly. It can be used in the encryption and

decryption of Digital Signatures. Hash technique is

used to facilitate the next level searching method

when it is compared with the Sequential(i.e. Linear)

or Binary search. [1]Hashing allows to update and

retrieve any data entry in a constant time O(1).

Constant time O(1) means the operation does not

depend on the size of the data. Hashing is used with

a database to enable items to be retrieved more

quickly. It is used in the encryption and decryption of

digital signatures.

Hash Function:

[2]A fixed process that converts a key to a hash key is

known as a Hash Function. This function takes a key

and maps it to a value of a certain length, which is

called a Hash value or Hash. It transfers the digital

signature and then both hash value and signature are

sent to the receiver. The receiver uses the same hash

function to generate the hash value and then

compares it to that received with the message. If the

hash values are the same, the message is transmitted

without errors.

Hash table:

Hash table or hash map is a data structure that can

provide constant time complexity O(1) lookup on an

average and speed up information searching by a

particular aspect of that information, regardless of the

number of elements in the table. It is used to store

key-value pairs. It can also be used to process hash

value, generated by applying some function on the

key, which determines where the record will be

stored in the data structure. [3]Hash table is a

collection of items stored to make it easy to find them

later. A hash function enables to find an index into

an array of buckets or slots from which the desired

value can be found. It is an array of list where each

list is known as bucket. It contains value based on the

key. [1]Hash table is used to implement the map

interface and extends Dictionary class. Hash table is

synchronized and contains only unique elements.

Assigning Elements:

The figure shown below is the hash table with the size

© January 2025 | IJIRT | Volume 11 Issue 8 | ISSN: 2349-6002

IJIRT 172005 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1611

of n = 10. We term Slot for every position in the hash

table. In the same hash table, there are n slots in the

table (Slot 0, slot 1, slot 2 and so on). This hash table

has 0 elements, this is why every slot is empty.

The hash function takes any item in the collection and

returns an integer in the range of slot names between

0 and n-1.

We assume we have integer items {86, 30, 48, 61, 84,

43}. A method for the determination of hash key is

the division method of hashing and the formula for

same is:

Hash_Key(hk) = Key_Value(kv) % Number of Slots

in the Table(n)

In the division method or reminder method we take

an item and divide it by the table size(n) and return

the remainder as its hash value.

Data Item Value % No. of Slots Hash Value

86 86 % 10 = 6 6

30 30 % 10 = 0 0

48 48 % 10 = 8 8

61 61 % 10 = 1 1

84 84 % 10 = 4 4

43 43 % 10 = 3 3

When we calculate the hash values, we can assign

each item into the hash table at the designated

position as shown in the above figure. In the hash

table, 6 of the 10 slots are occupied, so load factor is

calculated by following formula:

λ = No. of items / table size

Load factor for above figure is: λ = 6/10.

Problems in Hashing:

The primary problem with hashing is collisions,

which occur when multiple keys map to the same

hash value, causing issues with data retrieval and

potentially impacting performance, especially when

dealing with large datasets; other concerns include

designing a good hash function, handling dynamic

resizing of the hash table, and potential security risks

depending on the application.

Key points about hashing problems:

 Collision handling:

The most significant challenge with hashing is how

to effectively resolve collisions when two different

keys map to the same hash value in the table.

 Poor hash function design:

Using a hash function that doesn't distribute keys

evenly across the hash table can lead to a high

probability of collisions, significantly impacting

performance.

 Dynamic resizing:

As the number of elements in a hash table grows,

the table may need to be resized to maintain good

performance, which can be computationally

expensive.

 Key ordering:

Hashing does not inherently preserve the order of

keys, which can be a problem in certain

applications.

 Security concerns:

In cryptographic applications, a poorly designed

hash function can be vulnerable to attacks like

collisions, allowing malicious actors to manipulate

data.

Recovery from problems in hashing:

 Choose a good hash function:

Select a hash function that is designed to distribute

keys evenly across the hash table.

 Collision resolution techniques:

o Chaining: Store colliding elements in a linked

list at the corresponding hash table index.

o Open addressing: Probe for an empty slot in the

table when a collision occurs.

 Load factor management:

Monitor the load factor (ratio of elements to table

size) and resize the table as needed to avoid

excessive collisions.

Use of statistical techniques for optimizing hashing:

The use of statistical techniques for optimizing

hashing involves employing data analysis and

© January 2025 | IJIRT | Volume 11 Issue 8 | ISSN: 2349-6002

IJIRT 172005 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1612

probabilistic methods to improve the performance,

efficiency, and reliability of hashing algorithms.

Hashing is critical in computer science for

applications like data storage, retrieval, and

cryptography. Below are some ways statistical

techniques are used to optimize hashing:

1. Analyzing Hash Distribution

 Objective: Ensure uniform distribution of hash

values to minimize collisions.

 Statistical Techniques Used:

o Chi-Square Tests: Evaluate the uniformity

of hash value distributions.

o Entropy Analysis: Measure the randomness

in hash outputs.

o Kolmogorov-Smirnov Test: Compare the

hash value distribution to an ideal uniform

distribution.

2. Collision Minimization

 Objective: Reduce the probability of multiple

keys mapping to the same hash value.

 Statistical Techniques Used:

o Probability Analysis: Use the birthday

paradox to estimate and reduce collision

probabilities.

o Monte Carlo Simulations: Simulate hashing

operations to assess collision rates under

different inputs.

3. Hash Function Selection

 Objective: Choose or design hash functions that

perform well for specific datasets.

 Statistical Techniques Used:

o Empirical Testing: Measure hash

performance across large datasets.

o Regression Analysis: Predict performance

based on dataset characteristics.

o Bayesian Optimization: Automate the tuning

of hash function parameters for specific

workloads.

4. Dynamic Hash Table Sizing

 Objective: Adjust hash table size dynamically to

maintain efficiency as data grows.

 Statistical Techniques Used:

o Load Factor Analysis: Use statistical

thresholds to trigger resizing (e.g., when the

table exceeds a specific load factor).

o Markov Models: Predict future usage

patterns for optimal table resizing.

5. Optimization for Locality-Sensitive Hashing

(LSH)

 Objective: Optimize LSH for applications like

nearest-neighbor searches and clustering.

 Statistical Techniques Used:

o Clustering Algorithms (e.g., K-Means):

Group similar items to fine-tune hash

function parameters.

o Dimensionality Reduction: Use techniques

like PCA or t-SNE to preprocess data for

better LSH performance.

6. Performance Evaluation

 Objective: Compare hash function performance

using quantitative metrics.

 Statistical Techniques Used:

o Hypothesis Testing: Determine if one hash

function performs significantly better than

others.

o Confidence Intervals: Quantify the

reliability of performance metrics.

o Bootstrapping: Assess hash performance

robustness over resampled datasets.

7. Adaptive Hashing Techniques

 Objective: Adjust hashing dynamically based on

observed patterns or feedback.

 Statistical Techniques Used:

o Reinforcement Learning: Adapt the hashing

strategy in response to access patterns.

o Anomaly Detection: Identify non-random

patterns or skewed distributions in real-

time.

8. Application-Specific Optimization

 Objective: Tailor hashing for domain-specific

use cases, such as cryptography or databases.

 Statistical Techniques Used:

o Cryptographic Strength Analysis: Use

randomness tests to ensure security in

cryptographic hash functions.

o Data Profiling: Analyze dataset

characteristics to design optimal hashing

schemes for databases.

Statistical techniques offer powerful tools for

analyzing, evaluating, and optimizing hashing

algorithms. By leveraging these methods, we can

design more efficient, collision-resistant, and

application-specific hash functions tailored to diverse

computational needs.

REFERENCES

© January 2025 | IJIRT | Volume 11 Issue 8 | ISSN: 2349-6002

IJIRT 172005 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1613

[1] https://www.tutorialride.com

[2] https://medium.com

[3] https://ratanshreshtha.github.io/GrokkingCS/d

ata-structures

[4] www.biitonline.co.in (Author Pankaj Kumar

Gupta, Head, BCA Department, DPBS College,

Anupshahr)

[5] Computer Science with C++ By

SumitaAroraby SumitaArora.

[6] Let Us C by Yashavant Kanetkar 4.

Introduction to Algorithms by Thomas H.

Cormen, Charles E. Leiserson, Ronald L.

Rivest, and Clifford Stein.

[7] Sartajsahni, “Data structures, algorithms and

applications in C++”, University press.

[8] Seymour Lipschutz. “Theory and problems of

data structures”, Tata Mcgraw hill international

editions”.

[9] The C Programming Language by Brian W.

Kernighan / Dennis Ritchie

[10] www.en.wikipedia.org/wiki/Array.

[11] https://www.codecademy.com

[12] www.geeksforgeeks.org

[13] www.w3schools.com

[14] Introduction to Algorithms, 3rd Edition (The

MIT Press).

[15] Data Structures (Revised First Edition) |

Schaum's Outline Series by Seymour Lipschutz

[16] Algorithms and Data Structures Foundations

and Probabilistic Methods for Design and

Analysis By Helmut Knebl

[17] Algorithms in a Nutshell By George T.

Heineman, Gary Pollice, Stanley Selkow .

[18] Data Structures and Algorithm Analysis in

C++, Third Edition By Clifford A. Shaffer.

[19] Arrays: A Theoretical Approach of Memory

Allocation, Pankaj Kumar Gupta & Dr. P. K.

Tyagi, International Journal of Essential

Sciences, Vol-14 No. 1 & 2 2020.

[20] Conceptual Discussion on Operations of Array:

Traveral, Insertion & Deletion by Pankaj

Kumar Gupta & Dr. P. K. Tyagi, International

Journal of Research in all subjects in Multi

Languages, Vol-10 Issue 3, March: 2022.

[21] https://www.programiz.com/dsa/stack

[22] https://www.geeksforgeeks.org/stack-data-

structure/

https://www.tutorialride.com/
https://medium.com/
https://ratanshreshtha.github.io/GrokkingCS/data-structures
https://ratanshreshtha.github.io/GrokkingCS/data-structures

