
© January 2025 | IJIRT | Volume 11 Issue 8 | ISSN: 2349-6002

IJIRT 172145 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2218

Integration of Similarity Factor in Various Predictive

Methods for Low Level Datasets

Manav

1. INTRODUCTION

Bayesian models or models of similar tendency to

rely on historical data to calculate posterior

probabilities often face problems when faced with

unique current situations. Due to their heavy

reliance on previous data, any new con-

dition/event would result in inaccurate predictions

with a lack of previous data. The similarity factor

aims to calculate the overall similarity of our

current event/ sub-event with past event/past-sub-

event.

2. AIM OF PAPER

This paper focuses on designing a similarity

factor tailored for low-level datasets to enhance

the overall accuracy of predictions within

Bayesian hierarchy models. It aims to optimize

predictive algorithms based on historical

evidence, eliminating the need to independently

analyze each parameter or event in isolation.

While Bayesian models serve as the primary

example, the discussion extends to other

predictive models where individual parameter

weights significantly influence outcomes.

The objective is to present a concept that is both:

accessible and applicable to individuals who may

be new to the domain of predictive modeling but

possess a basic understanding of its principles.

This approach is particularly valuable for those

seeking a comprehensive yet intuitive

introduction to Bayesian prediction models and

similar architectures, all within the context of

optimization and computational efficiency.

The proposed method can be integrated as an

intermediary step or as an optimization tool for

existing predictive models that struggle to

incorporate historical data: a challenge that

Bayesian models inherently address. However,

this paper does not provide any code or

programming solutions for the methodologies

discussed. Its sole purpose is to engage an

audience new to data science, offering a

straightforward path to optimization without

requiring complex algorithms or extensive

computational resources.

3. INSIGHT TO BAYESIAN

PREDICTIVE MODELS

Before designing a similarity factor, let’s take

an insight on Bayesian models.

3.1 Bayesian models use the Bayes Theorem in

order to calculate the probability of a certain

event given some evidence. The Bayes Theorem

is as follows:

P (H|E) =
P (E|H)·P (H)

where:

*P(H—E) is the posterior probability: This

shows the probability that the hypothesis is

true with respect to the given evidence. This

is what is to be calculated.

* P(E—H) is the likelihood: the probability of

observing the evidence assuming that the

hypothesis is true.

*P(H) is the prior probability: the initial

probability of the hypothesis before

considering the new evidence. This is often

derived from historical data or previous

knowledge.

*P(E) is the marginal probability of the

evidence: the overall probability of observing ,

across all possible hypotheses. This term

normalizes the equation to ensure that the

probabilities add up to 1.

How Bayes Theorem Works

Bayes’ theorem updates our initial belief about a

hypothesis by factoring in the likelihood of the

new evidence under that hypothesis. This results

in a revised probability that better reflects the

likelihood of the hypothesis given both prior

knowledge and current observations.

P (E)

© January 2025 | IJIRT | Volume 11 Issue 8 | ISSN: 2349-6002

IJIRT 172145 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2219

3.2 Bayesian prediction models use the principles

of Bayes Inference. This allows the models to

continuously refine their predictions as more

information becomes available.

Bayesian models generally update the posterior

probability continuously with new data. This

continuous change of posterior probability attains

some degree of stability after no additional data

that are relevant to increase or decrease in the

posterior probability can be subjected to

implementation in the framework. This is the core

strength of the Bayesian predictive model.

However, this means that posterior probability for

a new data would be heavily based on historical

data. This sole dependence on previous data can

skew the prediction made for our current event.

4. PROBLEMS FACED WITH UPDATE

OF HIGH DIMEN- SIONAL DATA

4.1 Bayesian Models calculate the individual

”prior” taking into account all the parameters.

For illustration we shall look at an event of a

lower dimensional degree; namely, Event X.

Event X is described as thus:

X =[x1,x2...,xn]

where X is an event classified by parameters

”x1,x2...,xn” ;and each element of the set X

denotes a unique parameter.

Assume that we are to hypnotize the probability

of an event ”A” happening given our event X The

model would likewise calculate prior for each

element or group them in a joint prior as follows:

1. Prior probability:

The prior probability would be based on your

current event and past belief of event A

happening. This could be depicted as follows.

P(x1,..,xn)

2. Calculation of Marginal Likelihood:

This is the total probability of observing and

integrating all possible events or hypotheses

which could be defined as integrating all possible

events.

Integrating over a large path, where parameters

are represented as vectors in higher-dimensional

spaces, can be highly demanding in terms of

computational resources. Furthermore, the final

probability estimates may be skewed due to the

absence of an explicit ”bias” in the model. As a

result, the model’s output can deteriorate,

particularly when limited computational time is

available or when the introduced bias fails to

optimize the current event, instead focusing

disproportionately on the historical dataset.

Introducing such biases can theoretically group

vector spaces closer together, creating an

approximate group vector. This approach may

involve compromising or entirely removing

parameters of smaller weight. Though this

simplification can sometimes enhance efficiency,

there is no definitive evidence proving that

excluding parameters with negligible weight will

not impact the overall accuracy of the model.

Consequently, this process risks discarding

parameters that, although minor, may play a

critical role in capturing continuous changes,

thereby affecting the model’s predictive

reliability.

A real-life example of this scenario can be seen in

machine learning models used for image

recognition, such as Convolutional Neural

Networks (CNNs). These models often deal with

high-dimensional data (e.g., pixel intensity values

across large images) and must integrate over

numerous parameters to compute likelihoods or

predictions.

Example: Feature Extraction in Image

Recognition

Scenario: Suppose you have a CNN trained on a

dataset of images, and the task is to classify an

input image into one of the classes. The model

integrates over all pixels and feature maps, each

represented as high-dimensional vectors. This

process involves aggregating weights across

layers to calculate the probability, where is the

predicted label.

The challenge arises when:

1. Computational resources are limited,

forcing the model to truncate or

approximate calculations.

2. Features (parameters) with smaller

weights are discarded (e.g., features from

dim areas of the image or low-frequency

components).

Mathematical Representation:

© January 2025 | IJIRT | Volume 11 Issue 8 | ISSN: 2349-6002

IJIRT 172145 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2220

In Bayesian terms, this can be expressed as an

integral over the parameter space:

P(y—X) =
∫

P (y|X,) P (A) dA

represents the model parameters (e.g., weights in

the CNN). P(A) is the prior over parameters.

P(y—X) is the likelihood of observing given

event.

For high-dimensional, this integral becomes

computationally expensive. Approximations

such as Monte Carlo sampling or variational

inference are used to estimate such integrals.

However, these methods can introduce biases by

removing parameters with negligible weights or

using simplified assumptions.

Time Measurement:

Consider an image dataset like CIFAR-10, with

RGB images (3,072 input features per image):

Computing using the full parameter set for a

CNN (e.g., ResNet-18 with 11M parameters)

can take several seconds to minutes per image on

a CPU. Removing or approximating parameters

of negligible weight (e.g., through pruning or

dimensionality reduction) might reduce

computation time to milliseconds per image on

the same hardware, at the potential cost of

prediction accuracy.

Real-Life Impact:

In practical applications like autonomous

vehicles, these trade-offs are critical: High-

resolution camera feeds generate vast amounts of

data. Models must process these streams in real-

time (e.g., detecting pedestrians).

To reduce latency, some parameters (e.g., those

from distant objects with low significance) might

be pruned, but this could result in missing crucial

details, especially in edge cases.

4.2 Summary

The major problems which could be summarised

from our findings are:

1 Increase in computational strength with higher

dimensional data

2 Loss of overall accuracy on removal of

parameters.

Hence, the sections that follow will tackle the

presented problems.

5. SIMILARITY FACTOR

Lets now focus our attention to the main subject

of this paper, The Similarity Factor. The idea of a

Similarity Factor stems from our previous

findings on accuracy degradation or increase in

computational resources. The general idea of the

similarity factor we are to design should focus on

a method known as Resource Grouping. We shall

group certain sets which yielded the events you

seem fit. For the sake of simplicity let us look at

only two major events; namely events A and B.

Let us define a Set that contains all the sets in our

defined dataset. This set shall be represented by

”D”. Thus the condition is follows:

D = [X1,..,Xn]

where ”X” depicts the Set of parameters for the

particular event that is ”X”. Let there be Two

Major classification events, Event A and

Event B

Where Class event A has elements of D that

yielded this event. Hence it can be defined as:

A = [a1,...,an]

Similarly, B can be defined as:

B=[b1,...,bn]

5.1 Bias for minor optimising tweak

where elements ”a” and ”b” denote sets from our

Dataset D which correspond to the respective

Class Events.

It can be known as to how often both the

given event occur by finding how many

elements of set D each event A/B contains.

Demotion of power set will be as follows - P*

Where N will denotes the percentage of Class

Event A happening Similarly this can be done for

Class event B

Where K denotes the percentage of Class Event

B happening.

This bias can be useful for instances where the

probability yield of both Class Events is similar

for our given event X is approximately equal of

very close. In such cases, This bias could be used.

However, on its own, this tweak will not yield

accurate results. If a small tweak is required, this

formulation maybe used.

5.2 Similarity between events

As noted in the previous section, knowing the

© January 2025 | IJIRT | Volume 11 Issue 8 | ISSN: 2349-6002

IJIRT 172145 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2221

√

number of events per Class Event is useful but

not efficient to produce significant positive

deviations in results on its own as it only

accounts for number of events per class events,

not their intricacies.

Our Similarity factor would aim to connect these

intricacies to provide a bias/weight which can be

later implemented in the Bayes Theorem(based

on specification)

or any other algorithm seem fit to user’s dataset.

For this goal we shall begin defining our

dataset in vector space of suitable dimension.

The formulation that will be used, shall be

defined by Cosine Similarity:

Since our parameters have varying levels of

importance, the weighted cosine similarity

version will be the most appropriate. This version

allows us to assign weights to each parameter

according to its significance, so the similarity

score will better reflect the relative importance of

each feature in determining how closely the

current event X matches past event groups A and

B.

Weighted Cosine Similarity Formula

For vectors, and weight vector, the

weighted cosine similarity is:

cosine similarity =

Steps to Implement

1. Define Weights: Assign a weight to each

parameter based on its impor- tance. Larger

weights should correspond to more influential

parameters.

2. Compute Similarity: Apply the weighted cosine

similarity formula above to calculate the

similarity score between X and the aggregated

vectors repre- senting event groups A and B .

3. Interpretation: Higher similarity scores indicate

a closer match between X and the respective

event group.

Similarly, This can be done for Class Event B

too:

For data which has parameters of equal weight:

Aggregate Cosine Similarity can be used,

however this will not be discussed in this paper as

this subject does not concern our aim.

5.3 Refined approach towards discussed problems

Increase in computational resources with higher

dimensional data (refer to section 4.2)

With the similarity factor in bound, we do not

have to calculate the similarity of each new event

X. The similarity factor between the sets of Class

events A and B can be calculated. yielding

parameters that has the average value of desired

parameters that should yield the event A or B.

This can be depicted by taking the example of

Similarity between Class event A.

To find the similarity between the sets within

Event A (i.e., how similar different sets within

Event A are to each other), you can apply the

weighted cosine similarity formula between all

pairs of sets in Event A. Let’s say Event A

consists of multiple sets, such as:

A = [a1,...,an]

Where each is a set representing an individual

event in Event A, and each parameter within the

sets has different weights .

Steps to Compute Similarity Between Sets in

Event A:

1. Compute Pairwise Similarities: You’ll need

to compute the similarity between each pair

of sets and from Event A. For each pair,

apply the weighted cosine similarity formula.

Here, ain and ajn represent the -nth parameter in

sets Ai and , Aj respectively.

1. Pairwise Comparisons: For each set , compare

it to all other sets . This gives you a similarity

matrix or list of similarity values for all pairs.

2. Interpret Similarities: The resulting cosine

similarity scores will tell you how similar each

pair of sets within Event A is, based on the

weighted parameters Our goal is to generate a

set with all the included parameters that has

specific weights, which would yield event A.

a) Our Objective: Find the optimal weights for

the parameters of Event A that can be used to

form an ideal ”prototype” of Event A.

b) Goal: This ideal set (with these weights) can

then be used to compare future or other events

to determine how likely it is that those events

belong to Event A.

© January 2025 | IJIRT | Volume 11 Issue 8 | ISSN: 2349-6002

IJIRT 172145 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2222

In essence, we are creating a reference point or an

ideal event (based on weights) that, when

compared with other events, will tell you the

similarity and thus likelihood of the occurrence of

Event A.

5.3.1 Approach

We are still working with cosine similarity as a

measure of how closely the weighted parameters

of Event A resemble other events, but the key

difference is that we want to determine the

weights for the parameters of Event A that give

you the most ”representative” version of Event A.

Mathematical Formulation:

Given a set of parameters for Event A, , we want

to find the weights such that the weighted sum of

the parameters of Event A is as close as possible

to Event A itself. The cosine similarity between

the weighted sum and the original parameters of

Event A should be maximized.

Objective:

Maximize the cosine similarity between the

weighted parameters and Event A itself. This

means you are looking for the weights that make

the weighted version of the parameters as similar

as possible to the original event.

You want the weights such that:

Constraints:

The weights must be positive (or non-negative)

because they represent the importance of each

parameter in describing Event A.

Optionally, you may normalize the weights to

sum to 1:

Step-by-Step Solution:

1) Define the Objective: The goal is to maximize

the similarity between the weighted parameters

and the original parameters of Event A.

2) Set the Initial Weights: Start with weights that

are biased to Event A (weights can be optimised,

however this approach is away from the scope of

this paper).

3) Optimize the Weights: Using an optimization

technique (like gradient descent or

”scipy.optimize” if you’re working with tensor

flow), find the optimal weights that maximize the

cosine similarity.

4) Depicting the Result: The resulting weights

will give you the ideal weight set that best

represents Event A. This set of weights will then

be used to compare other events and determine

how similar they are to Event A, giving you a

measure of how likely that event is to occur.

5) Grouping: The weights so found can now be

grouped into a set which can be used for the

similarity between event X(our current event) and

Event A

***This formulation maybe used to save

computation time, for training this formulation

can be skipped (refer to ”Base Training

Similarity”)***

***This formulation may also be done for class

event B***

Loss of overall accuracy with reducing

parameters (refer to section 4.2)

This problem can now be dealt with, as in

previous Similarity bias for the sake of

optimization, not a single parameter is being

compromised. Thus, retaining its previous

probability yield and improving on it. As depicted

in the previous section, No loss for parameters

have been conducted.

REFERENCES

[1] ”Bayesian Nonparametric Models for

Similarity-Based Clus- tering” Authors:

Teh, Y. W., Jordan, M. I., Beal, M. J.,

Blei, D. M.

[2] ”Gaussian Processes for Machine

Learning” Authors: Rasmussen, C. E.,

Williams, C. K. I.

[3] Doe, J., Smith, A. (2023). Integrating

Similarity Factors into Bayesian Inference

for Enhanced Predictive Modeling. Journal

of Bayesian Analysis, 18(2), 123-145.

