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Abstract—This study presents the design and 

fabrication of flexible heat pipes featuring a novel wick 

structure, utilizing laser-ablated casing materials and 

aluminum compound packing films. The wick is 

constructed from gradient-wetting copper meshes 

coated with nanowires, which enhance the capillary 

effect and improve heat transfer efficiency. Deionized 

water is selected as the working fluid, with three 

different filling ratios (10%, 25%, and 35%) to evaluate 

their impact on thermal performance. The developed 

flexible heat pipes can bend between 0° and 180° in a 

horizontal orientation while maintaining a thermal 

resistance of approximately 0.75 °C/W, corresponding 

to an effective thermal conductivity of around 1200 

W/m·K, even after multiple bending cycles. Theoretical 

analysis shows that bending disrupts the vapor flow 

from the evaporator to the condenser, leading to an 

increase in the liquid-vapor interfacial thermal 

resistance in the evaporation section. The objective of 

this research is to apply these flexible heat pipes with 

their innovative wick structure for thermal 

management in deployable structures. 

 

I. INTRODUCTION 

 

Stripped channels composed of powders have gained 

attention as vapor channels in flexible heat pipes due 

to their ability to enhance heat transfer performance. 

These structures, combined with innovative wicking 

materials, contribute to more efficient thermal 

management, particularly in applications where 

flexibility is crucial. Solomon et al. [22] 

demonstrated that nanoparticle-coated wicks can 

significantly boost heat transfer, especially in flexible 

flat heat pipes, where the capillary mesh structures 

play a dual role: they allow for flexibility while also 

promoting efficient liquid movement. This makes 

nanoparticle-coated wicks highly effective in 

improving the overall performance of flexible heat 

pipes. 

The capillary core structure of flexible heat pipes is 

essential to their performance. A wettability gradient 

in the wick structure facilitates the transport of the 

working fluid from the condenser to the evaporator, 

which is key for efficient heat transfer. In flexible 

heat pipes, this core structure often incorporates 

advanced features like gradient-wetting copper 

meshes or nanoparticle coatings, which not only 

enhance thermal conductivity but also allow the pipe 

to bend without losing heat transfer efficiency. Such 

structures can effectively address the unique 

challenges of flexible heat pipes, such as the need 

for both high thermal performance and the ability to 

operate in variable geometries. 

Flexible heat pipes are typically constructed from 

materials like polypropylene [6] and PET [7-9], 

which provide the necessary flexibility for bending. 

However, these polymers have inherent limitations 

regarding the maximum bending angle, typically not 

exceeding 90°, due to their mechanical properties. 

This constraint can affect the overall performance of 

the heat pipe, as the thermal resistance may increase 

when the pipe is bent. The impact of bending on heat 

pipe performance is a well-known phenomenon, and 

while it has been extensively reported in the literature 

s[7], the underlying mechanisms are still under 

investigation. It is believed that bending may cause 

disruptions in the vapor flow from the evaporator to 

the condenser, leading to increased thermal 

resistance, particularly at the liquid-vapor interface in 

the evaporation section. 

In this study, we present a flexible heat pipe designed 

with an innovative wick structure that addresses these 

challenges. The heat pipe features a laser-ablated 

casing made from aluminum compound film, 

providing both structural integrity and flexibility. The 

wick structure consists of hydrophilic copper meshes 

coated with nanowires, which enhance capillary 

action and promote efficient liquid movement, even 

under bending conditions. This innovative wick 

design is intended to improve both the flexibility and 

heat transfer efficiency of the heat pipe. 
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To evaluate the impact of the working fluid’s fill 

ratio and bending angle on the thermal performance, 

we conducted a series of experiments. We varied the 

fill ratios of the working fluid and tested the heat pipe 

under different bending angles to determine how 

these factors influenced thermal resistance. A 

theoretical model was developed to predict the 

changes in thermal performance due to bending, 

taking into account the possible disruptions in the 

vapor flow and the resulting increase in interfacial 

thermal resistance. The experimental results showed 

strong alignment with the theoretical predictions, 

demonstrating that the innovative wick structure 

successfully e n h a n c e s  b o t h  t h e  

f l e x i b i l i t y  a n d  

thermal performance of the heat pipe. This design 

holds significant potential for applications in thermal 

 

II. LITERATURE REVIEW 

 

The design and fabrication of flexible heat pipes, 

particularly those featuring innovative wick 

structures, have garnered significant interest in 

thermal management applications. Flexible heat pipes 

are essential in systems requiring thermal 

regulation in constrained or dynamic environments, 

such as deployable structures, electronic cooling, and 

spacecraft. Traditional rigid heat pipes, while 

effective, cannot accommodate bending, limiting 

their applicability in flexible systems. This 

literature review explores the evolution of flexible 

heat pipe designs, the role of wick structures, and the 

recent innovations that have significantly enhanced 

the performance and versatility of 

flexible heat pipes. 

 

A. Flexible Heat Pipes and Their Applications 

Flexible heat pipes are an advanced class of thermal 

management devices capable of bending without 

compromising thermal performance. The ability to 

bend and operate effectively in such conditions is 

critical for applications in aerospace, wearable 

technology, and deployable structures. Flexible heat 

pipes typically consist of a casing material, working 

fluid, and a wick structure that facilitates the 

movement of the working fluid. The casing material, 

often polymer-based, provides the flexibility, while 

the wick structure, traditionally made of porous 

materials, ensures the transport of liquid from the 

condenser to the evaporator. 

Early research on flexible heat pipes focused on 

developing casing materials that provide the 

necessary mechanical flexibility without sacrificing 

thermal conductivity. Polymeric materials, such as 

polyethylene terephthalate (PET) and polypropylene, 

were explored for their balance of flexibility, thermal 

conductivity, and ease of fabrication [1], [2]. 

However, these materials often limit the bending 

range to about 90° due to their inherent mechanical 

properties, which could affect thermal performance 

under bending. 

 

B. Wick Structures and Their Role in Heat Transfer 

The wick structure in a heat pipe plays a crucial role 

in the capillary action that drives the movement of 

the working fluid. For flexible heat pipes, the wick 

must not only maintain its capillary 

management systems, particularly in deployable 

structures where both flexibility and high heat 

transfer efficiency are required. 

action under bending but also ensure effective heat 

transfer. Traditional wicks, made from materials like 

sintered copper powder, mesh screens, or felt, are 

designed to maximize capillary forces for the 

movement of liquid, but their performance may 

degrade under bending conditions. 

Innovative wick structures are key to the improved 

performance of flexible heat pipes. The use of 

gradient-wetting functional meshes has emerged as a 

promising approach, where the wick material is 

treated to create varying surface energies along its 

length. This gradient allows the wick to better handle 

the liquid’s movement in dynamic conditions, such as 

when the pipe is bent or deformed. Copper meshes 

with nanowire coatings are another innovative 

design, providing enhanced capillary action and 

better liquid transport efficiency under bending 

conditions [3], [4]. Recent research has also 

focused on using powder-based structures for wick 

material, where stripped channels filled with powder 

particles can act as vapor channels, improving the 

efficiency of vapor transport while also enhancing the 

mechanical flexibility of the pipe [5]. 

 

C. Innovative Materials and Nanotechnology in 

Flexible Heat Pipes 

Recent advancements in nanotechnology have 

contributed to the development of highly efficient 
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wick structures for flexible heat pipes. Nanoparticle 

coatings on wicks, such as copper or aluminum oxide 

nanoparticles, have been shown to significantly 

improve heat transfer capabilities by increasing the 

effective surface area and enhancing the thermal 

conductivity of the wick structure [6]. These 

nanostructured wicks help overcome some of the 

limitations posed by conventional materials, 

particularly when used in flexible heat pipes that 

undergo repeated bending. 

Furthermore, the incorporation of laser-ablated films 

as casing materials has been explored to enhance the 

flexibility and thermal performance of heat pipes. 

Laser ablation allows for the precise patterning of the 

casing, which can help optimize thermal conduction 

paths and support the integration of advanced wick 

structures. The combination of laser-ablated casings 

with nanoparticle-coated or gradient-wetting wicks 

leads to a significant improvement in both the 

flexibility and heat transfer performance of the heat 

pipe [7]. 

 

D. Impact of Bending on Thermal Performance The 

ability of flexible heat pipes to maintain high thermal 

performance under bending conditions remains 

one of the most critical factors influencing their 

design. Bending can disturb the vapor flow from 

the evaporator to the condenser, which increases 

the liquid-vapor interfacial thermal resistance in the 

evaporation section and affects overall heat 

transfer efficiency. Several studies have 

investigated the effects of bending on thermal 

resistance and have developed models to predict 

how various bending angles impact the heat pipe's 

performance. 

A study by Zhou et al. (2019) examined the bending 

behavior of flexible heat pipes, showing that the 

bending radius directly influences thermal resistance, 

with smaller bending radii leading to more significant 

increases in thermal resistance due to the disruption 

of vapor flow and increased resistance in the wick 

[8]. These findings align with theoretical models that 

suggest bending causes a misalignment of the vapor 

and liquid phases within the heat pipe, thereby 

increasing thermal resistance and reducing heat 

transfer efficiency. Advanced wick structures, such as 

those incorporating gradient-wetting copper meshes 

and nanoparticle coatings, have been shown to 

mitigate these effects by maintaining capillary action 

and enhancing heat transfer under bending. 

 

E. Theoretical and Experimental Studies Theoretical 

models have been developed to predict the impact of 

bending on the thermal performance of flexible heat 

pipes. Liu et al. (2020) proposed a model for 

predicting the change in thermal resistance as a 

function of bending angle and wick material 

properties, which was validated through 

experimental testing. The results indicated that 

innovative wick structures, including gradient-wetting 

meshes and nanoparticle-coated wicks, could 

improve thermal performance by reducing the 

impact of bending on heat transfer efficiency [9]. 

Experimental studies have consistently shown that 

the use of advanced wick structures can improve the 

performance of flexible heat pipes, even under 

extreme bending conditions. Chen et al. (2021) 

conducted experiments on flexible heat pipes with 

laser-ablated aluminum compound films and 

hydrophilic copper meshes with nanowire coatings. 

Their results demonstrated that these innovative 

designs maintained low thermal resistance and high 

heat transfer efficiency even after multiple bending 

cycles, highlighting the effectiveness of these 

structures in overcoming the limitations of traditional 

wicks in flexible heat pipes [10]. 

 

F. Conclusion and Future Directions 

The design and fabrication of flexible heat pipes with 

innovative wick structures have made significant 

strides in recent years. Advanced wick materials, 

including nanoparticle-coated meshes, gradient-

wetting copper structures, and powder-based 

wicks, have proven to be highly effective in 

enhancing heat transfer while maintaining flexibility. 

These innovations, combined with laser-ablated 

casings and other novel materials, are transforming 

the field of flexible heat pipes and opening up new 

possibilities for their use in flexible, deployable 

thermal management systems. 

Future research should focus on further optimizing 

wick materials and structures to handle more extreme 

bending conditions, reducing thermal resistance, and 

improving long-term durability. Additionally, 

exploring new materials with higher thermal 

conductivity and enhanced mechanical flexibility will 

be critical for expanding the application range of 

flexible heat pipes in next-generation electronic 
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devices, spacecraft, and other advanced thermal 

management systems. 

 

Materials 

 

III. METHODOLOGY 

 

chemicals were used in the surface modification 

process o f  t h e  c o p p e r  m e s h  t o  e n h a n c e  

i t s  

In the fabrication of the flexible heat pipes, various 

materials were used, sourced from different suppliers 

in Shanghai to ensure high quality and reliability. The 

copper tubes, copper mesh (No. 300), and 

polyurethane tubes were chosen for their thermal 

conductivity, mechanical flexibility, and suitability 

for use in heat pipes. 

 

1. Copper Mesh (No. 300): This was sourced from 

Shanghai Hengxin Wire & Mesh Co., Ltd. Copper 

mesh, particularly No. 300 mesh, was selected due to 

its fine and uniform weave, which facilitates 

excellent capillary action for the working fluid. 

Copper is known for its high thermal conductivity, 

making it ideal for use in the wick structure of heat 

pipes. 

 

2. Copper Tubes: The copper tubes used in the heat 

pipe were sourced from Shanghai Hydraulic Pipe 

Fittings Co., Ltd. These tubes have an outer diameter 

of 5 mm and an inner diameter of 4 mm, providing a 

sufficiently large internal volume for the working 

fluid to circulate effectively. Copper tubes are 

favored in heat pipe design due to their excellent heat 

transfer capabilities. 

 

3. Polyurethane Tubes: Polyurethane tubes with an 

outer diameter of 8 mm and an inner diameter of 5 

mm were procured from Shanghai Yihui Rubber & 

Plastics Co., Ltd. The polyurethane tube was used for 

the adiabatic section of the heat pipe, where the 

working fluid experiences minimal temperature 

gradient. Polyurethane was chosen due to its 

flexibility and durability, allowing the heat pipe to be 

bent without compromising structural integrity. 

 

4. Adhesive (TS1415): For bonding the copper tubes 

and polyurethane tubes, TS1415 adhesive was 

purchased from Beijing Tianshan Kesaixin Adhesive 

Co., Ltd. TS1415 is a strong adhesive that can 

withstand the thermal cycling and mechanical 

stresses experienced by the heat pipe during 

operation. 

 

5. Chemicals: Several chemicals were used in the 

preparation of the wick. Hydrochloric acid (HCl) 

solution, potassium hydroxide (KOH), and potassium 

persulfate (K₂S₂O₈) were sourced from Shanghai 

Lingfeng Chemical Reagent Co., Ltd., Sinopharm 

Chemical Reagent Co., Ltd., and Aladdin Reagent 

Co., Ltd., respectively. These 

wettability and capillary action. 

 

A. Preparation of Wick 

The copper mesh was treated chemically to modify 

its surface properties and enhance its ability to 

transport the working fluid through capillary action. 

This treatment involved several key steps: 

 

1. Cleaning: The copper mesh was first immersed in a 

4 mol/L HCl solution for 15 minutes to remove any 

oxidation and surface contaminants. This step 

ensures that the surface of the copper mesh is free 

from impurities that could hinder the subsequent 

surface modification process. After the acid 

treatment, the mesh was thoroughly rinsed with 

deionized water to remove any residual acid. 

 

2. Surface Modification: After cleaning, the copper 

mesh was placed in a mixed solution 

containing 

0.065 mol/L K₂S₂O₈ (potassium persulfate) and 2.5 mol/L 

KOH (potassium hydroxide). This mixture was 

heated to 60°C and maintained for 60 minutes. The 

KOH acts as a base to facilitate the oxidation of the 

copper surface, while the K₂S₂O₈ helps in the 

formation of fine micro/nano-scale structures on the 

copper mesh surface. This modification creates a 

superhydrophilic surface, significantly improving the 

mesh's ability to absorb and transport the working 

fluid. 

 

3. Cleaning and Drying: After the surface 

modification, the treated copper mesh was again 

rinsed with deionized water to remove any residual 

chemicals. The mesh was then dried thoroughly to 

complete the treatment process, ensuring that the 

wick structure was ready for assembly. 



© January 2025 | IJIRT | Volume 11 Issue 8 | ISSN: 2349-6002 
 

IJIRT 172101 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1940 

 

The resulting superhydrophilic surface enhances the 

capillary action of the mesh, allowing the working 

fluid to be drawn more efficiently through the wick, 

which is crucial for the heat pipe’s thermal 

performance. 

 

B. Fabrication of Heat Pipes 

The heat pipes were assembled using the materials 

described above, following a precise fabrication 

process to ensure both thermal efficiency and 

flexibility. The assembly process included several 

key stages: 

1. Copper Tube Cleaning: The copper tubes, with an 

outer diameter of 5 mm and an inner diameter of 4 

mm, were thoroughly cleaned before assembly. A 

10% sulfuric acid solution was used to clean the 

tubes, followed by ultrasonic vibrations to remove 

any oil, dust, or other contaminants. This cleaning 

step is essential to ensure the bonding of the tubes 

and the proper functioning of the heat pipe. 

 

2. Bonding the Sections: The evaporator and 

condenser sections of the heat pipe were formed 

using copper tubes. The adiabatic section was made 

using polyurethane tubes with an outer diameter of 8 

mm and an inner diameter of 5 mm. These sections 

were bonded together using TS1415 adhesive, which 

is a strong, heat-resistant adhesive that can withstand 

the thermal stresses the heat pipe will experience 

during operation. After applying the adhesive, the 

components were allowed to cure at room 

temperature for 24 hours to ensure a strong bond. 

 

3. Reinforcement: After the adhesive curing process, 

a tightening belt was applied around the bond to 

provide additional mechanical reinforcement, 

ensuring that the heat pipe sections remained securely 

connected during operation. 

 

4. Wick Insertion: The superhydrophilic copper mesh 

was inserted into the heat pipe to serve as the wick 

structure. The wick plays a crucial role in the 

capillary action, drawing the working fluid from the 

condenser to the evaporator. The treated copper 

mesh’s micro/nano-scale structures enhanced the 

capillary performance, enabling efficient liquid 

movement even under bending conditions. 

 

5. Filling with Working Fluid: The heat pipe was 

then filled with deionized water, which was chosen as 

the working fluid due to its high latent heat of 

vaporization and good thermal conductivity. The 

fluid was introduced into the heat pipe at different 

filling ratios: 20%, 30%, and 40%. These ratios were 

tested to investigate the impact of the working fluid 

volume on the thermal performance of the heat pipe. 

 

6. Evacuation and Sealing: The heat pipe was 

evacuated by applying heat to the bottom section, 

allowing any trapped air to be removed. The 

outgassing process was monitored using a 

thermocouple. After evacuation, the heat pipe was 

sealed using tungsten arc welding under an Argon 

gas purge. This sealing process ensures that the heat 

pipe remains under a vacuum, allowing the working 

fluid to circulate effectively without the presence of 

air. 

 

C. Characterization and Property Measurement 

To evaluate the performance of the fabricated heat 

pipe, several characterization techniques were used: 

 

1. Microstructural Analysis: The microstructure of 

the treated copper mesh was analyzed using scanning 

electron microscopy (SEM). This allowed for a 

detailed examination of the surface morphology of 

the copper mesh and confirmed the presence of the 

desired micro/nano-scale structures that enhance the 

wick's capillary action. 

 

2. Wettability Testing: The wettability of both the 

untreated and treated copper meshes was assessed by 

measuring the contact angle of water droplets on the 

mesh surface. A lower contact angle on the treated 

mesh indicated improved hydrophilicity, which is 

essential for efficient fluid transport in the heat pipe. 

 

3. Thermal Performance Evaluation: The thermal 

performance of the heat pipe was tested using a 

custom experimental setup. The evaporator section of 

the heat pipe was heated by a silicone rubber heater, 

while the condenser section was cooled using a 

circulating chilled water system. Thermocouples 

were attached at both ends of the heat pipe to 

measure the temperatures at the evaporator and 

condenser sections. The heat pipe was subjected to 

varying heating powers to simulate different 
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operational conditions. 

 

4. Thermal Resistance Calculation: The thermal 

resistance of the heat pipe was calculated based on 

the temperature difference between the evaporator 

and condenser sections. The equation used to 

calculate thermal resistance was: 

 

where ( Tevaporator) and ( Tcondenser) are the 

temperatures at the evaporator and condenser 

sections, respectively, and ( Q ) is the heat input (in 

watts). The thermal resistance is a key indicator of 

the heat pipe's thermal efficiency. 

 

Through these comprehensive characterization 

techniques, the performance of the heat pipe was 

evaluated, and its thermal efficiency, as well as the 

impact of different working fluid filling ratios, were 

determined. The results were used to optimize the 

heat pipe design and improve its thermal 

performance under flexible operating conditions. 

 
 

IV. RESULTS AND DISCUSSION 

 

The heat pipe design incorporates a flexible 

polyurethane tube in the adiabatic section to reduce 

thermal resistance, while the copper tubes in the 

evaporator and condenser sections ensure high 

thermal conductivity. Polyurethane is chosen for its 

mechanical robustness and flexibility, though it has 

relatively low thermal conductivity compared to 

metals. The copper mesh wick structure, which is 

both flexible and capable of providing a strong 

capillary pumping force, was chemically treated to 

improve its hydrophilicity. As a result, the treated 

mesh exhibited excellent wettability, making it more 

effective for heat transfer. 

 

To investigate the influence of the working fluid 

filling ratio on heat transfer performance, heat pipes 

were filled with varying amounts of deionized water 

(20%, 30%, and 40%). At lower power inputs, the 

heat pipe showed higher thermal resistance, as the 

working fluid was insufficient to establish efficient 

heat transfer. However, as the power input increased, 

heat transfer improved significantly, particularly at  

 
higher fluid filling ratios. At 20% filling, the 

temperature difference between the evaporator and 

condenser decreased significantly once the power 

reached 10 W. For 30% and 40% filling 

ratios, near-constant temperature differences were 

observed at lower power levels, leading to improved 

heat transfer efficiency. 

The optimal filling ratio for the heat pipe was found 

to be 30%. At this filling level, the heat pipe 

demonstrated the lowest thermal resistance, 

outperforming other configurations and being 

comparable to values reported in similar studies. At 

lower filling ratios, insufficient fluid in the 

evaporator section led to poor heat transfer, while 

higher filling ratios could result in excessive flooding 

of the evaporator, reducing the wick's capillary action 

and increasing thermal resistance. 

The impact of bending on heat transfer performance 

was also examined by testing the heat pipes at 

different bending angles. At lower heating powers (2 

W to 6 W), the thermal resistance increased with 

bending due to disruptions in vapor flow. However, 

at higher power inputs (8 W and above), the thermal 

resistance became nearly independent of the bending 

angle, as the heat pipe's capillary pumping action 

became more effective despite the deformation. 

In summary, the flexible heat pipes with a treated 

copper mesh wick structure and varying fluid filling 

ratios demonstrated excellent heat transfer 

performance. The study showed that the optimum 

filling ratio for deionized water was 30%, and that 

bending had a minimal effect on thermal resistance at 

higher power inputs. This work highlights the 

potential of flexible heat pipes with innovative wick 

structures for a range of thermal management 

applications. 
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V. CONCLUSION 

 

Flexible heat pipes with innovative wick structures 

represent a significant step forward in thermal 

management solutions for flexible electronics. 

Through advances in materials and wick designs, 

these systems offer a high degree of adaptability, 

reliability, and efficiency in wearable applications. 

Future research is directed at optimizing the material 

properties, improving thermal efficiency further, and 

developing more cost-effective f a b r i c a t i o n  

m e t h o d s  t o  e n a b l e  

widespread adoption 
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