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Abstract—Monitoring vibration is essential for 

evaluating the health of rotating systems. Undetected 

faults in these systems can cause breakdowns, extensive 

damage, injuries, or even fatalities. Therefore, early 

fault detection is vital to ensure the longevity and 

smooth operation of rotating machinery. Bearings, 

which are crucial components in these systems, support 

rotating shafts and are susceptible to various types of 

vibrations during use. These vibrations can reduce 

performance and compromise safety, leading to 

downtime and expensive repairs if not addressed. 

Defects or malfunctions in bearings can cause 

misalignment, equipment damage, and hazardous 

conditions. As a result, fault diagnosis has become a key 

focus for researchers. By measuring and analyzing 

bearing vibrations, critical issues like mass unbalance, 

misalignment, surface defects, and cracks can be 

detected and addressed. This article aims to guide 

researchers in using vibration analysis to identify, 

diagnose, and resolve common faults. It also discusses 

important techniques for condition monitoring of deep 

groove ball bearings, including fast Fourier transform 

and finite element methods (FEM). The study 

specifically investigates the modal and harmonic 

response of deep groove ball bearings with multiple 

surface defects. 

 

Index Terms—Deep Grove Ball Bearings; Finite 

Element Technique; Modal Analysis, Harmonic 

Analysis. 

 

I. INTRODUCTION 

 

Between 5000 BC and 3000 BC, wheeled vehicles 

equipped with simple bearings became prevalent. The 

earliest recorded instance of a rolling element bearing 

is found in the wooden ball bearing supporting the 

rotating table recovered from the Roman Nemi 

shipwreck in Lake Nemi, Italy, dating back to 40 BC. 

Philip Vaughan, a British inventor and iron master, 

obtained the first recognized modern patent for ball 

bearings in 1794, developing the initial design to 

support a carriage axle. Bearings represent a crucial 

component within any rotating mechanism, providing 

essential support for spinning shafts in machinery. 

Consequently, any malfunction or fault in the 

bearings can lead to production losses, equipment 

damage, and hazardous working conditions for 

personnel. Thus, bearing fault diagnosis has garnered 

significant attention from researchers in recent years, 

employing techniques such as time domain analysis, 

frequency domain analysis, and spike energy analysis 

to identify various bearing faults. Vibration analysis 

stands as a key parameter in the condition monitoring 

of rotating systems. Undetected faults within these 

systems can result in downtime, costly damages, 

injuries, or even fatalities, underscoring the critical 

importance of early fault detection in preserving and 

prolonging the operational lifespan of rotating 

systems. Bearing failures can have wide-ranging 

consequences for facilities, including increased 

downtime, elevated maintenance expenses, delivery 

delays, revenue losses, and potential harm to workers. 

Finite Element Analysis (FEA) involves using 

calculations, models, and simulations to predict how 

an object will behave under different physical 

conditions. Modal analysis assesses the vibration 

response of a structure, determining its natural or 

resonant frequencies empirically or theoretically. 

These frequencies provide insight into the operational 

frequency range of a component. Harmonic Response 

Analysis, also known as Frequency Response 

Analysis, is a linear dynamic analysis method used to 

evaluate a system's response to excitation at specific 

frequencies. In this analysis, the load applied to the 

linear model is a steady-state sinusoidal load at a 

predetermined frequency. While loads may be out of 
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phase with each other, the excitation frequency is 

known. Modal and Harmonic Response analyses are 

conducted on bearings with multiple surface defects 

at various operating speeds.  

Dipen S. Shah et al. [1] have endeavored to illustrate 

the process of modeling and simulating local and 

distributed defects on the inner and outer races of 

deep groove ball bearings. They represent the bearing 

defects as impulse train forces or impact forces, 

inducing additional deflection or excitation of the 

rolling elements. The simulated outcomes have been 

scrutinized in both the time and frequency domains. 

The simulated results extensively explore the 

characteristic defect frequency, its harmonics, and the 

amplitude of vibration response in the defective 

bearing.  

Suryawanshi G. L. et al. [2] explored how inclined 

surface faults affect the dynamic response of rolling 

element bearings. They developed a dynamic model 

through dimensional analysis and conducted 

experimental investigations on the vibration 

responses of double row spherical roller bearings. 

The goal was to analyze how the size and slope angle 

of artificially induced inclined surface faults impact 

the bearings. The findings indicated that as the 

inclination angle of the surface fault increased, the 

relative vibration amplitude decreased at various 

rotor speeds, but increased with fault depth. Abhay 

Utpat [3] constructed a model representing the 

bearing system as a spring-mass system, with races 

considered as masses and balls as springs. This 

approach was further developed by employing Finite 

Element Analysis to investigate the peaks 

corresponding to defect frequencies on both the outer 

and inner rings of the bearing. To validate the 

numerical findings, actual vibration amplitudes of 

bearings with simulated local defects were measured, 

demonstrating strong alignment with the numerical 

results. Standard support bearings were consistently 

utilized throughout the experimentation process. V. 

N. Patel et al. [4,11] presented a dynamic model 

aimed at investigating the vibrations of deep groove 

ball bearings afflicted with single or multiple defects 

on the surfaces of their inner and outer races. The 

model incorporates the masses of the shaft, housing, 

races, and balls. Employing the Runge-Kutta method, 

the model provides a coupled solution for the 

governing equations of motion. It furnishes vibrations 

of the shaft, balls, and housing across both time and 

frequency domains. The computed results obtained 

from the model were compared against experimental 

findings, which involved healthy and defective deep 

groove ball bearings. The study also encompassed 

theoretical and experimental analyses of dynamically 

loaded deep groove ball bearings with local circular 

defects on either race. The mathematical model 

includes masses of the shaft, housing, raceways, and 

balls. Similarly, the Runge-Kutta method was utilized 

to attain coupled solutions for the governing 

equations of motion. The model offers vibration 

responses for the shaft, balls, and housing in both 

time and frequency domains. Validation of the results 

obtained from the proposed mathematical model was 

conducted against experimental outcomes. During 

experiments, the test bearings were subjected to 

radial loading using an electro-mechanical shaker, 

with radial load excitation frequencies ranging from 

10 to 1000. Hz. Laxmikant G Keni et al. [5] have 

presented a reliable procedure for accurately 

identifying deformities in bearing components. They 

conducted amplitude measurements of vibrations at 

5000 RPM and a load of 200 N, considering different 

deformity sizes of 3 mm and 4 mm on bearing races. 

An initial vibration analysis of the rolling component 

was performed using Ansys R-18.0. Vibration signals 

corresponding to two different defect sizes were 

extracted, and a reference file for comparing various 

defect sizes was proposed. The study also 

investigated the effects of radial load, rotation speed, 

and initial defect size on stress levels.  

Sameera Mufazzal et al. [6] offer a comprehensive 

examination of the vibration response in ball bearings 

through a modified 2-degree of freedom (DOF) 

lumped parameter model. This model integrates 

additional deflection and multi-impact theories to 

closely replicate the behaviour of both healthy and 

defective bearings across varying load and speed 

conditions. The study delves into the intricacies of 

varying compliance vibrations, revealing that the 

location and number of impulses resulting from 

varying compliance are significantly influenced by 

multiple factors, particularly the applied load and 

shaft rotational speed. These impulses may merge 

with the impulses caused by actual defects, 

potentially altering their characteristics. Numerical 

simulations were conducted at different speeds, loads, 

defect sizes, and locations to explore the impact of 

these parameters on the bearing response 
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characteristics. The paper also presents experimental 

results and thorough analyses to support the proposed 

model and validate the numerical findings.  

J. Sopanen et al. [7,8] introduced a dynamic model 

for a deep-groove ball bearing featuring six degrees 

of freedom. Input parameters such as geometry, 

material properties, and diametral clearance of the 

bearing are provided for the model. The force and 

torque exerted on the bearing are calculated based on 

the relative displacements and velocities between the 

bearing rings. Both distributed defects, like inner and 

outer ring waviness, and localized defects, such as 

inner and outer ring defects, are accounted for in the 

model. The model proposed in Part 1 is implemented 

and analyzed using a commercial multi-body system 

software application (MSC.ADAMS). The impact of 

the bearing's diametral clearance on the natural 

frequencies and vibration response of the rotor–

bearing system is investigated. It's observed that the 

diametral clearance significantly influences the 

vibration level and natural frequencies. Low-order 

waviness, known as out-of-roundness, causes 

vibrations at frequencies that result from multiplying 

the order of waviness by the rotation speed. 

Conversely, waviness orders close to the number of 

balls in the bearing (z ± 1 and z) generate vibrations 

at the frequencies associated with the passage of balls 

through the inner and outer rings. TANG Zhaoping et 

al. [9] constructed a three-dimensional model of a 

deep groove ball bearing using the APDL language 

integrated into the finite element software ANSYS. 

By conducting contact analysis, they were able to 

visualize changes in stress, strain, penetration, sliding 

distance, and friction stress among the inner ring, 

outer ring, rolling elements, and cage. Additionally, 

the simulation outcomes indicated that the computed 

values aligned with theoretical expectations. These 

findings collectively affirm the accuracy and validity 

of the model and its associated boundary conditions, 

offering a solid foundation for the optimal design of 

rolling bearings under complex loads. Viramgama 

Parth D. et al. [12] conducted an analysis of ball 

bearings using finite element analysis to examine the 

stress levels and displacement behavior of the 

bearings. Their primary objective was to identify the 

parameters that most significantly affect the radial 

stiffness of the bearing under axial loads. The 

analysis focused on a specific single-row deep groove 

ball bearing with an outer diameter of 170 mm, inner 

diameter of 80 mm, and ball diameter of 28.575 mm. 

These bearings are utilized to support loads and 

facilitate relative motion within mechanical systems. 

Through this analysis, they aimed to assess factors 

such as the bearing's lifespan, rejection rate, and 

productivity. Ghasem Ghannad Tehrani et al. [13] 

conducted stability analysis on a ball bearing system 

that incorporates varying stiffness coefficients. The 

presence of variable stiffness can lead to instabilities 

within the system at specific combinations of 

rotational speed, number, and dimensions of balls, 

thereby complicating the design process. The primary 

objective is to determine the stability boundary 

curves (SBCs) that delineate the stable and unstable 

regions. The well-known Mathieu equation serves as 

the governing equations of the system in both 

horizontal and vertical directions. While this process 

is straightforward for uncoupled Mathieu equations, 

whether damped or undamped, a realistic bearing 

system typically requires the consideration of two 

coupled Mathieu equations, introducing two 

dominant frequencies that are not integer coefficients 

of each other. This more complex, damped, and 

coupled set of equations applied to a bearing system 

is solved using HBM for the first time, avoiding the 

need for costly iterative methods. The accuracy of all 

examined cases, including uncoupled-undamped, 

uncoupled-damped, and coupled-damped, is ensured 

through Floquet Theory. Wyatt Peterson et al. [14] 

employed ANSYS FLUENT computational fluid 

dynamics (CFD) software to create a comprehensive 

model of single-phase oil flow within a deep groove 

ball bearing (DGBB). The CFD model was utilized to 

examine fluid flow characteristics in relation to 

bearing geometry and operational conditions. The 

paper provides detailed explanations of the 

underlying theory, boundary conditions, and model 

development. Key aspects of the model, including 

meshing techniques, mesh density, and geometric 

clearances, were determined through parametric 

studies. Streamlines, velocity vectors, and pressure 

contours were examined to investigate different 

aspects of DGBB, including cage design and 

properties of the lubricant. The developed CFD 

model offers a novel approach for studying DGBB 

fluid flow dynamics and assessing the impact of cage 

geometry on bearing performance. Iker Heras et al. 

[15] discussed the advantages of wire race bearings, 

including weight and inertia reductions, effective 
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shock load and vibration absorption, consistent 

torque, and minimal maintenance requirements. 

 

II. FINITE ELEMENT METHOD 

 

2.1 Modeling of Deep Groove Ball Bearing 

The 3D model with two and three surface defects 

have been developed to analyze the frequency 

response and compare the results with healthy 

bearing.  

1.1.1. Bearing Specifications 

Table No. 1 Dimensions of 6206 SKF deep groove 

ball bearing [15] 

 

 
 

 
Figure 1. Illustrated Dimensions of 6206 Ball Bearing 

[15] 

The whole bearing is made of Stainless steel, hence 

the properties of stainless steel are given below 

Table No. 2 Mechanical Properties of Stainless steel 

[16,17,18] 

 

 
 

Geometric Model 

The two 3-Dimensional geometric models are 

developed using Creo Parametric 5.0.6.0 with two 

and three surface-defects of 2x2 mm on the outside of 

inner race respectively 

 
(a)                 (b) 

Figure 2 

Figure 2(a). Wireframe 3D model of inner race with 

two surface defects at an instant of 180o. 

Figure 2(b). Section view of inner race. 

 

 
              (a)                                         (b) 

Figure 3 
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Figure3(a). 3D model of inner race with three surface 

defects at an instant of 90o. 

Figure 3(b). Section view of inner race. 

 

 
Figure 4. 3D Model of Deep Groove Ball bearing 

The above figure shows the complete assembly of 

deep groove ball bearing which includes Outer race, 

Inner race with two and three defects, balls and cage. 

The model will be used to perform frequency 

response analysis. 

 

1.1. Rotar Dynamics Equation 

The General equation is given by 

[M]{μ̈} + [c]{μ̇} + [K]{μ} = {f(t)}… (1) 

[M], is the mass matrix [C], is the damping matrix 

and [K] is the stiffness matrix, and {f} is the external 

vector force, In the rotor dynamics, this equation gets 

additional contributions from the gyroscopic effect 

[G], and the rotating damping effect [B] leading: 

[M]{μ̈} + ([C] + [G]{μ̇}) + ([K] + [B]){μ} =

{F(t)}...(2) 

In modal analysis the mode shapes and natural 

frequencies with them are one of the characteristics 

of the mechanical structure, regardless of any loads, 

what we do is an undamped vibration system, so the 

external excitation and damping are not taken into 

account in the model analysis, and from it, the 

equation (2) can be simplified as follows: 

[M]{μ̈} + ([K] + [B]){μ} = {0}…(3) 

The free vibration of an elastic body can always be 

decomposed into a series of simple harmonic 

vibrations, that is, it can be assumed that each point 

in the structure experiences a harmonic motion that 

can decrease due to frequency, amplitude, and phase 

angle. The equation is simplified to: 

(([K] − [B]) − ωi
2[M]){∅}i = 0              (4) 

is the eigenvalue, is the eigenvector, So, the equation 

for free vibration becomes: 

|([K] − [B]) −  ωi
2[M])| = 0…(5) 

is the natural frequency of the mode shape. 

For harmonic response the equation of forced 

vibration is given by: 

[M]{μ̈} + [c]{μ̇} + [K]{μ} = {f(t)}…(6) 

f(t) =  f0 sin ωt…(7) 

 

1.2. Finite Element Model 

The Ansys R1 workbench software is used to perform 

finite element modelling and obtaining the results in 

the form of Natural Frequencies, mode shapes and 

Campbell diagram [19,20] 

 

2.3.1 Boundary Conditions 

The same boundary conditions are applied to all the 

models with 2 and 3 surface-defects and healthy 

bearing. 

 

2.3.2 Connections and Joints 

The connections of the components of the ball 

bearing which includes the contact between balls and 

outer race and balls and inner race. By considering 

Ideal condition these contacts are defined are 

frictionless. 

 

 
Figure 5 – Contact between anyone ball and outer 

race 

 

 
Figure 6 – Contact between the balls and outer race 
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Figure 7 –Contact between anyone ball and inner-

race 

 

 
Figure 8 –Contact between the balls and inner race 

The total number of 18 frictionless connections are 

defined where nine connections are between balls and 

outer and other nine connections are between balls 

and inner race. 

The joints between the components of deep groove 

ball bearing are also defined in the connection tab, 

the revolute joint is defined for the inner race and 

balls where it permits rotation only in one direction 

i.e., Z. 

 

 
Figure 9 – Inner race defined as revolute joint 

 

 
Figure 10 – Bearing balls defined as revolute joint 

2.3.3 Boundary Conditions for Modal Analysis 

We provide the condition of remote displacement to 

the ball bearing location to constraint the motion of 

bearing in the Z axis direction, the translation degrees 

of freedom are also restricted in the direction of Z 

axis. 

The given maximum speed of bearing is 15000 rpm 

and the reference speed of bearing is 24000 rpm 

(revolutions per minute) [15] as per SKF bearing 

specifications. The modal analysis is carried out in 

three steps with three different speeds of 500, 

600&700 rpm for obtaining mode shapes and 2000, 

15000 & 24000 for Campbell Diagram.  

The outer race is considered as fixed support where 

actually the bearing is mounted or fixed, and the 

rotational velocity is provided to the inner race where 

it is mounted on shaft. 

Analysis Setting are as follows - 4 number of modes 

to find and the solution system used is damped solver 

with full damped type and Coriolis effect turned on 

also Campbell diagram with 3 number of points. 

 
Figure 11 – Rotating velocity and fixed support 

applied 

2.3.4 Boundary Conditions for Harmonic Response 

We use the condition of remote displacement to the 

deep groove ball bearing where the constraint is put 

on the rotational and transition degrees of freedom in 

the direction of the Z-axis at bearing sites 

The fixed support is applied to the outer race whereas 

the rotational velocity is provided to the inner race. 

The rotational velocity (in rpm) is converted to 

Relative Centrifugal force (RCF in Newtons). The 

conversion is given by  

RCF =  1.12 ×  r (RPM/1000)²                           (8) 

Where RCF is the Relative Centrifugal force and r is 

the radius of rotating component.  

Therefore, to obtain the speed of 700 rpm, the 

equation no. 8 is modified according to the values of 

the bearing 

∴ RCF =  1.12 ×  31 (700/1000)²                      (9) 
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∴ RCF =  17.01 N                                                 (10) 

The RCF of 17.01N is applied to the inner race at the 

remote point created for the location of hit point.In 

the analysis settings the frequency range were 

defined from 0 to 1000 Hz. 

 
Figure 12 – Appliedrotating force and fixed support 

applied 

2.3.5Meshing 

ANSYS's meshing method plays an essential role for 

accurate simulation utilizing Finite Element Analysis 

(FEA). The mesh is made up of elements with nodes 

that represent the shape of the geometry and can vary 

depending on the element type. FEA reduces degrees 

of freedom from unlimited to limited by performing 

calculations at a finite number of elements and 

interpolating the results to the full size of a 

continuous object. The ANSYS workbench offers a 

variety of meshing methods, including mechanical. 

 

The average surface area covered 297.29 mm². A 

total number of 65554 elements are created and 

166313 nodes are shown in the below figure 

 
Figure 13 – Bearing Mesh 

III. EXPERIMENTAL METHOD 

 

3.1 Experimental Setup 

The experimental setup comprises a DC motor 

capable of adjusting its speed, along with a shaft, 

loading mechanism, speed controller, FFT analyzer, 

coupling, bearing housing, accelerometer, and 

proximity sensor. The ADC motor within the 

experiment can rotate within a range of 0 to 3000 

rpm. The shaft is equipped with keyways, steps, and 

mounting locations for bearings, while a bearing 

housing is employed to secure the bearings. 

Additionally, a flexible coupling is utilized to transfer 

torque from the drive system to the shaft, enabling it 

to operate with slight variations. 

 
Figure 14 – Experimental Setup 

An accelerometer is an instrument used to measure 

the vibration or acceleration of movement in a 

structure. It operates on the principle of 

piezoelectricity, where the material within is 

compressed by the mass due to vibrational force or 

changes in velocity (acceleration). This compression 

generates an electrical charge that correspond ds to 

the applied force. Given that the mass remains 

constant and the charge is directly proportional to the 

force, it follows that the charge is also directly 

proportional to the acceleration. Therefore, an 

accelerometer is a tool designed to gauge the 

vibration or acceleration of a structure. 
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Figure 15 – Bruel and Kjaer FFT 

In the realm of vibration analysis, the "Fast Fourier 

Transform" (FFT) serves as a fundamental technique 

for measurement. It dissects a signal into its 

constituent spectral components. FFTs find 

applications in machine or system condition 

monitoring, quality control, and fault analysis. This 

article elucidates the functionality of FFT, the 

relevant parameters involved, and their impact on 

measurement outcomes. Essentially, the "Discrete 

Fourier Transformation" is practically executed 

through an optimized algorithm known as the FFT 

(DFT). This process involves segmenting a signal 

into its frequency constituents post-sampling over 

time. Each of these constituents represents a single 

sinusoidal oscillation characterized by a distinct 

frequency, amplitude, and phase. Type 3050-B-

0404inch, Input Module with a sampling frequency 

of 50kHz. Fig. 15 shows Bruel and Kjaer FFT. 

 
Figure 16 – Bearings with Defect 

6206 Deep groove ball bearings were used to perform 

the experiment, the artificial defects were made on 

the same ball bearing using Wire cut Electro 

discharge Machining (W-EDM) method. Tests were 

carried out for 500, 600 and 700 RPM respectively 

without applying load. 

 

IV. RESULTS AND DISCUSSION 

 

4.1 Modal Analysis of Ball Bearing  

Modal analysis was carried out for deep groove ball 

bearing with no surface defects, two surface-defects 

and three surface-defects. Where we note that first 

frequency for healthy bearing is 221.74 Hz and the 

frequency at second mode is way far from the first 

i.e., 52552 Hz. The first frequency for two surface-

defects is 284.7 Hz and frequency at second mode is 

32909 Hz. And the frequency at first and second 

mode of ball bearing with three surface-defects is 

287.14 and 32991 respectively 

 

 
Figure 17 (a)– Mode Shape 1(non-defective) 

 

 
Figure 17 (b)– Mode Shape 2 (non-defective) 

 

 
Figure 17 (c)– Mode Shape 1 (two-defects) 
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Figure 17 (d)– Mode Shape 2 (two-defects) 

 
Figure 17 (e)– Mode Shape 1 (three-defects) 

 

 
Figure 17 (f)– Mode Shape 2 (three-defects) 

 

4.1.1 Campbell Diagram 

We can obtain Campbell diagram as shown in Fig 18 

to analyse the evolution of frequencies at the speed of 

rotation and to determine the critical velocities and 

stability threshold. In non-defective bearing we note 

that there is one critical speed of 13304 rpm at 221.74 

Hz, and the mode stability is stable. In two-defect 

bearing we obtain critical speed of 17082 rpm at 

284.7 Hz and mode stability is stable in three 

defective bearing we get the critical speed of 17228 

at 287.14 Hz and we have stable mode stability. 

Figures 18, 19, 20 shows the Campbell diagram for 

all three bearings. 

 

Figure 18 – Campbell Diagram (non-defect) 

 

 
Figure 19 – Campbell Diagram (two-defects) 

 

 
Figure 20 – Campbell Diagram (three-defects) 

 

4.2 Harmonic Response Analysis of Ball Bearing 

using Finite Element Technique 

The harmonic response analysis of the system scope 

us to determine the deformation, stresses, and effect 

of phase angle due to balanced and unbalanced forces 

acting on the bearing system, the harmonic analysis 

was carried out to show the frequency response by 

applying a Relative centrifugal force of 17.01 N 

converted in equation number (10) due to angular 

velocity of 700 rpm. Similarly, force of 8.68 N and 
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12.49 N is converted from the speed of 500 and 600 

rpm respectively 

The frequency response was mentioned on the graph 

with frequency ranged up to 1000 Hz on X-axis with 

acceleration as an amplitude in (m/s2) on Y-axis as 

shown in figures below in detail. We recorded the 

maximum amplitude on the frequency of 285.71 Hz, 

296.3 Hz, 275.86 Hz at 500, 600, 700 rpm 

respectively. The figure 21,22,23 shows the plot of 

natural frequencies of healthy bearing 

 

 
Figure 21 – Frequency Plot ANSYS (500 rpm) 

 

 
Figure 22 – Frequency Plot ANSYS (600 rpm) 

 

 
Figure 23 – Frequency Plot ANSYS (700 rpm) 

 

Similarly, we spotted the maximum acceleration on 

the frequencies of 304.35 Hz, 285.71 Hz and 272.73 

Hz, at RPM of 500, 600 and 700 respectively for the 

bearing with two surface-defects and frequencies of 

250 Hz, 260 Hz and 266.67 Hz at 500 rpm, 600 rpm 

and 700 rpm respectively. As shown in figures no. 

24, 25,26, 27, 28, 29 below. 

 

 

 
Figure 24 – Frequency Plot ANSYS 

(500 rpm) (two-defects) 

 

 
Figure 25 – Frequency Plot ANSYS 

(600 rpm) (two-defects) 

 

 
Figure 26 – Frequency Plot ANSYS 

(700 rpm) (two-defects) 
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Figure 27 – Frequency Plot ANSYS 

(500 rpm) (three-defects) 

 

Figure 28 – Frequency Plot ANSYS 

(600 rpm) (three-defects) 

 

 
Figure 29 – Frequency Plot ANSYS 

(700 rpm) (three-defects) 

 

4.3 Frequency Response Analysis of Ball Bearing by 

Experimentation 

The auto-spectrum was obtained by using FFT 

analyzer. The graph depicts the frequency response, 

covering frequencies up to 1000 Hz on the horizontal 

axis (X-axis) and acceleration, measured in meters 

per second squared (m/s^2), on the vertical axis (Y-

axis). Detailed figures below illustrate this. Notably, 

maximum amplitudes were observed at frequencies 

of 242.5 Hz, 247.5 Hz, and 240 Hz corresponding to 

500, 600, and 700 rpm, respectively. Figures 30, 31, 

and 32 present plots showcasing the natural 

frequencies of a sound bearing. 

 

 

Figure 30 – Frequency spectrum 

(500 rpm) (non-defective) 

 

 

Figure 31 – Frequency spectrum 

(600 rpm) (non-defective) 

 

 

Figure 32 – Frequency spectrum 

(700 rpm) (non-defective) 

 

Likewise, we observed peak accelerations occurring 

at frequencies of 282.5 Hz, 265 Hz, and 262.5 Hz, 

corresponding to 500, 600, and 700 RPM, 

respectively, for the bearing exhibiting two surface 

defects. Additionally, frequencies of 225 Hz, 227.5 

Hz, and 292.5 Hz were recorded at 500 RPM, 600 

RPM, and 700 RPM, respectively. These findings are 

illustrated in figures numbered 33 through 38 below. 
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Figure 33 – Frequency spectrum 

(500 rpm) (two-defects) 

 

 
Figure 34 – Frequency spectrum 

(600 rpm) (two-defects) 

 

 
Figure 35 – Frequency spectrum 

(700 rpm) (two-defects) 

 

 

Figure 36 – Frequency spectrum 

(500 rpm) (three-defects) 

 

 
Figure 37 – Frequency spectrum 

(600 rpm) (three-defects) 

 
Figure 38 – Frequency spectrum 

(700 rpm) (three-defects) 

 

4.3 Discussion 

Table no. 3, 4, 5 shows the comparative study of the 

behavior of bearings with different number of 

defects. 

Table No. 3Comparison between the results of Finite 

element Technique (FET) and Experimental of 

Healthy Bearing. 

 
 

Table No. 4Comparison between the results of Finite 

element Technique (FET) and Experimental of 

Bearing with two surface-defects. 
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Table No. 5Comparison between the results of Finite 

element Technique (FET) and Experimental of 

Bearing with three surface-defects. 

 
We obtained the mode shapes, Campbell diagram 

under modal analysis and Frequency response 

analysis under Harmonic analysis forhealthy and also 

two and three surface-defects on deep groove ball 

bearings, The artificial defects were made on 

bearings to perform actual experimentation to 

validate the theoretical results. Where we can 

observer that the frequencies obtained by ANSYS 

and by empirically at 500 rpm, 600rpm and 700 rpm 

of healthy bearings shows the same deviation but we 

also noticesome difference between the results of 

both methods, can be specified as errors due to 

human interferences and the environmental 

conditions. Similarly, the frequencies of bearing with 

two surface-defects at 700, 600 and 500 rpm are 

304.35, 285.71 and 272.73 by FET and 282.5, 265, 

262.5 by experimentation where we can see 

minimum frequency is obtained 700 rpm and 

maximum at 500 rpm. 

 

V. CONCLUSION 

 

In this research we have carried out the dynamic 

analysis of deep groove ball bearing with no surface 

defects, two and three surface defects cause due to 

improper lubrication, contamination and dirt. We 

Developed 3D model of deep groove ball bearing 

using Creo Parametric 5.0.6.0 and performed Modal 

and Harmonic response analysis using Ansys 

workbench. 

In conclusion, this article offers researchers valuable 

guidance in utilizing vibration analysis to detect, 

diagnose, and rectify various common faults. 

Additionally, it emphasizes the importance of 

employing essential techniques like fast Fourier 

transform and FEM for the condition monitoring of 

deep groove ball bearings. The study's focal point lies 

in analyzing the modal and harmonic response of 

deep groove ball bearings afflicted with multiple 

surface defects. 
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