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1.INTRODUCTIONS 

In Chapter 16 of his second notebook [2], [3], 

Ramanujan develops the theory of theta functions 

and his theta function is defined by 

     f(a,b) = ∑ 𝑎𝑛(𝑛+1)/2𝑏𝑛(𝑛−1)/2∞
𝑛=−∞  ,      |𝑎𝑏| < 1. 

Following Ramanujan, we define  

𝛷(𝑞) ≔ 𝑓(𝑞, 𝑞) =  
(−𝑞; −𝑞)∞

(𝑞; −𝑞)∞

, 

𝛹(𝑞): =  𝑓(𝑞, 𝑞3) =  
(𝑞2;𝑞2)∞

(𝑞;𝑞2)∞
 , 

and 

  𝑓(−𝑞) ∶=  𝑓(−𝑞, −𝑞2) = (𝑞; 𝑞)∞ 

The product representations of these theta functions can be derived by using the Jacobi triple  product identity: 

 𝑓(𝑎, 𝑏) = (-a;ab)∞(-b;ab)∞(ab;ab)∞,   |𝑎𝑏| < 1. 

Ramanujan recorded [11, pp.353-355], several identities involving Lambert series and products of quotients of 

theta functions.  Some of them are 

 1+4∑ (
𝑞4𝑛−3

1−𝑞4𝑛−3 −
𝑞4𝑛−1

1−𝑞4𝑛−1)∞
𝑛=1  = 𝛷2(𝑞),                                                                 (1.1) 

      1-6∑ (−1)𝑛 (
𝑞3𝑛−2

1+(−1)𝑛𝑞3𝑛−2 +
𝑞3𝑛−1

1−(−1)𝑛𝑞3𝑛−1) =
𝛷3(𝑞)

𝛷(𝑞3)

∞
𝑛=1   ,                                             (1.2) 

     1+4∑ (
𝑞12𝑛−8

1−𝑞12𝑛−8 −
𝑞12𝑛−4

1−𝑞12𝑛−4)∞
𝑛=1 +2∑ (

𝑞3𝑛−1

1−𝑞3𝑛−1 −
𝑞3𝑛−2

1−𝑞3𝑛−2)∞
𝑛=1   = 𝛷(𝑞) 𝛷(𝑞3) ,             (1.3) 

    ∑ (
𝑞6𝑛−5

1−𝑞12𝑛−10 −
𝑞6𝑛−1

1−𝑞12𝑛−2)∞
𝑛=1 = qΨ(𝑞2)Ψ(𝑞6),                                                              (1.4) 

  1-6∑ (
𝑞3𝑛−1

1−𝑞3𝑛−1 −
𝑞3𝑛−2

1−𝑞3𝑛−2)∞
𝑛=1 = a(q)                                                                               (1.5) 

Where 

 a(q)=∑ 𝑞𝑗2+𝑗𝑘+𝑘2∞
𝑗,𝑘=−∞ ,                                                                                                 

     ∑ (
𝑞4𝑛−3

1−𝑞8𝑛−6 −
𝑞4𝑛−1

1−𝑞8𝑛−2)∞
𝑛=1   = qΨ2(𝑞4),                                                                          (1.6) 

1+3∑ (
𝑞6𝑛−5

1−𝑞6𝑛−5 −
𝑞6𝑛−1

1−𝑞6𝑛−1)∞
𝑛=1  =  

𝛹3(𝑞)

𝛹(𝑞3)
 ,                                                                            (1.7) 

    ∑ (
𝑛

3
)

qn

1−q2n
∞
𝑛=1 = q

𝛹3(𝑞3)

𝛹(𝑞)
                    (1.8) 

Where (
𝑛

3
) denotes the Legendre symbol, 



© May 2022| IJIRT | Volume 8 Issue 12 | ISSN: 2349-6002 
 

IJIRT 172639 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1651 

1+2∑ (
𝑞3𝑛−2

1−𝑞3𝑛−2 −
𝑞3𝑛−1

1−𝑞3𝑛−1)∞
𝑛=1 +4∑ (

𝑞6𝑛−4

1−𝑞6𝑛−4 −
𝑞6𝑛−2

1−𝑞6𝑛−2)∞
𝑛=1   = 

𝛷3(−𝑞3)

𝛷(−𝑞)
                                (1.9) 

Most of these identities are equivalent to important 

classical results in Number theory.  Infact (1.1) is 

equivalent to Jacobi’s two square theorem [9] which 

states that the number of representations of  n as a 

sum of two square is four times the difference 

between the number of divisors of n congruent to 1 

modulo 4 and the number of divisors of n congruent 

to 3 modulo 4.  C.  Adiga [1] has obtained formulas 

for the numbers of representations of an integer N≥1 

as a sum of two or four triangular numbers. Recently 

Shaun Cooper[7], Shaun Cooper and H. Y Lam[8] 

have established formulas for the number of 

representations of an integer N≥1 as a sum of two, 

four, six and eight squares and triangular numbers 

and also sums of an even number of squares and an 

even number of triangular numbers. 

The purpose of this paper is to give a simple unified 

approach to proving           (1.1)-(1.9) 

This has been motivated by the recent works of M.D.  

Hirschhorn [10] 

 

2. Some Preliminary Results 

In the following theorem, we collect the various 

results needed for proving our main results. 

 

Theorem 2.1. In 0<q<1, then the following theta-function identities hold. 

1. If |𝑞| <1, then  

∏ (1 + 𝑎𝑞2𝑛−1)𝑛≥1  (1+a-1q2n-1)(1- q2n) = ∑ 𝑎𝑛𝑞𝑛2∞
𝑛=−∞  ,                          (2.1) 

2. ∏ (1 − 𝑞𝑛)3
𝑛≥1  =  ∑ (−1)𝑛(2n + 1)∞

𝑛=0 𝑞𝑛(𝑛+1)/2,                                   (2.2) 

3.  𝛷2(q)- 𝛷2(-q) = 8qΨ2(𝑞4),                                                                        (2.3) 

4. 𝛷2(q)𝑓(-q)=∑ (6𝑛 + 1)𝑞(3𝑛2+𝑛)/2∞
𝑛=−∞ ,                                                    (2.4) 

5. Ψ(𝑞2) 𝑓2(-q) = ∑ (3𝑛 + 1)𝑞3𝑛2+2𝑛∞
𝑛=−∞ ,                                                  (2.5) 

6. 4q Ψ(𝑞2) Ψ(𝑞6) = Φ(q) Φ(𝑞3) - Φ(-q) Φ(−𝑞3),                                         (2.6) 

7. 
𝛷3(𝑞)

𝛷(𝑞3)
 + 2 

𝛷3(−𝑞2)

𝛷(−𝑞6)
 = 3 Φ(q) Φ(𝑞3),                                                               (2.7) 

8.  𝑎(𝑞) = Φ(q) Φ(𝑞3)+4q Ψ(𝑞2) Ψ(𝑞6),                                                        (2.8) 

9. 𝑎(𝑞)= 
𝛷3(−𝑞3)

𝛷(−𝑞)
 + 4q 

Ψ3(𝑞3)

𝛹(𝑞)
,                                                                           (2.9) 

and 

10. a(q)  = 
Ψ3(𝑞)

𝛹(𝑞3)
 + 3𝑞

Ψ3(𝑞3)

𝛹(𝑞)
,                                                                            (2.10) 

Proof: For a proof of (2.1) see [9, Theorem 352, p.282]; for a proof of (2.2) see [9, Theorem 357, p.285]; for a 

proof of (2.3), see [3, p.40]; for a proof of (2.4), see [3,p.114]; for a proof of (2.5), see [3, p.115];  for proofs of 

(2.6) and (2.7), see[3,p.232]; for a proof of (2.8), see [4,p.93]; for a proof of (2.9), see [4,p.110]; for a proof  of 

(2.10), see [4,p.111]. 

3. Main Theorems 

We first prove two theorems, which are useful for the derivation of theta-function identities (1.1)-(1.9). 

Theorem 3.1. For 0<q<1, 

    x + p∑ (
𝑞𝑘𝑛−((𝑘−𝑚)/2)

1+𝑞𝑘𝑛−((𝑘−𝑚)/2) −
𝑞𝑘𝑛−((𝑘+𝑚)/2)

1+𝑞𝑘𝑛−((𝑘+𝑚)/2)) ∞
𝑛=1  

             = 
∑  (𝑝𝑛+𝑥)𝑞(𝑘𝑛2+𝑚𝑛)/2∞

𝑛=−∞

𝑓(𝑞(𝑘−𝑚)/2),𝑞(𝑘+𝑚)/2))
 ,                                                                                     (3.1) 

Proof:  Replacing q by 𝑞𝑘 and a by 𝑎𝑝𝑞𝑚 in (2.1), we find that 

 ∏ (1 + 𝑎𝑝𝑞2𝑘𝑛−𝑘+𝑚)(𝑛≥1 1+𝑎−𝑝𝑞2𝑘𝑛−𝑘−𝑚)(1-𝑞2𝑘𝑛) = ∑ 𝑎𝑝𝑛𝑞𝑘𝑛2+𝑚𝑛 .∞
𝑛=−∞        (3.2) 

Changing q to 𝑞1/2 in (3.2) and then multiplying throughout by 𝑎𝑥, we obtain 

          𝑎𝑥 ∏ [1 + 𝑎𝑝𝑞𝑘𝑛−((𝑘−𝑚)/2]𝑛≥1 [1+𝑎−𝑝𝑞𝑘𝑛−((𝑘+𝑚)/2][1-𝑞𝑘𝑛] 
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                  =∑ 𝑎𝑝𝑛+𝑥𝑞(𝑘𝑛2+𝑚𝑛)/2∞
𝑛=−∞ .                                                                             (3.3) 

Differentiating this with respect to a, and then setting a=1, we obtain (3.1). 

Theorem 3.2.  For 0 < q < 1, 

 x - p∑ (
𝑞𝑘𝑛−(𝑘−𝑚)/2)

1−𝑞𝑘𝑛−((𝑘−𝑚)/2) −
𝑞𝑘𝑛−(𝑘+𝑚)/2)

1−𝑞𝑘𝑛−((𝑘+𝑚)/2))
∞
𝑛=1    

 = 
∑ (−1𝑛)(𝑝𝑛+𝑥)𝑞(𝑘𝑛2+𝑚𝑛)/2∞

𝑛=−∞

𝑓(−𝑞(𝑘−𝑚)/2),−𝑞(𝑘+𝑚)/2))
 ,                                                                             (3.4) 

Proof: Replacing q by 𝑞𝑘 and a by -𝑎𝑝𝑞𝑚 in (2.1), we deduce that 

              ∏ (1 − 𝑎𝑝𝑞2𝑘𝑛−𝑘+𝑚)𝑛≥1 (1-𝑎−𝑝𝑞2𝑘𝑛−𝑘−𝑚)(1-𝑞2𝑘𝑛)  

                = ∑ (−1)𝑛𝑎𝑝𝑛𝑞𝑘𝑛2+𝑚𝑛∞
𝑛=−∞ .                                                                          (3.5) 

Replacing q by 𝑞1/2 in (3.5) and then multiplying throughout by 𝑎𝑥, we obtain 

 𝑎𝑥 ∏ [1 − 𝑎𝑝𝑞𝑘𝑛−((𝑘−𝑚)/2)
𝑛≥1 ][1-𝑎−𝑝𝑞𝑘𝑛−((𝑘+𝑚)/2)][1-𝑞𝑘𝑛] 

                 = ∑ (−1)𝑛𝑎𝑝𝑛+𝑥𝑞(𝑘𝑛2+𝑚𝑛)/2∞
𝑛=−∞ .                                                               (3.6) 

Differentiating this with respect to a, and then setting a=1, we obtain (3.4). 

Proof of (1.1). [10] Putting x =1, p = k = 4 and m = 2 in (3.1), we obtain  

     1+4∑ (
𝑞4𝑛−1

1+𝑞4𝑛−1 −
𝑞4𝑛−3

1+𝑞4𝑛−3)∞
𝑛=1 =

∑ (4𝑛+1)𝑞2𝑛2+𝑛∞
𝑛=−∞

𝑓(𝑞,𝑞3)
.                                            (3.7) 

Now using (2.2) in (3.7) and changing q to –q, we obtain the required result. 

 

Proof of (1.2). [3, Entry 4(iv), p.227] Putting x = 1, p = 6, k = 3 and m = 1 in (3.1) and the changing q to –q, we 

find that  

 1-6∑ (−1)𝑛 (
𝑞3𝑛−2

1+(−1)𝑛𝑞3𝑛−2 +
𝑞3𝑛−1

1−(−1)𝑛𝑞3𝑛−1) ∞
𝑛=1 =

∑ (−1)𝑛∞
𝑛=−∞ (6𝑛+1)𝑞(3𝑛2+𝑛)/2

𝑓(−𝑞,𝑞2)
         

Using (2.4) in the above identity, we obtain the required result. 

Proof (1.3).[5] Changing q to –q2  in (1.2), we obtain 

 1-6∑ (
𝑞6𝑛−4

1+𝑞6𝑛−4 −
𝑞6𝑛−2

1+𝑞6𝑛−2) ∞
𝑛=1 = 

𝛷3(−𝑞2)

𝛷(−𝑞6)
                                                                 (3.8) 

Adding (1.2) to twice of (3.8), we find that  

            3- 6∑ (−1)𝑛 (
𝑞3𝑛−2

1+(−1)𝑛𝑞3𝑛−2 +
𝑞3𝑛−1

(1−(−1)𝑛𝑞3𝑛−1)
)∞

𝑛=1  

              -12∑ (
𝑞6𝑛−4

1+𝑞6𝑛−4 −
𝑞6𝑛−2

1+𝑞6𝑛−2)∞
𝑛=1  = 

𝛷3(𝑞)

𝛷(𝑞3)
 + 2

𝛷3(−𝑞2)

𝛷(−𝑞6)
 . 

Using (2.7) in the above identity and on simplification, we obtain the required result. 

Proof of (1.4). [3, Entry 3(i), p.223] Changing q to –q in (1.3), we obtain 
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 1+4∑ (
𝑞12𝑛−8

1−𝑞12𝑛−8 −
𝑞12𝑛−4

1−𝑞12𝑛−4) ∞
𝑛=1 - 2∑ (−1)𝑛 (

𝑞3𝑛−1

1+(−1)𝑛𝑞3𝑛−1 +
𝑞3𝑛−2

(1−(−1)𝑛𝑞3𝑛−2)
)∞

𝑛=1  

 = Φ(-q)Φ(−𝑞3) 

Using (1.3) and the above identity, we find that 

2 ∑ (
𝑞3𝑛−1

1 − 𝑞3𝑛−1
−

𝑞3𝑛−2

1 − 𝑞3𝑛−2
) 

∞

𝑛=1

+ 2 ∑(−1)n (
𝑞3𝑛−1

1 + (−1)n𝑞3𝑛−1
+

𝑞3𝑛−2

1 − (−1)n𝑞3𝑛−2
) 

∞

𝑛=1

 

             = Φ(q)Φ(𝑞3) - Φ(-q)Φ(−𝑞3).                                                                                (3.9) 

Using (2.6)and (3.9), we obtain the required result. 

Proof of (1.5). [4,  p.93] Adding  (1.3) and (3.9) and then using (2.6), we obtain 

1+4∑ (
𝑞12𝑛−8

1−𝑞12𝑛−8 −
𝑞12𝑛−4

1−𝑞12𝑛−4) ∞
𝑛=1 +4∑ (

𝑞3𝑛−1

1−𝑞3𝑛−1 −
𝑞3𝑛−2

(1−𝑞3𝑛−2)
)∞

𝑛=1  

+ 2∑ (−1)𝑛 (
𝑞3𝑛−1

1+(−1)𝑛𝑞3𝑛−1 +
𝑞3𝑛−2

(1−(−1)𝑛𝑞3𝑛−2)
) ∞

𝑛=1 == Φ(q)Φ(𝑞3) + 4qΨ(𝑞2) Ψ(𝑞6).  

Now, using (2.8) and after some simplification, we get the required result. 

Proof of (1.6). [12,  p.356] Using  (1.1) and (2.3), we obtain the required result. 

Proof of (1.7). [3, Entry 4(iii), p.226] Putting x = 1, p = 3, k = 6 and m = 4 in (3.4)  we find that  

1- 3 ∑ (
𝑞6𝑛−1

1−𝑞6𝑛−1 −
𝑞6𝑛−5

1−𝑞6𝑛−5) ∞
𝑛=1 = 

∑ (−1)𝑛(3𝑛+1)𝑞(3𝑛2+2𝑛)∞
𝑛=−∞

𝑓(−𝑞,−𝑞5)
.         

Using (2.5) in the above identity, we obtain the 

required result. 

Proof of (1.8). [12,  p.357] Using  (1.5) and (1.7) in 

(2.10), we obtain the required result. 

Proof of (1.9). [12,  p.357] Using  (1.5) and (1.8) in  

(2.9), we obtain the required result. 

 Different proofs of (1.6), (1.8) and (1.9) 

have also been given by B. C. Berndt [5]. 
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