
© February 2025 | IJIRT | Volume 11 Issue 9 | ISSN: 2349-6002 
 

IJIRT 172493 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 636 

Analysis of Economic Load Dispatch in Power Systems 

using Scaled Conjugate Gradient Approach in Machine 

Learning 
 

 

Rahul Arya1, Prof. Sourabh Gupta2 
1Mtech scholar, Technocrats Institute of Technology & Science, Bhopal (M.P.) 

2Associate professor, Technocrats Institute of Technology & Science, Bhopal (M.P.) 

 

Abstract—The escalating size of power systems has 

heightened the need to minimize operational costs, 

pollution, and transmission losses. This study tackles the 

Economic Load Dispatch (ELD) problem, a crucial 

optimization challenge in power systems, aiming to 

allocate generations optimally among available units to 

achieve minimum generation costs. Three load demand 

scenarios – low, normal, and high – are considered, with 

incremental cost serving as a key system performance 

metric. Fuzzy Logic is employed to implement ELD 

constraints, formulating an optimization problem. Due 

to the complexity of solving ELD problems amidst 

numerous system constraints, Fuzzy Logic proves to be 

an efficient tool. This research utilizes the Fuzzy Logic 

toolbox, incorporating constraints such as generating 

limits, power balance, minimum uptime, minimum 

downtime, and spinning reserve to develop requisite 

rules and membership functions. A case study involving 

three generating units demonstrates the effectiveness of 

the proposed approach in solving unit commitment 

problems. 

 

Index Terms—Economic Load Dispatch, Fuzzy Logic, 

Optimization, Power System, Unit Commitment.  

 

I. INTRODUCTION 

 

In electrical power systems, managing operational 

costs is crucial due to fluctuating power demands from 

diverse sources. The primary objective is to minimize 

costs while meeting load requirements. Economic 

Load Dispatch (ELD) enables power systems to 

operate economically by optimizing power allocation 

from various sources. In reality, power plants are often 

located far from demand centers, and fuel costs vary 

among generators. Consequently, power systems must 

prioritize economical operation, making optimized 

performance a key concern. Power generation 

companies strive to meet efficient demand while 

conserving fuel and maximizing efficiency. Efficient 

scheduling of unit outputs can significantly reduce 

costs. However, power generators must comply with 

system constraints, and traditional optimization 

methods are ineffective due to the nonlinear input-

output characteristics of generators.  

Optimizing power generation is crucial to minimize 

costs and maximize economic efficiency. This 

necessitates the development of an Economic Load 

Dispatch (ELD) model that leverages advanced 

methodologies to determine the optimal power 

generation strategy. By identifying the most cost-

effective combination of power sources, ELD can 

significantly reduce generation costs, ultimately 

benefiting the power systems sector and enhancing 

overall efficiency.  

The generation of electrical power is a fundamental 

aspect of modern life, underpinning the operation of 

countless electrical and electronic devices worldwide. 

Power plants, equipped with large-scale generators, 

play a critical role in meeting global energy demands. 

These generators harness energy from diverse sources, 

categorized into renewable and non-renewable 

segments, to produce the electricity that powers our 

daily lives. 

 
Fig.1 Diagram of major renewable sources of power 

generation 
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II. PROBLEM FORMULATION 

 

A. Factors governing cost of generation- The 

Economic Load Dispatch (ELD) problem revolves 

around optimizing the output of various generators to 

achieve the lowest possible total generation cost. This 

intricate problem involves allocating power generation 

among different sources to minimize overall expenses, 

as visualized in the generator cost curve, which serves 

as a fundamental illustration of the challenge at hand. 

 

Fig. 1 The variation of operational cost w.r.t. Output 

Power 

The generation cost of power plants is directly tied to 

their output levels. As generators approach their 

maximum capacity, their operating costs tend to 

escalate, exhibiting a nonlinear relationship between 

output and expenditure. 

Mathematically, 

𝐶 = 𝑓 (𝑃o, 𝑡) 

Here, C is cost of generation 

 𝑃o is the power output 

t is time  

f stands for a function of.  

Typically,  

𝑓 = 𝑘1𝑃𝑔𝑖 2 + 𝑘2𝑃𝑔𝑖 + 𝑘3 

Here,  

𝑃𝑔𝑖 is the Power corresponding to the ith generating 

source  

K1, K2 and K3 are the constants depending on the 

fuel  

The non-smooth fuel cost functions are depicted as: 

 
Fig. 3 The non-smooth fuel cost w.r.t. valve point 

effects 

The illustration above demonstrates how valve effects 

can introduce non-smoothness in fuel costs. A critical 

consideration in economic load dispatch is accurately 

modeling the incremental cost curve (ICC) as a 

function of generator output power. Several 

approaches can be employed for this purpose: 

1. Linear modeling, which assumes a linear 

relationship between output power and incremental 

cost. 

2. Piecewise linear modeling, a widely preferred 

approach due to its ability to capture complex cost 

curves. 

3. Non-linear modeling, which can accommodate 

more intricate relationships between output power and 

incremental cost. 

A representative piecewise linear cost curve is shown 

in the figure below: 

 
Fig. 4 Models for ICF 

The incremental cost cure is generally modelled as: 

Linear:  

𝐼𝐶𝐶 = 𝑘1𝑃0 + 𝑘2  

Here,  

Po is the generated power output  

K1 and K2 are constants  

ICC is the incremental cost curve 

Non-Linear:  

𝐼𝐶𝐹 = 𝑘1𝑃𝑂 𝑚 + 𝑘2𝑃𝑂 𝑚−1 … … … 𝑘𝑛−1𝑃𝑂 + 𝑘𝑛 

Here,  

ICF is the incremental cost curve 

𝑘1…. 𝑘𝑛 are the co-efficient values  

Po is the cost of generation  

Piecewise Linear 

The piecewise linear model is mathematically 

governed as:  

𝐼𝐶𝐶 = 𝑘1𝑃𝑂 + 𝑘2; 𝑃𝑂1 < 𝑃𝑂 < 𝑃𝑂3  

𝐼𝐶𝐶 = 𝑘3𝑃𝑂 + 𝑘4; 𝑃03 < 𝑃𝑂 < 𝑃𝑂4   

𝐼𝐶𝐶 = 𝑘𝑛−1𝑃𝑂 + 𝑘𝑛; 𝑃0𝑛−1 < 𝑃𝑂 < 𝑃𝑂𝑛 

Here,  

𝑘1, k2………………. 𝑘𝑛 are the co-efficient  

Po is the output generated power  
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𝑃𝑂1, 𝑃𝑂2, ………………… 𝑃𝑂𝑛, are the piece wise 

linear ranges for the incremental cost function (ICF)  

Finally, the incremental production cost curve (IPC) 

is depicted in the figure below: 

 

Fig. 5 Incremental Production Curve w.r.t. Output 

Power 

The incremental production cost is an amalgamation 

of the incremental fuel cost (IFC) and Incremental 

Running Expenses (IRE) The incremental production 

cost is given mathematically as: 

𝐼𝑃𝐶 = 𝐼𝐹𝐶 + 𝐼𝑅𝐸 

Here,  

IPC is incremental production cost  

IFC is incremental fuel cost  

IRE is the incremental running expenses  

The incremental costs of generation for different 

generators may be different and a typical situation is 

given below: 

 

Fig. 6 Incremental Costs for different generators 

The incremental cost curves for various generators are 

illustrated in the figure above. A notable observation 

is that the incremental costs fluctuate with changes in 

power output, yet the curves exhibit distinct profiles. 

This scenario typifies an interconnected power system 

where multiple generators collectively contribute to 

the overall power generation.  

Consider a system comprising multiple generators, 

denoted as PG1, PG2, ..., PGn, each characterized by 

its respective incremental cost functions, ICF1, ICF2, 

..., ICFn. 

They may be leveraged by the interconnected power 

system as shown in the figure below: 

 

Fig. 6 Different Generators rendering fractional 

power in an interconnected power system 

In an interconnected power system, multiple power 

generators with diverse generation costs can 

contribute to the overall power supply.  

However, to ensure optimal operation, these 

contributions must adhere to the principles of 

Economic Load Dispatch (ELD), which are outlined 

in the subsequent section. This section elaborates on 

the ELD conditions and associated constraints that 

govern the allocation of power generation among 

various sources. 

B. Problem Identification in ELD 

While designing an Economic Load Dispatch 

mechanism, the following constraints are to be 

considered: 

1. To ensure reliable operation, the capacity constraints of 

individual generators must be respected. Assuming a power 

system with 'n' generators, denoted as PG1, PG2, ..., PGn, 

each with respective capacities of C1, C2, ..., Cn, it is 

essential to prevent individual generator outputs from 

exceeding their designated limits. This constraint can be 

expressed mathematically as: 

𝐿𝐶𝐺𝑖 ≤ 𝐶𝑔𝑖 

Here.  

𝐿𝐶𝐺𝑖 is the load connected to Generator ‘i’  

𝐶𝑔𝑖 is the capacity of generator ‘i’. 

This ensures that the total generation cost is minimized while 

adhering to the capacity limitations of each generator. 

2. The optimal combination of loads connected to generators 

should result in the minimum overall cost of generation. To 

achieve this, the optimization process must focus on 

identifying the ideal combination that minimizes the cost 

function, representing the total cost of generation. This 

objective can be formulated mathematically as: 

〈𝐽𝑚𝑖𝑛〉 = min [∑ 𝐿𝐶𝐺𝑖𝐶𝑜𝐺𝐺𝑖] 𝑛 𝑖=1 

Here,  

J is the cost function which is the overall cost of 

generation  
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𝐿𝐶𝐺𝑖 is the load connected to Generator ‘i’ 𝐶𝑜𝐺𝐺𝑖 is 

the cost of generation of Generator ‘i’ 

This mathematical representation aims to determine the 

optimal allocation of loads among generators, ensuring the 

lowest possible overall generation cost. 

The approach should be able to optimize the 

parameters and minimize the cost function with low 

time complexity so as to make the approach feasible 

for time critical applications. 

 

III. PROPOSED METHODOLOGY 

 

Optimization a multivariate problem to attain the 

condition. 

The Economic Load Dispatch (ELD) problem is a 

complex, multivariate optimization challenge that 

necessitates the application of sophisticated 

algorithms. These algorithms are designed to identify 

the optimal set of parameters that minimize the cost 

function. Several optimization techniques have been 

employed to solve the ELD problem, including: 

1. Dynamic Programming, which breaks down the 

problem into manageable sub-problems. 

2. Convex Optimization, a powerful method for 

solving linear and nonlinear optimization problems. 

3. Particle Swarm Optimization, a population-based 

stochastic optimization technique inspired by flock 

behavior. 

4. Bat Optimization, a bio-inspired algorithm that 

mimics the echolocation behavior of bats. 

5. Ant-Colony Optimization, a metaheuristic approach 

that simulates the foraging behavior of ants. 

These optimization techniques, among others, have 

been successfully applied to solve the ELD problem 

and determine the most cost-effective allocation of 

power generation. 

In recent years, artificial intelligence (AI) and machine 

learning (ML) techniques have emerged as powerful 

tools for solving intricate optimization problems. ML-

based approaches have proven particularly effective in 

analyzing complex, large-scale datasets that defy 

conventional statistical analysis. Broadly, ML-based 

applications can be classified into three primary 

categories: 

1. Supervised learning, where algorithms learn from 

labeled data to make predictions or classify new, 

unseen data. 

2. Unsupervised learning, which involves discovering 

patterns, relationships, or groupings within unlabeled 

datasets. 

3. Semi-supervised learning, a hybrid approach that 

combines labeled and unlabeled data to improve 

learning accuracy and efficiency. 

These ML paradigms have far-reaching implications 

for solving complex optimization problems, including 

those encountered in economic load dispatch and other 

energy-related applications. 

Artificial Intelligence (AI) and Machine Learning 

(ML) strive to replicate human problem-solving 

abilities within machines. To achieve this, various 

mathematical models are employed to mimic the 

human thought process, including: 

1. Neural Networks, which simulate the 

interconnected structure of the human brain. 

2. Fuzzy Logic, a methodology that deals with 

uncertainty and imprecision, similar to human 

reasoning. 

3. Neuro-Fuzzy Systems, a hybrid approach 

combining neural networks and fuzzy logic. 

4. Genetic Algorithms, inspired by the process of 

natural selection and genetics. 

5. Deep Neural Networks, complex architectures that 

leverage multiple layers to learn and represent data. 

These AI and ML models, among others, enable 

machines to learn from data, make decisions, and 

solve complex problems, bridging the gap between 

human intelligence and machine capabilities. 

 

IV. MATHEMATICAL MODEL REPRESENTING 

THE NEURAL NETWORK 

 

The biological model of the neural network translates 

into the mathematical model of the neural network as 

shown below: 

 

Fig. 7 Mathematical model of ANN 

The mathematical model of the neural network is 

shown in the figure below which represents the 
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parallel data processing, data analysis and pattern 

recognition ability of the neural network. The output 

of the neural network is given by: 

𝑦 = ∑ 𝑋𝑖𝑊𝑖 + Ɵ 𝑖=𝑛 𝑖=1 

The mathematical descriptions can be understood with 

more clarity with the graphical counterparts shown 

below: 

 

Fig. 8 Internal interpretation of neural structure 

 

V. RESULTS AND DISCUSSIONS 

 

The results are simulated on MATLAB 2018a. Two 

cases are simulated and analyzed:  

1) The 3-unit system  

2) The 6-unit system 

A. Designed ANN 

The designed neural network for the optimization 

purpose has been shown below. 

 

Fig. 9 ANN trained by Steepest Descent SCG 

approach 

 

Fig. 10 Depiction of MSE variation in ANN w.r.t. 

epochs 

 

Fig. 11 Training States 

 

The figure above depicts the variation of training 

states as a function of the iterations of training. The 

gradient, combination co-efficient and validation 

checks are depicted. 

 

VI. CONCLUSION 

 

The preceding discussions demonstrate that this 

research successfully implements an economic load 

dispatch (ELD) mechanism for interconnected power 
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systems. The proposed work considers three distinct 

load demand scenarios: low, normal, and high. The 

optimization process utilizes incremental cost as a key 

variable for assessing system performance. Notably, 

Fuzzy Logic is employed to implement the proposed 

ELD constraint, effectively formulating it as an 

optimization problem. 

Given the intricate nature of power systems, 

characterized by numerous constraints, solving the ELD 

problem poses significant complexity. Consequently, 

the development of efficient tools and methodologies is 

essential to address this challenge, ensuring optimal 

solutions for ELD problems in interconnected power 

systems. 
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