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1. INTRODUCTION 

 

Bayesian models or models of similar tendency to 

rely on historical data to calculate posterior 

probabilities often face problems when faced with 

unique current situations. Due to their heavy 

reliance on previous data, any new con- 

dition/event would result in inaccurate predictions 

with a lack of previous data. The similarity factor 

aims to calculate the overall similarity of our 

current event/ sub-event with past event/past-sub-

event. 

 

2. AIM OF PAPER 

 

This paper focuses on designing a similarity 

factor tailored for low-level datasets to enhance 

the overall accuracy of predictions within 

Bayesian hierarchy models. It aims to optimize 

predictive algorithms based on historical 

evidence, eliminating the need to independently 

analyze each parameter or event in isolation. 

While Bayesian models serve as the primary 

example, the discussion extends to other 

predictive models where individual parameter 

weights significantly influence outcomes. 

 

The objective is to present a concept that is both: 

accessible and applicable to individuals who may 

be new to the domain of predictive modeling but 

possess a basic understanding of its principles. 

This approach is particularly valuable for those 

seeking a comprehensive yet intuitive 

introduction to Bayesian prediction models and 

similar architectures, all within the context of 

optimization and computational efficiency. 

The proposed method can be integrated as an 

intermediary step or as an optimization tool for 

existing predictive models that struggle to 

incorporate historical data: a challenge that 

Bayesian models inherently address. However, 

this paper does not provide any code or 

programming solutions for the methodologies 

discussed. Its sole purpose is to engage an 

audience new to data science, offering a 

straightforward path to optimization without 

requiring complex algorithms or extensive 

computational resources. 

 

3. INSIGHT TO BAYESIAN 

PREDICTIVE MODELS 

 

Before designing a similarity factor, let’s take 

an insight on Bayesian models. 

 

3.1 Bayesian models use the Bayes Theorem in 

order to calculate the probability of a certain 

event given some evidence. The Bayes Theorem 

is as follows: 

P (H|E) = 
P (E|H)·P (H) 

 

where: 

*P(H—E) is the posterior probability: This 

shows the probability that the hypothesis is 

true with respect to the given evidence. This 

is what is to be calculated. 

* P(E—H) is the likelihood: the probability of 

observing the evidence assuming that the 

hypothesis is true. 

*P(H) is the prior probability: the initial 

probability of the hypothesis before 

considering the new evidence. This is often 

derived from historical data or previous 

knowledge. 

*P(E) is the marginal probability of the 

evidence: the overall probability of observing , 

across all possible hypotheses. This term 

normalizes the equation to ensure that the 

probabilities add up to 1. 

 

How Bayes Theorem Works 

Bayes’ theorem updates our initial belief about a 

hypothesis by factoring in the likelihood of the 

new evidence under that hypothesis. This results 

in a revised probability that better reflects the 

likelihood of the hypothesis given both prior 

knowledge and current observations. 

 

P (E) 
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3.2 Bayesian prediction models use the principles 

of Bayes Inference. This allows the models to 

continuously refine their predictions as more 

information becomes available. 

Bayesian models generally update the posterior 

probability continuously with new data. This 

continuous change of posterior probability attains 

some degree of stability after no additional data 

that are relevant to increase or decrease in the 

posterior probability can be subjected to 

implementation in the framework. This is the core 

strength of the Bayesian predictive model. 

However, this means that posterior probability for 

a new data would be heavily based on historical 

data. This sole dependence on previous data can 

skew the prediction made for our current event. 

 

4. PROBLEMS FACED WITH UPDATE 

OF HIGH DIMEN- SIONAL DATA 

 

4.1 Bayesian Models calculate the individual 

”prior” taking into account all the parameters. 

For illustration we shall look at an event of a 

lower dimensional degree; namely, Event X. 

Event X is described as thus: 

X =[x1,x2...,xn] 

where X is an event classified by parameters 

”x1,x2...,xn” ;and each element of the set X 

denotes a unique parameter. 

Assume that we are to hypnotize the probability 

of an event ”A” happening given our event X The 

model would likewise calculate prior for each 

element or group them in a joint prior as follows: 

 

1. Prior probability: 

The prior probability would be based on your 

current event and past belief of event A 

happening. This could be depicted as follows. 

P(x1,..,xn) 

 

2. Calculation of Marginal Likelihood: 

This is the total probability of observing and 

integrating all possible events or hypotheses 

which could be defined as integrating all possible 

events. 

 
Integrating over a large path, where parameters 

are represented as vectors in higher-dimensional 

spaces, can be highly demanding in terms of 

computational resources. Furthermore, the final 

probability estimates may be skewed due to the 

absence of an explicit ”bias” in the model. As a 

result, the model’s output can deteriorate, 

particularly when limited computational time is 

available or when the introduced bias fails to 

optimize the current event, instead focusing 

disproportionately on the historical dataset. 

 

Introducing such biases can theoretically group 

vector spaces closer together, creating an 

approximate group vector. This approach may 

involve compromising or entirely removing 

parameters of smaller weight. Though this 

simplification can sometimes enhance efficiency, 

there is no definitive evidence proving that 

excluding parameters with negligible weight will 

not impact the overall accuracy of the model. 

Consequently, this process risks discarding 

parameters that, although minor, may play a 

critical role in capturing continuous changes, 

thereby affecting the model’s predictive 

reliability. 

 

A real-life example of this scenario can be seen in 

machine learning models used for image 

recognition, such as Convolutional Neural 

Networks (CNNs). These models often deal with 

high-dimensional data (e.g., pixel intensity values 

across large images) and must integrate over 

numerous parameters to compute likelihoods or 

predictions. 

 

Example: Feature Extraction in Image 

Recognition 

Scenario: Suppose you have a CNN trained on a 

dataset of images, and the task is to classify an 

input image into one of the classes. The model 

integrates over all pixels and feature maps, each 

represented as high-dimensional vectors. This 

process involves aggregating weights across 

layers to calculate the probability, where is the 

predicted label. 

 

The challenge arises when: 

1. Computational resources are limited, 

forcing the model to truncate or 

approximate calculations. 

2. Features (parameters) with smaller 

weights are discarded (e.g., features from 

dim areas of the image or low-frequency 

components).  

Mathematical Representation: 
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In Bayesian terms, this can be expressed as an 

integral over the parameter space: 

P(y—X) =
∫ 

P (y|X, ) P (A) dA 

represents the model parameters (e.g., weights in 

the CNN). P(A) is the prior over parameters. 

P(y—X) is the likelihood of observing given 

event. 

For high-dimensional, this integral becomes 

computationally expensive. Approximations 

such as Monte Carlo sampling or variational 

inference are used to estimate such integrals. 

However, these methods can introduce biases by 

removing parameters with negligible weights or 

using simplified assumptions.  

 

Time Measurement: 

Consider an image dataset like CIFAR-10, with 

RGB images (3,072 input features per image): 

Computing using the full parameter set for a 

CNN (e.g., ResNet-18 with 11M parameters) 

can take several seconds to minutes per image on 

a CPU. Removing or approximating parameters 

of negligible weight (e.g., through pruning or 

dimensionality reduction) might reduce 

computation time to milliseconds per image on 

the same hardware, at the potential cost of 

prediction accuracy. 

 

Real-Life Impact: 

In practical applications like autonomous 

vehicles, these trade-offs are critical: High-

resolution camera feeds generate vast amounts of 

data. Models must process these streams in real-

time (e.g., detecting pedestrians). 

To reduce latency, some parameters (e.g., those 

from distant objects with low significance) might 

be pruned, but this could result in missing crucial 

details, especially in edge cases. 

 

4.2 Summary 

The major problems which could be summarised 

from our findings are: 

1 Increase in computational strength with higher 

dimensional data 

2 Loss of overall accuracy on removal of 

parameters. 

Hence, the sections that follow will tackle the 

presented problems. 

 

5. SIMILARITY FACTOR 

Lets now focus our attention to the main subject 

of this paper, The Similarity Factor. The idea of a 

Similarity Factor stems from our previous 

findings on accuracy degradation or increase in 

computational resources. The general idea of the 

similarity factor we are to design should focus on 

a method known as Resource Grouping. We shall 

group certain sets which yielded the events you 

seem fit. For the sake of simplicity let us look at 

only two major events; namely events A and B. 

 

Let us define a Set that contains all the sets in our 

defined dataset. This set shall be represented by 

”D”. Thus the condition is follows: 

D = [X1,..,Xn] 

where ”X” depicts the Set of parameters for the 

particular event that is ”X”. Let there be Two 

Major classification events, Event A and 

Event B 

Where Class event A has elements of D that 

yielded this event. Hence it can be defined as: 

A = [a1,...,an] 

Similarly, B can be defined as: 

B=[b1,...,bn] 

 

5.1 Bias for minor optimising tweak 

where elements ”a” and ”b” denote sets from our 

Dataset D which correspond to the respective 

Class Events. 

It can be known as to how often both the 

given event occur by finding how many 

elements of set D each event A/B contains. 

Demotion of power set will be as follows - P* 

 
Where N will denotes the percentage of Class 

Event A happening Similarly this can be done for 

Class event B 

 
Where K denotes the percentage of Class Event 

B happening. 

This bias can be useful for instances where the 

probability yield of both Class Events is similar 

for our given event X is approximately equal of 

very close. In such cases, This bias could be used. 

However, on its own, this tweak will not yield 

accurate results. If a small tweak is required, this 

formulation maybe used. 

 

5.2 Similarity between events 

As noted in the previous section, knowing the 
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number of events per Class Event is useful but 

not efficient to produce significant positive 

deviations in results on its own as it only 

accounts for number of events per class events, 

not their intricacies. 

Our Similarity factor would aim to connect these 

intricacies to provide a bias/weight which can be 

later implemented in the Bayes Theorem(based 

on specification) 

or any other algorithm seem fit to user’s dataset. 

For this goal we shall begin defining our 

dataset in vector space of suitable dimension. 

The formulation that will be used, shall be 

defined by Cosine Similarity: 

 

Since our parameters have varying levels of 

importance, the weighted cosine similarity 

version will be the most appropriate. This version 

allows us to assign weights to each parameter 

according to its significance, so the similarity 

score will better reflect the relative importance of 

each feature in determining how closely the 

current event X matches past event groups A and 

B. 

Weighted Cosine Similarity Formula 

For vectors, and weight vector, the 

weighted cosine similarity is: 

cosine similarity =

 
 

Steps to Implement 

1. Define Weights: Assign a weight to each 

parameter based on its impor- tance. Larger 

weights should correspond to more influential 

parameters.  

2. Compute Similarity: Apply the weighted cosine 

similarity formula above to calculate the 

similarity score between X and the aggregated 

vectors repre- senting event groups A and B .  

3. Interpretation: Higher similarity scores indicate 

a closer match between X and the respective 

event group.  

Similarly, This can be done for Class Event B 

too: 

 
For data which has parameters of equal weight: 

Aggregate Cosine Similarity can be used, 

however this will not be discussed in this paper as 

this subject does not concern our aim. 

 

5.3 Refined approach towards discussed problems 

Increase in computational resources with higher 

dimensional data (refer to section 4.2) 

With the similarity factor in bound, we do not 

have to calculate the similarity of each new event 

X. The similarity factor between the sets of Class 

events A and B can be calculated. yielding 

parameters that has the average value of desired 

parameters that should yield the event A or B. 

This can be depicted by taking the example of 

Similarity between Class event A. 

To find the similarity between the sets within 

Event A (i.e., how similar different sets within 

Event A are to each other), you can apply the 

weighted cosine similarity formula between all 

pairs of sets in Event A. Let’s say Event A 

consists of multiple sets, such as: 

A = [a1,...,an] 

Where each is a set representing an individual 

event in Event A, and each parameter within the 

sets has different weights . 

Steps to Compute Similarity Between Sets in 

Event A: 

1. Compute Pairwise Similarities: You’ll need 

to compute the similarity between each pair 

of sets and from Event A. For each pair, 

apply the weighted cosine similarity formula. 

 
Here, ain and ajn represent the -nth parameter in 

sets Ai and , Aj respectively. 

1. Pairwise Comparisons: For each set , compare 

it to all other sets . This gives you a similarity 

matrix or list of similarity values for all pairs. 

2. Interpret Similarities: The resulting cosine 

similarity scores will tell you how similar each 

pair of sets within Event A is, based on the 

weighted parameters Our goal is to generate a 

set with all the included parameters that has 

specific weights, which would yield event A. 

a) Our Objective: Find the optimal weights for 

the parameters of Event A that can be used to 

form an ideal ”prototype” of Event A. 

b) Goal: This ideal set (with these weights) can 

then be used to compare future or other events 

to determine how likely it is that those events 

belong to Event A. 
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In essence, we are creating a reference point or an 

ideal event (based on weights) that, when 

compared with other events, will tell you the 

similarity and thus likelihood of the occurrence of 

Event A. 

 

5.3.1 Approach 

We are still working with cosine similarity as a 

measure of how closely the weighted parameters 

of Event A resemble other events, but the key 

difference is that we want to determine the 

weights for the parameters of Event A that give 

you the most ”representative” version of Event A. 

 

Mathematical Formulation: 

Given a set of parameters for Event A, , we want 

to find the weights such that the weighted sum of 

the parameters of Event A is as close as possible 

to Event A itself. The cosine similarity between 

the weighted sum and the original parameters of 

Event A should be maximized. 

 

 
 

Objective: 

Maximize the cosine similarity between the 

weighted parameters and Event A itself. This 

means you are looking for the weights that make 

the weighted version of the parameters as similar 

as possible to the original event. 

You want the weights such that: 

 
Constraints: 

The weights must be positive (or non-negative) 

because they represent the importance of each 

parameter in describing Event A.  

Optionally, you may normalize the weights to 

sum to 1: 

 
Step-by-Step Solution:  

1) Define the Objective: The goal is to maximize 

the similarity between the weighted parameters 

and the original parameters of Event A.  

2) Set the Initial Weights: Start with weights that 

are biased to Event A (weights can be optimised, 

however this approach is away from the scope of 

this paper).  

3) Optimize the Weights: Using an optimization 

technique (like gradient descent or 

”scipy.optimize” if you’re working with tensor 

flow), find the optimal weights that maximize the 

cosine similarity.  

4) Depicting the Result: The resulting weights 

will give you the ideal weight set that best 

represents Event A. This set of weights will then 

be used to compare other events and determine 

how similar they are to Event A, giving you a 

measure of how likely that event is to occur.  

5) Grouping: The weights so found can now be 

grouped into a set which can be used for the 

similarity between event X(our current event) and 

Event A  

***This formulation maybe used to save 

computation time, for training this formulation 

can be skipped (refer to ”Base Training 

Similarity”)***  

***This formulation may also be done for class 

event B*** 

 

Loss of overall accuracy with reducing 

parameters (refer to section 4.2) 

This problem can now be dealt with, as in 

previous Similarity bias for the sake of 

optimization, not a single parameter is being 

compromised. Thus, retaining its previous 

probability yield and improving on it. As depicted 

in the previous section, No loss for parameters 

have been conducted. 
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